
The LiRI Corpus Platform

Johannes Graën, Jonathan Schaber, Daniel McDonald, Igor Mustač, Nikolina
Rajović, Gerold Schneider, Teodora Vuković, Jeremy Zehr and Noah Bubenhofer

Linguistic Research Infrastructure
University of Zurich, Switzerland

first name.last name@linguistik.uzh.ch

Abstract

We present the LiRI Corpus Platform (LCP), a software system and infrastructure for query-
ing a vast array of corpora of different kinds. It heavily relies on the PostgreSQL relational
database management system, employing state-of-the-art data representation and indexing tech-
niques, which lead to significant performance gains when querying, even for structurally complex
queries involving nested logical operations and quantifiers. In this work, we describe the require-
ments that led to the development of this novel system, discuss methods from corpus linguistics
and beyond that we considered key for such a system, and provide details on a number of techno-
logical features that we take advantage of. Our platform also comes with its own query language
tailored both to the requirements in terms of information need and our philosophy of how to
define corpora in an abstract way.

1 Introduction

Corpora are an important resource for empirical linguistic research, as well as text-based social studies
such as digital humanities or media research (Meurers, 2005). There exist numerous tools and platforms
for manipulating different corpus types (mono- vs. multilingual, text vs. multimodal, synchronic vs.
diachronic, etc.), offering various means of access to corpora (web interfaces, command line interfaces,
etc.), and providing different functionalities (editing, querying, annotating, etc.).1 While, taken together,
the set of tools and applications developed thus far covers a variety of corpora and corpus types, taken
individually, most of them are actually designed for specific corpora or corpus types, and therefore lack
the ability to generalize. Some tools provide a general interface for diverse corpora, handling a multitude
of differently structured corpora and occasionally provide specific functionality needed for them (see
Section 2 for a (small) overview of existing tools and applications).

Central to all corpus tools is the ability to query one or more datasets. We propose a distinction between
two main querying strategies:

1. Corpus exploration, characterized by being an iterative, drilling-down process, where users run
and refine their queries based on results, and by interfaces that prioritize speed (Hearst, 1999).

2. Corpus analysis, maximizing recall of results in a corpus, prioritizing accuracy and specificity, with
results returned in a format suited for subsequent statistical analyses.

The latter strategy is of particular interest to approaches that require large amounts of data (“Big Data”),
such as the training of large language models.

While those two strategies are more complementary than antagonistic, to our knowledge most tools
tend to prioritize the latter strategy over the former (cf. Desagulier, 2019). We design our application
to accommodate both approaches, supporting the construction of queries in a bottom-up fashion. When
working with today’s often very large corpora, one does not always need full recall: as soon as the
matches delivered are a reasonable approximation to all the results, the user may choose to stop instead
of waiting for complete results. We discuss, besides other things, how we employ random sampling by

1https://corpus-analysis.com/, a page collecting tools for corpus linguistics, lists 266 entries (as of 2024-03-05).

means of logarithmic partitioning to achieve these goals (in Sections 3.2 and 4.2). The incorporation of
both strategies constitutes a timely improvement over existing tools that presume their users to arrive
with full-fledged, complex queries.

In this contribution, we present the LiRI Corpus Platform (LCP) a new tool that couples complex
analysis of diverse corpora and interoperability with existing CLARIN resources. The software facilitates
access to and re-use of research data, offering a flexible architecture, whereby a single backend can be
connected to multiple frontends tailored to the requirements of specific research agendas. We will mostly
focus on the data modeling and its implementation in an RDBMS, while only briefly explaining the
different interfaces that we have implemented and plan to implement in the future. While interfaces are
to some extent interchangeable, the dynamic data model and its implementation form a core feature and
contribution of our tool.

After discussing existing corpus query systems in the next section, we will detail in Section 3 which
methods from corpus linguistics were seminal to our platform, followed by an overview of technology
and technological methods employed in Section 4. Section 5 lists important limitations of our platform’s
features, describes the current state of implementation and provides an outlook on future development.

