
FAIR Tool Discovery: an automated software metadata harvesting
pipeline for CLARIAH

Maarten van Gompel
KNAW Humanities Cluster
Amsterdam, the Netherlands
proycon@anaproy.nl

Menzo Windhouwer
KNAW Humanities Cluster
Amsterdam, the Netherlands

menzo.windhouwer@di.huc.knaw.nl

Abstract

We present the Tool Discovery pipeline, a core component of the CLARIAH infrastructure in the
Netherlands. This pipeline harvests software metadata from the source, detects existing hetero-
geneous metadata formats already in use by software developers, and converts them to a single
uniform representation based on schema.org and codemeta. The resulting data is then made avail-
able for further ingestion into other user-facing catalogue/portal systems.

1 Introduction

Software is indispensable in a lot of modern-day research, including in sectors such as the Humanities
and Social Sciences that may have traditionally been less focused on information technology. It is also
appreciated more and more as valid research output, alongside more conventional output such as aca-
demic publications, presentations, and datasets. Scholars often have a need for research software to do
their research efficiently.

For scholars it is therefore important to be able to find and identify tools suitable for their research, we
call this process tool discovery. We define tool here and throughout this paper to broadly refer to any kind
of software, regardless of the interface it offers and the audience it targets. The scholar’s requirement to
find tools is reflected in the letter F for Findable in the ubiquitous acronym FAIR 1 that has received
a lot of attention in recent years in academic circles. The term is often adopted to promote quality and
sustainability in research software (Jiménez et al., 2018). In order to find tools, researchers must have
access to catalogues that relay accurate software metadata.

There is no shortage in existing initiatives in building such catalogues; many research groups, projects
or institutes have some kind of website featuring their tools. Aggregation of software metadata from
multiple sources is also not new. CLARIN itself already does this in the CLARIN Virtual Language
Observatory2 (van Uytvanck et al., 2010), and DARIAH in the SSHOC Open Marketplace3 . However,
the system we describe in this paper is not an attempt to build another catalogue. We developed a generic
pipeline that harvests software metadata from the software’s source, leveraging various existing metadata
formats, and converting those to a uniform linked open data representation. This data can then be used to
feed catalogues.

2 The need for high-quality metadata

Unlike most digital data, software is uniquely characterised as a constantly moving target rather than a
static deliverable entity. Releases at different points in time address bugs, security vulnerabilities, or
add new features. Moreover, software lives not in isolation, but in connection to other software; its
dependencies. Updates are needed to adapt to changes in its runtime environment.

For software metadata to be informative in this dynamic setting, it needs to reflect this moving target
and explicitly link to a particular version of the software. This also facilitates provenance keeping and

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1Findable, Accessible, Interoperable and Reusable
2https://vlo.clarin.eu
3https://marketplace.sshopencloud.eu/

https://vlo.clarin.eu
https://marketplace.sshopencloud.eu/

scientific reproducibility. Furthermore, metadata should convey information about the stage of devel-
opment the software is in and the level of support an end-user may expect. The user would be wise to
exercise caution in adopting software that is unmaintained and unsupported. In practice we often find this
information lacking and come across catalogues that were manually compiled once but rarely updated
since.

The need for accurate up-to-date metadata goes hand-in-hand with the need for complete metadata. If
vital details are missing, the end-user may not be able to make an informed judgment.

A common pitfall we have observed in practice is that metadata is often manually collected at some
stage and published in a catalogue, but never or rarely updated or revised. In best case, the software has
moved on and the metadata covers a mere subset, in worst case, the software or the entire catalogue is
unmaintained and out of date.

3 Bottom-up harvesting from the source

What we propose is a fully automated pipeline where software metadata is kept at the source, i.e. along-
side the software source code, and periodically harvested from there. This is in contrast to approaches
where metadata primarily resides in an intermediate system that is manually constructed or curated,
which is a common approach for many software catalogues4. Our approach has a number of important
advantages:

1. Source code is often already accompanied by software metadata in existing schemas because many
programming language ecosystems already either require or recommend this. Our aim is to avoid
any duplication of metadata and reuse these existing sources to the maximum extent possible.