2 Related Work

Myriad systems for storing and querying large corpora have been developed in past decades. Clematide
(2015) gives an overview of corpus linguistic query language types, distinguishing between four families.
Historically prominent were (I) sequence-based designs, such as CQP (Christ, 1994; Evert & Hardie,
2011) and other dialects of regular expressions, (II) structure-based designs, such as TGrep2 (Rohde,
2005) for querying syntactic trees. Many of them have organically developed within parameters set by
technological restrictions of the time. For example, CQP is limited with regard to syntactic queries be-
cause its sequence-based conceptualization of text is ill-suited to express non-sequential structural in-
formation expect for containment expressed by the within keyword. More recently (III), the class of
path-based languages which use the XPath query language have been implemented. Finally, (IV) the
class of logic-based languages such as TigerSearch and ANNIS, which offers outstanding expressive-
ness, coupled with considerably longer retrieval times. For example, for performance reasons, the most
recent major version of ANNIS (Krause & Zeldes, 2016) has abandoned the relational database Post-
greSQL, and developed a custom implementation based on graphs.2 In contrast, our proposed approach
retains the expressiveness of logic-based languages while leveraging advanced data-representation and
indexing techniques in order to offer faster retrieval times.

Several methods for speed-ups have been proposed. For instance, while older approaches rely on
MapReduce techniques (Schneider, 2013), modern database management systems as PostgreSQL pro-
vide internal mechanisms for parallel computing and intelligent algorithms to use the most discriminate
features first. Other methods are the use of sophisticated indexing and retrieval techniques, as in the the
proposals of (Ghodke & Bird, 2012).

For reasons of space, our overview provides only a brief sketch of past and present resources. For
example, we omit detailed description of several projects fine-tuned for particular corpora and particular
tasks, for example Dependency Bank (Lehmann & Schneider, 2012), which allows fast syntactic queries
on the British National Corpus (BNC).

While some published standards and guidelines have attempted to define a single digital format able
to encompass all possible linguistic data and annotations (Gries & Berez, 2017; Ide & Romary, 2004,
2006), to our knowledge no actual working implementation of such proposals has been presented to date.
While we do not suggest that our solution covers all possible needs, we offer an attractive solution that
facilitates analysis of a very broad range of corpus types.

3 Methods

The methods described here were fundamental to the development of our corpus platform. Our target
user groups come from different fields and are accustomed to different tools and methods of analyzing

2https://github.com/korpling/ANNIS/blob/main/CHANGELOG.md (2024-03-05).

language data. We aim at satisfying needs of most envisaged users, but we are well aware that a one-size-
fits-all solution for corpus management and retrieval is unlikely to be developed in the near future.

3.1 Analysis and Collocations
In addition to showing matches in plain and keyword-in-contect (KWIC) format, LCP allows for several
statistical analyses. We present two examples of statistical analyses: frequency analysis, which delivers
frequency distributions, and collocations, in which a large range of standard collocation measures are
offered. The query in Figure 1 illustrates those on a query for adjective premodification of a noun whose
lemma is preference.

Segment s

sequence seq
Token@s t1

xpos2 = "ADJ"
Token@s t2

xpos2 = "SUBST"
lemma = "preference"

KWIC => plain
context

s
entities

t1
t2

AdjDist => analysis
attributes

t1.lemma
functions

frequency
filter

frequency > 1

LeftContext => collocation
center

t2
window

-2..-1
attribute

lemma

Figure 1: A query on the British National Corpus (BNC) searching for a sequence of adjectives and
nouns with the lemma preference. Alongside a result set comprising both tokens within the sentence
in which they appear (‘KWIC’), a frequency analysis on the lemma of the adjectives (‘AdjDist’) and a
collocational analysis (‘LeftContext’) are defined – for a window of the two tokens preceding the noun
(positions -2 and -1).

The results pane shows three tabs, corresponding to the three result sets KWIC, AdjDist and LeftCon-
text that we defined in the query above. Figure 2 reports the frequency table (left) and collocation table
(right) generated by the query: the former lists absolute and relative frequencies, while the latter reports
strongest associates, sorted by simple log-likelihood in this example.

3.2 Sampling
One strategy we deploy allowing us to deliver results very quickly is the use of random sampling com-
bined with the incremental querying of increasingly large samples of documents, starting with the small-
est sample, while constantly updating the information displayed, that is raw matches, frequencies and
statistical measures.3 Random sampling is typically the best sampling strategy if no assumptions can be
made about the entire dataset (Cochran, 1977). The reliability of the partial results can be estimated by
the standard error SE, which is defined as

SE = σ̄ =
σ√
n

(1)

where n is the number of matchses, and σ the standard deviation, i.e. the fluctuation in a sample.
While we do not know the exact standard deviation until we have found all the matches (for we cannot

know the mean of the whole population) we can approximate it, as is e.g. done in the Welch’s two-sample
t-test, where the standard error is approximated via the samples.

3See also Section 4.2.

Figure 2: Distribution of adjectives premodifying the noun preference (left) and collocations of the two
preceding tokens of that noun (right).

t =
x̄− µ

σ̄
=

x̄− µ
σ√
n

=
x̄− µ√

σ2

n

=
(x̄1 − µ) + (x̄2 − µ)√

s21
n +

s22
n

=
(x̄1 − x̄2)√

s21
n1

+
s22
n2

(2)

Accordingly, the frequencies found in a large set of samples give us a good estimate of the population
frequency, to which it asymptotically converges. Our technique of logarithmic partitioning implements
this random sampling strategy for faster callback while minimally compromising on accuracy (see Sec-
tion 4.2 for more details).

3.3 Syntactic Queries
Corpora that model dependency relations can be queried for syntactic relations. For example, the corpus
in Figure 3 defines an entity named DepRel which models syntactic dependency relations. The illustrated
query delivers all pairs of tokens that belong to the same sentence Segment, where the head is a form of
the verb ‘take’ and the dependent is its object (the labelset uses ‘dobj’ for direct objects).

See also Section 4.4 for representation and implementation details regarding dependency structures.

3.4 Query Language
The CQP query language (Christ, 1994) ingeniously translated the concept of regular expressions into
corpus queries, supporting any pattern of adjacent tokens with attributes that can be modeled as automata.
Its widespread use attests to its versatility. Other query languages have extended CQP’s potential by pro-
viding for syntactic query operators. The ANNIS query language AQL (Zeldes et al., 2009), in particular,
provides a multitude of operators for both constituency and dependency syntax.4

Clematide (2015) classifies several query languages with regard to their purpose and functionality. In
general, a trade-off between efficiency and complexity (of both the data and the query language) can
be observed. However, to determine this trade-off in a sound way, or even comparing different query
languages regarding those effects is very hard as pointed out by Lai and Bird (2010, p. 59):

The problem of comparison [of query languages] is exacerbated by the fact that most imple-
mentations are tailored to the flat file representation used by a specific corpus, and cannot

4Fundamental syntactic queries had already been established by its predecessor TIGERSearch (König & Lezius, 2000).

Segment s

Token@s t1
upos = "VERB"
lemma = "take"

Token@s t2
DepRel

head = t1
dep = t2
label = "dobj"

KWIC => plain
context

s
entities

t1
t2

Figure 3: The automatically generated visualization of the corpus structure (left), a syntactic query for a
simple dependency relation to be run against the said corpus (right) and an example sentence from the
‘KWIC’ result set (bottom).

be compared directly. Comparing code is hampered by the fact that the code is not always
available, and because query processing is intertwined with idiosyncratic indexing and stor-
age. In general, these languages are not compiled into an existing general purpose language
(such as SQL), which means that their relationship to such languages is not known. Moreover,
standard indexing and optimisation techniques cannot be applied, and the implementations we
have experimented with do not scale [. . .]. For these reasons, it is difficult to establish the
formal expressiveness of existing linguistic tree query languages, or establish the asymptotic
efficiency of their implementations.

For our query language DQD (Descriptive Query Definition), a key concept was the En-
tity–relationship (ER) model used for modeling data structures in software development, especially for
database schemata. For corpora hosted by our infrastructure, the structure needs to be defined in terms
of entities (including a list of their attributes and attribute types), and relations between them; we refer to
this structure as corpus template. In contrast to free modeling in ER diagrams, we limit data and relation
types to a predefined set, and require corpus developers to define three fundamental units:

1. the main unit of interest (e.g. tokens),

2. meaningful ordered collections of those units (e.g. sentences), and

3. the hierarchically highest unit that contains ordered elements (e.g. documents)

The query language DQD then refers to a particular constellation of entities and their relations (in-
cluding non-existing parts). We can put constraints on entities (existing and non-existing ones) in form
of logical formulae represented as trees. DQD uses indention to express subordination.5

In absence of root-level logical operators, we assume conjunction (as used for conditions on Token
‘t2’ in Figure 1). Similarly, we assume existential quantification if existence is not explicitly negated (for
more details on quantification, see the following section). 6 A DQD query introducing entities e1 to en
with their subordinated propositions p1 to pn is thus matching everything where

∧
i ∃ei ∧ pi(ei) holds.