Consider for example pyproject.toml or setup.py for Python projects, package.json
for javascript/npm/nodejs projects, pom.xml for Java/Maven and Cargo.toml for Rust. Aside
from these, valuable machine parsable metadata may be extracted from other conventional files such
as a LICENSE file or a README.md file. The latter often contains machine-interpretable badges.
Badges are small images often included on top of the README to express certain properties of
the software, such as links to documentation, continuous integration services, development status,
packaging status. Research software developers also often include a CITATION.cff5 file which
we can automatically parse for metadata. All these different sources may be present and can be
recombined in our harvesting process.

2. Source code is typically held in a version control system (usually git) and published in forges such
as Github, Gitlab, Bitbucket, Codeberg or Sourcehut. This solves versioning issues and ensures
metadata can exactly describe the version alongside which it is stored. It also enables the harvester
to properly identify the latest stable release, provided some kind of industry-standard versioning
system like semantic versioning is adhered to. Software forges themselves may also provide an Ap-
plication Programming Interface (API) that may serve as an extra source to find software metadata
(e.g. descriptions, keywords, links to issue trackers and/or continuous integration services).

3. The developers of the tool have full control and authorship over their metadata. There are no mid-
dlemen.

4. Software forges were designed precisely for collaboration on open source software development,
so mechanisms for any third party to amend or correct the metadata are already in place (e.g. via
a pull/merge request or patch via e-mail). So while developers retain full authorship, this does not
mean outside contribution and curation is not possible.

We do not harvest any metadata from intermediaries. By that we mean that we do not use other cat-
alogues as sources (e.g. via the aforementioned OAI-PMH endpoints), only the software source itself.

4for example, https://research-software-directory.org/ offers such a platform. Metadata can often be exported via OAI-PMH.
5https://citation-file-format.github.io/

https://research-software-directory.org/
https://citation-file-format.github.io/

Using intermediaries would defeat our philosophy. We do have one extra input source for harvesting: In
case the tool in question is Software as a Service (SaaS), i.e. a web-application, web-service, or website,
we harvest not only its software source code, but also its web endpoint and attempt to automatically
extract metadata from there. We make a clear distinction between the software source code, software
instances (executables) you can run locally, and software instances offered as a service via the web.
Formally, the software source code has no knowledge when, where, and by whom it may be deployed,
neither locally on some user’s computer nor as a service on some server. This link is therefore established
at an independent and higher level. In the resulting metadata, there will be an explicit link between the
source code and applications of that source code6. The sources for harvesting source repositories and
web endpoints (both effectively just URLs) are the only input that needs to be manually provided to our
harvesting system, we call this the source registry. This is the higher level we referred to earlier. We keep
the source registry in a simple git repository containing very minimalistic configuration files (one yaml
file per tool). This is also the only point in our pipeline where there is the possibility for a human curator
to decide whether or not to include a tool.

Usage of such a manually curated source registry means that, for this project, automatic discovery of
tools is not in scope. That is, we do not actively crawl the web in search for tools that might or might not
fit a certain domain. Some interpret the term ‘tool discovery’ to also include such functionality, but we
do not. Such a step, however, can be envisioned as a separate step prior to execution of our pipeline.

4 A unified vocabulary for software metadata

The challenge we are facing is primarily one of mapping multiple heterogeneous sources of software
metadata to a unified vocabulary. Fortunately, this is an area that has been explored previously in the
CodeMeta project7. They developed a generic vocabulary for describing software source code, extending
schema.org vocabulary and contributing their efforts back to them. Moreover, the CodeMeta project
defines mappings, which they call crosswalks, between their vocabulary and many existing metadata
schemes, such as those used in particular programming languages ecosystems or by particular package
managers.

Schema.org and CodeMeta are both linked open data (LOD) vocabularies8, and codemeta is canoni-
cally serialised to a JSON-LD9 file which makes it easily parsable for both machine and human alike.
This codemeta.json file can be kept under version control alongside a tool’s source code. A rather
minimal example of a such a file is shown below:

1 {
2 "@context": [
3 "https://w3id.org/codemeta/3.0",
4 "http://schema.org",
5],
6 "@id": "https://example.org/mysoftware",
7 "@type": "SoftwareSourceCode",
8 "identifier": "mysoftware",
9 "name": "My Software",