DQD uses three set-defining operators:

1. sequence for patterns on units with optional repetition ranges similarly to the ones introduced by
the CQP query language,

2. group for conflating elements or sets of elements of the same type into a single set, and

3. set for a – potentially empty – set of units of the same type defined by a logical proposition (see
tverbs in Figure 4)

Segment s

Token@s tverb
upos = "VERB"

set tdeps
Token@s tx

DepRel
head = tverb
dep = tx
label != "punct"

KWIC => plain
context

s
entities

tverb
tdeps

Figure 4: A query searching for verbs and all their dependencies with a label different to “punct”. The
results set returns verbs and dependencies within the context of sentence Segments.

Besides the definition of such a constellation, DQD also defines one or many datasets to be returned
by the query. We currently support three types, namely:

1. a plain view on the data within a defined context (e.g. sentence or document) and the entities in this
context to be marked (e.g. tokens or sentences),

2. a statistical analysis of the results on one or more attributes, using one or more functions (e.g.
frequency), applying an optional filter,7 and

3. a collocation analysis on a defined attribute, with either a center unit (token) and a window, or a
space, which is a set of tokens8

A list of operators are defined to operate on numbers and number ranges (including times and time
ranges), strings and entities. Alignment operators can be employed for defining correspondence on par-
allel corpora.9

5DQD comes in a textual and a corresponding JSON format; for reasons of simplicity, we will only refer to the textual
representation when discussing DQD features.

6By convention, we use lowercase for attributes (lemma, upos, label, . . .) and camel case for entities (Token, DepRel, . . .).
Logical operators and quantifiers are required to be written with uppercase letters (NOT, AND, EXISTS, . . .).

7The filtering happens after the aggregates have been calculated
8The latter is useful for collocation analysis in dependency relations.
9Along the lines of “hierarchical alignment” described in (Graën, 2018, p. 76ff).

3.5 Existential Constraints
An important aspect of query languages targeted at linguistic corpora concerns the possibility to express
constraints on the absence of data. Consider, for example, the pseudo-query “find all sentences that have
no verb”, which requires the query language to have some means to express both universal quantifica-
tion and negation on the level of quantification. This query can be expressed in relational calculus as
{⟨s⟩|¬∃t ∈ s ∧ verb(t)} or, universally quantified, as {⟨s⟩|∀t ∈ s → ¬verb(t)}.

Segment s

Token@s t1
upos = "NOUN"

¬EXISTS
Token@s t2

upos = "VERB"

KWIC => plain
context

s
entities

t1

Figure 5: A query searching for sentence Segments with at least one noun but no verb.

While existentially quantified entities have a global scope in DQD and can be referred to from any-
where after their declaration in DQD, universally quantified entities cannot as their existence is bound
to the scope of their quantification. The Token ‘t2’ in Figure 5, could thus only be referred to within the
scope of the ‘¬EXISTS’ quantification. For the result set ‘KWIC’, ‘t1’ is thus the only visible entity.

As universal and existential quantification can be translated to one another by negating both the quan-
tification and the logical formula under the quantification’s scope, we only support negated existential
quantification in DQD – in addition to regular existential quantification.10 Given that a query needs to
declare at least one result set for it to return anything at all, and that result sets need to make use of at
least one entity, all DQD queries consequently have at least one entity that is existentially quantified.11

Lai and Bird, 2010 demonstrate that while TGrep2 only enforces an “(implicit) outermost quantifi-
cation [that] is always existential” and allows other forms of quantification on lower scoped variables
while inhibiting “negation outside an entire expression”, in TIGERSearch “all variables are existentially
quantified” and the language further inhibits “negation to scope over this implicit existential”.

4 Technology

We offer a flexible solution that we have designed for several types of corpora, ranging from Digital
Editions (where a reference to an area in the original manuscript is essential), multimodal corpora (where
movies and temporal annotation are required), and very large corpora (where short retrieval times are a
priority, even for complex corpus templates).12

The corpora that we make available through the system differ in various aspects such as size, anno-
tation layers, and complexity. While structurally complex corpora pose a challenge for the construction
and processing of a dynamic query language, very large corpora, on the other hand, demand the efficient
retrieval of previously unseen queries. Because of the latter, we cannot precompute partial results, but
we can still precompute efficient data representations and index structures.

We accommodate structurally complex corpora, and in particular parallel corpora, by representing
alignments as structural elements, similar to dependency relations.13 We employ PostgreSQL, a mod-
ern database management system,14 to deal with the latter challenge, unlike the developers of ANNIS

10Recall from Section 3.4 that all entities are existentially quantified if not declared otherwise.
11Even if a result set refers to a set instead of a singleton and all instances of said set are empty, it still exists.
12See Section 3.4.
13There are three main differences between these two relations: 1) alignments represent correspondence and are thus undi-

rected, 2) alignment links are typically unlabeled, and 3) the data type of alignments are (nested) sets rather than trees (see
Graën, 2018).

14https://www.postgresql.org/

(Krause & Zeldes, 2016), who replaced PostgreSQL as a storage and query backend with their own
solution.15

The description of the methods we employ focuses on the central task of querying. Our methods have
been designed to scale to very large corpora with complex annotation schemes. To this end, we have
designed a query language named DQD (Descriptive Query Definition), which has two interconvert-
ible representations, one in JSON and one in a textual format (see also Section 3.4). We can translate
queries from other query languages like the CQP query language to DQD, but not the other way around,
since there are queries which can be represented in DQD, but not in other languages (e.g. queries using
syntactic relations or alignment structures).

Due to the complexity of its architecture (see the following section) and the intended use as a platform
for making linguistic data available e.g. through the CLARIN-network, LCP is implemented as a service
that can be accessed over the Internet; either through one of several dedicated web applications or directly
via an API.16 Both access methods require matching credentials.

In this section, we limit ourselves to central techniques that we leverage as part of our platform’s
results retrieval process. We describe further improvements not explained here in Section 5.

4.1 Platform Architecture
LCP is designed in a modular way; individual components can be replaced and layers be extended,
allowing us to scale horizontally, address future needs when they arise, and offer tailored solutions to
individual user groups. In particular, new frontend applications can easily be integrated and an increasing
number of concurrent users can be dealt with by scaling up the number of workers and replicas in the
database cluster.

Figure 6 shows the architecture of LCP. The entry point for natural users and automated access is the
reverse proxy, which connects to Shibboleth for authentication if authentication is needed.17 Requests are
then forwarded to the individual applications.18 Media files (audio, video and images) are sent directly
to the client, provided approval by LAMa, the LiRI Account Manager, which handles users, groups and
permissions.

The backend for all applications consists of an application that manages sessions and routes different
types of queries to either regular workers or background workers, based on priorities. Regular workers
perform incremental queries as described in Section 3.2 using Redis19 for aggregating data retrieved
from the database. Background workers, on the other hand, perform more time-consuming tasks such as
exporting large datasets and converting them into different file formats.

Connections to the database run through a pgpool II instance that acts as both, connection pooler and
load balancer, in front of the actual database cluster, which consists of a main server and several replicas,
for reasons of performance and availability.

4.2 Logarithmic Partitioning
LCP places no inherent restrictions on corpus size.20 Running a complex query on a multi-billion word
corpus can potentially require hours if data is to be processed sequentially, prohibiting a seamless iterative
querying approach, despite this being a typical workflow in corpus-driven linguistic research (Rayson et
al., 2017). To quickly retrieve initial results, and thus enable researchers to refine their query and estimate

15“Instead of using the relational database PostgreSQL, a custom AQL implementation based on graphs called graphANNIS
is used.” (https://github.com/korpling/ANNIS/blob/main/CHANGELOG.md (2024-03-05).

16We provide a general overview of corpora and tools available at https://lcp.linguistik.uzh.ch.
17Automated access uses project-based access keys instead.
18We currently provide an application for querying text corpora named catchphrase. Another application for speech corpora

is scheduled to be released in March 2024, and another one for multimodal corpora in May 2024.
19https://redis.io/
20This is one of the advantages of LCP over other systems like e.g. the Corpus Workbench, whose initial architecture restricts

it to a maximum corpus size: “[. . .] the internal format of the indexed and compressed corpora imposes [a] 2.1 billion token
limit” (Evert & Hardie, 2011, p. 13). This shortcoming is to be addressed by a new data representation format named Ziggurat
(Evert & Hardie, 2015), which has not been released at this point. The authors have also witnessed the performance of ANNIS
(version 3.x) dropping considerably for medium-size datasets (less than 10m tokens).

Reverse Proxy

Routing

Caching

PostgreSQL Cluster
Streaming replication

High availability (Patroni)
SSD-based storage

Redis

Caching

Message queue

Background
Workers

Exports

Conversion

SAN

Media

Exports

Shibboleth

LAMa

Applications
Text Corpora

Speech Corpora
Multimodal corpora

Digital Editions

Backend

Sessions

Routing

Workers

Queries

pgpool II

Connection pooling

Load balancing

Figure 6: Architecture of LCP showing its modular design. Any number of frontend applications (purple)
use a common backend, which, in turn, makes use of a variable number of workers that handle short-term
or long-term requests. The database cluster can easily be extended both vertically (more disk space) and
horizontally (more nodes).

the distribution of the phenomenon in question on the whole dataset, we employ a structure that allows
incremental querying randomly sampled subcorpora of increasing size.

P1

P2

P3

P4

P5

P6

P7

P8 P+
1m

2m4m

8m16m

32m

128m

1m

64m

Figure 7: A corpus with 256 million segments is split into nine partitions. The last one, P+, is of approxi-
mately equal size to the second-to-last one, P8, as it contains all segments that remain after the eight-fold
bisection.

To this end, we generate Universally Unique Identifiers (UUIDs) (Leach et al., 2005) for the lin-
guistically salient units in each corpus – typically, sentences, sentence segments or utterances. We then
subdivide the total space of potential UUIDs into partitions of decreasing size, always splitting one part
into two halves (see Figure 7). We use Version 4 UUIDs, as they are (for the largest part) generated by a
truly random algorithm,21 so we can expect each partition to comprise a known share of the total number
of units (granted a small distributional deviation that depends on the corpus size), that is, in relation to
the total size, a half, a fourth, an eighth etc.

In the case of a one billion word corpus with an estimated average of ten words per sentence and a
smallest partition of at least one million tokens, we would thus create eleven partitions.22

This logarithmic partitioning allows us to run a query on the smallest partition and extrapolating from
the first result set retrieved both to the expected amount of results on the whole corpus and to the optimal
partition to be queried next in order to satisfy the request for a particular number of results.

For the investigation of frequent phenomena, a small random sample is often enough. If more data is
needed, our approach seamlessly scales from a quick ‘pilot study’ on a subset to a complete analysis of
the entire corpus. Such pilot studies also allow researchers to develop and test their queries quickly, and
to assess where interesting differences by the available metadata can be found (period, variety, genre,
gender, etc.) in an exploratory fashion.

4.3 Indexable Vector Representations
Corpora added into our database are passed through a pipeline that computes a vector representation
of each sentence, preserving the positional information of tokens; in PostgreSQL this data structure is
implemented under the name of “tsvector” (Bartunov & Sigaev, 2001). This is related to the classic
information retrieval task of phrase searches (Manning, 2009). In most text corpora, tokens show vari-
ous layers of annotation (e.g. lemmas, part-of-speech tags, morphological features etc.). With the vector
representation implemented with the help of that data structure, we can define multiple layers of infor-

21We actually only require the first N bits to be random, where N depends on the overall size of the corpus.
221b words / 1m words = 1000 ≈ 210 (ten regular partitions plus the remainder).

mation per position (in a sentence). In order to take them apart when querying, we need to distinguish
word forms from lemmas, tagsets and so on. To this end, we prepend each string with one character per
layer to tell them apart.

The advantage of such a vector structure is that it can be efficiently indexed23 and thus allows per-
formant retrieval of sentences that match specific criteria. Typical search patterns like sequences of to-
kens with additional constraints on annotations, like a CQP-style [pos="DET"] [pos="ADJ"]
[lemma="linguist"] can be converted to a vector query that makes use of this index and quickly
finds matching sentences. This often allows us to drastically reduce the number of sentences to which
the original query will be applied, hence it is used to prefilter the corpus.

4.4 Nested Sets
Syntactic analyses in the form of dependencies form a tree-structure – in the mathematical sense of the
word – over sentences (Crystal & Alan, 2023, p. 137). Relational Databases do not provide a straightfor-
ward way how to represent and, especially, query such data. However, several solutions for this problem
have been proposed, one of them being a representation of tree-structures in the form of nested sets,
which we also chose to employ for LCP. Nested sets can conceptually be conceived as sets that are com-
pletely contained within each other. The nested set representation of a tree can be computed by traversing
the tree depth-first and attaching a number when a node is passed the first and when it is passed the sec-
ond time (called the left and right anchor, respectively). Figure 4.4 shows the result of this process for an
example sentence.

Figure 8: The dependency tree and its corresponding pairs of anchors in the nested set representation.
The third word “is” is the root of the tree, and the traversal start and ends there.

As demonstrated by e.g. Celko, 2012, p. 49ff. nested sets have some useful properties: They allow,
among others, e.g. (a) simple selection of subtrees, (b) the efficient computation of the height of a
(sub-)tree, (c) finding paths, by restricting selections on the anchors. In other, possibly more intuitive
representations (such as adjacency list, where each node points to its parent), this could only be achieved
by writing more complex and computationally more expensive queries.

4.5 Linear Projection of Hierarchical Structure
Different corpora tend to be quite heterogeneous regarding the super-segmental structures that the use.
They can potentially range from flat structures (e.g. a corpus consisting of recorded interviews, where
no further subdivisions exists between the document level, i.e. the interview, and the utterance) to deeply
nested ones (e.g. a corpus of legal texts, with a hierarchy of Act → Article → Paragraph → Subparagraph
→ Point → Sentence.24 The straightforward way of representing such structures in a relational way
would entail defining entities for each of the levels, with foreign-primary key relations between each pair
of adjacent levels. This leads to a potentially large number of tables that need to be joined when querying

23https://github.com/postgrespro/rum
24Cf. the official style guide of the European Union for the formulation of acts: https://publications.europa.eu/code/en/

en-120700.htm (2024-03-05).

the database to reach the required hierarchy level to restrict for query needs (“search for phenomenon X
in sentences from only acts U, V, and W”). Our approach consists in positioning all tokens of a corpus in
one virtual stream of characters25 and compute start and end positions for all tokens, sentences, and all
other hierarchy levels in this stream. This allows us to make use of PostgreSQL’s native range type and
operators26, which allow for “skipping” hierarchy levels: To restrict matching sentences to only appear
in certain acts, the character ranges of the respective acts can be directly compared to the indices of the
sentences, without the need to first join the hierarchy chain down via the intermediate levels. In other
words, this technique makes use of the fact that hierarchical containment is a transitive relation.

5 Discussion and Conclusions

We describe a new system that uses a modern database and successfully applies innovative structural and
indexing solutions to the modeling and complex querying of large corpora, yielding performant retrieval
of query results. Our strategy of logarithmic partitioning means that the first trends emerging from the
first partitions are available quickly, which allows for prototyping on corpora of nearly unlimited size.
The data model we employ in the database is designed to be as flexible as possible, allowing the repre-
sentation of various corpora with very different, possibly deeply nested hierarchical structures (books,
chapters, verses, parliamentary discussions, etc.).

We provide a tool for users to import corpora into LCP. It currently supports corpora that can be
represented in the CoNLL-U format; additional formats will be accepted in the future to support the
import of more complex corpora and of those with media files attached. Other types of corpora have
been and will be imported directly by us.

In its current state, LCP comes with some limitations, of which we give both descriptions and sugges-
tions for improvement below.

• Designing a whole new query language allowed us to make it both powerful and flexible, but its
novelty also means that new users need to study it. To support them, our interfaces provides a query
editor with auto-completion feature and a visual representation of the corpus structure. While we
plan to provide options to translate CQP statements to DQD queries to ease the transition for users
familiar with that language, DQD aims to be expressive and declarative and can unleash the full
potential of our platform. The examples we provide for each corpus can easily be edited, and we are
actively working on extending our documentation, as well as planning to teach workshops on LCP.

• Although CoNLL-U provides a reliable standard for corpus imports, it also comes with limitations
on what information it encodes, and the importing process remains non-trivial. We will first extend
support to the CoNLL-U Plus format, which allows for arbitrarily many fields, and will document
common use cases such as named entities of multi-media corpora as we automatize their importing
process.

• The fast and optimized architecture entails that hosting new server instances takes considerable
knowledge and needs a relatively expensive infrastructure. Parties interested in deploying their own
setup will find all the code of the individual modules accessible as open source software.27

• Our basic unit of analysis is the sentence. A consequence of this is that delivering other levels,
for instance entire documents, requires extra retrieval steps. The platform compensates some of the
extra cost by caching the results of recent queries, so that future queries can partially or completely
reuse previous data in an optimized way.

• Negated existential queries are complex, as the entire corpus needs to be searched. Fortunately, the
use of vectors allows us to query efficiently also in this situation.

25Similarly, we use a time axis for speech and multimodal corpora.
26https://www.postgresql.org/docs/current/functions-range.html
27The source code can be obtained from https://github.com/liri-uzh/lcp.

• We only support dependency syntax. This is a limitation compared to some other systems. However,
LCP allows to define entities spanning arbitrary sequences, which are used, for instance, for the
annotation of Named Entities, and could also be employed to mark phrases.

In the future, we will integrate further and more varied corpora. We have built frontends for text,
speech and multimodal corpora, as well as a tool for visualizing content analysis with a purely graphical
interface, allowing keyword extraction, topic modeling and time series analysis, using, among others, a
large collection Swiss newspaper articles from the past decades (Graën et al., 2023).

References

Bartunov, O., & Sigaev, T. (2001). Full-Text Search in PostgreSQL (tech. rep.).
Celko, J. (2012). Joe Celko’s Trees and Hierarchies in SQL for Smarties. Elsevier.
Christ, O. (1994). A Modular and Flexible Architecture for an IntegratedCorpus Query System.
Clematide, S. (2015). Reflections and a Proposal for a Query and Reporting Language for Richly An-

notated Multiparallel Corpora. In G. Grigonyte, S. Clematide, A. Utka, & M. Volk (Eds.), Pro-
ceedings of the Workshop on Innovative Corpus Query and Visualization Tools at NODALIDA
(pp. 6–16). Linköping University Electronic Press.

Cochran, W. G. (1977). Sampling Techniques (3rd). Wiley.
Crystal, D., & Alan, C. (2023). A dictionary of linguistics and phonetics. John Wiley & Sons.
Desagulier, G. (2019). Can word vectors help corpus linguists? Studia Neophilologica.
Evert, S., & Hardie, A. (2011). Twenty-first century Corpus Workbench: Updating a query architecture

for the new millennium.
Evert, S., & Hardie, A. (2015). Ziggurat: A new data model and indexing format for large annotated text

corpora. Challenges in the Management of Large Corpora (CMLC-3), 21–27.
Ghodke, S., & Bird, S. (2012). Fangorn: A system for querying very large treebanks. Proceedings of

COLING 2012: Demonstration Papers, 175–182.
Graën, J. (2018). Exploiting Alignment in Multiparallel Corpora for Applications in Linguistics and

Language Learning [Doctoral dissertation, University of Zurich].
Graën, J., Mustac, I., Rajovic, N., Schaber, J., Schneider, G., & Bubenhofer, N. (2023). Swissdox@ LiRI

– a large database of media articles made accessible to researchers. CLARIN Annual Conference
Proceedings, 111–115.

Gries, S. T., & Berez, A. L. (2017). Linguistic Annotation in/for Corpus Linguistics. Handbook of Lin-
guistic Annotation, 379–409.

Hearst, M. A. (1999). Untangling Text Data Mining. Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics, 3–10.

Ide, N., & Romary, L. (2004). International Standard for a Linguistic Annotation Framework. Natural
Language Engineering, 10(3–4), 211–225.

Ide, N., & Romary, L. (2006). Representing Linguistic Corpora and Their Annotations. LREC, 225–228.
König, E., & Lezius, W. (2000). A Description Language for Syntactically Annotated Corpora. COLING

2000 Volume 2: The 18th International Conference on Computational Linguistics.
Krause, T., & Zeldes, A. (2016). ANNIS3: A new architecture for generic corpus query and visualization.

Digital Scholarship in the Humanities, 31(1), 118–139.
Lai, C., & Bird, S. (2010). Querying Linguistic Trees. Journal of Logic, Language and Information, 19,

53–73. https://doi.org/10.1007/s10849-009-9086-9
Leach, P., Mealling, M., & Salz, R. (2005). A Universally Unique IDentifier (UUID) URN Namespace

(tech. rep.).
Lehmann, H. M., & Schneider, G. (2012). BNC Dependency Bank 1.0. In S. O. Ebeling, J. Ebeling, &

H. Hasselgård (Eds.), Studies in variation, contacts and change in English, volume 12: Aspects
of corpus linguistics: Compilation, annotation, analysis. Varieng.

Manning, C. D. (2009). An Introduction to Information Retrieval. Cambridge University Press.
Meurers, W. D. (2005). On the use of electronic corpora for theoretical linguistics: Case studies from the

syntax of German. Lingua, 115(11), 1619–1639.

Rayson, P. E., Mariani, J. A., Anderson-Cooper, B., Baron, A., Gullick, D. S., Moore, A., & Wattam, S.
(2017). Towards Interactive Multidimensional Visualisations for Corpus Linguistics. Journal for
Language Technology and Computational Linguistics, 31(1), 27–49.

Rohde, D. L. T. (2005). TGrep2 user manual.
Schneider, R. (2013). KoGra-DB: Using MapReduce for language corpora. In M. Horbach (Ed.), IN-

FORMATIK 2013 – Informatik angepasst an Mensch, Organisation und Umwelt (pp. 140–142).
Gesellschaft für Informatik e.V.

Zeldes, A., Lüdeling, A., Ritz, J., & Chiarcos, C. (2009). ANNIS: A search tool for multi-layer annotated
corpora.