10 "author": {
11 "@type": "Person",
12 "givenName": "John",
13 "familyName": "Doe"
14 },
15 "description": "My software does nice stuff",
16 "codeRepository": "https://github.com/someuser/mysoftware",
17 "license": "https://spdx.org/licenses/GPL-3.0-only",
18 "developmentStatus": "https://www.repostatus.org/#active",
19 "thumbnailUrl": "https://example.org/thumbnail.jpg"
20 }

6Applications are instances of the source-code in executable form after build and deployment and may also refer to avail-
ability as a service over a network

7https://codemeta.github.io
8i.e. building upon RDF and being retrievable over HTTP
9https://www.w3.org/TR/json-ld/

https://codemeta.github.io
https://www.w3.org/TR/json-ld/

The developer has a choice to either run our harvester and converter themselves and commit the re-
sulting codemeta file, or to not add anything and let the harvester dynamically reconstruct the metadata
every harvest cycle.

The convention to add a codemeta.json file alongside the source code was established by the
CodeMeta project. In addition to this, we define another method that is specific for our metadata har-
vester: Developers can add a codemeta-harvest.json file instead of codemeta.json. Whereas
codemeta.json by definition contains the complete metadata, the codemeta-harvest.json file
contains an arbitrary subset and is used to supplement any automatically harvested metadata. This allows
developers to rely on the harvester for most fields, without having to run it themselves, but still allows
them to provide additional manual metadata. All these different options ensure that developers them-
selves can choose precisely how much control to exert over the metadata and harvester. It allows us to
accommodate both projects that aren’t even aware they’re being harvested, as well as projects that want
to fine-tune every metadata field to their liking, effectively rendering most of our periodic harvester out
of work at run-time.

4.1 Additional Vocabularies
We link to various other linked open data vocabularies, listed below. Most of these are formulated as
SKOS10 vocabularies.

• repostatus.org11 – Development Status – The repostatus.org project allows developers to express
usability and development/support status of a project. A LOD (SKOS) version of this vocabulary
was developed in the scope of this project and contributed back to the repostatus project.

• SPDX12 – Open-source software licenses – The Software Package Data Exchange project is a Linux
Foundation project that defines, amongst other things, open source software licenses. It is widely
used, e.g. by package managers.

• TaDiRaH13 – Research activities – The TaDiRAH vocabulary “classifies and categorizes the activ-
ities that comprise digital humanities” (Borek et al., 2016) with the aim to help scholars group and
identify projects that share certain commonalities. We adopt this vocabulary to describe the research
activities a software tool can be used for. Example of some top-level categories in this vocabulary
are ‘Analyzing’, ‘Capturing’, ‘Creating‘, ‘Enriching’. An example of a deeper-level category that is
particularly common in language resources such as those seen in CLARIN is for example ‘Enriching
→ Annotating → Named Entity Recognition’.

• NWO Research Domains14 – NWO is the Dutch Research Council. They define several research
fields that are used for official grant applications. As CLARIAH is a Dutch project, we use this vo-
cabulary to express the research domain a tool is used for. A LOD (SKOS) version of this vocabulary
was developed in the scope of this project.

The first two vocabularies are generic enough to be applicable to almost all software projects, we
strongly recommend their usage. The latter two may be more constrained to research software as devel-
oped in CLARIAH and CLARIN. In your projects, you can adopt whatever you find suits your needs
best, the power to mix and match is at the heart of linked open data after all.

Moreover, we formulated some of our own extensions on top of codemeta and schema.org:

• Software Types15 – Software comes in many shapes and forms, targeting a variety of au-
diences with different skills and needs. We want software metadata to be able to accurately

10https://www.w3.org/TR/skos-reference/
11https://repostatus.org
12https://spdx.dev
13https://vocabs.dariah.eu/tadirah/
14https://www.nwo.nl/en/nwo-research-fields
15https://github.com/SoftwareUnderstanding/software types

https://www.w3.org/TR/skos-reference/
https://repostatus.org
https://spdx.dev
https://vocabs.dariah.eu/tadirah/
https://www.nwo.nl/en/nwo-research-fields
https://github.com/SoftwareUnderstanding/software_types

express what type(s) of interface their software provides. The schema.org vocabulary distin-
guishes softwareApplication, WebApplication, MobileApplication and even
VideoGame. This covers some interfaces from a user-perspective, but is not as extensive nor as
fine-grained as we would like yet. Interface types from a more developer-oriented perspective are
not formulated. We therefore define additional classes such as DesktopApplication (software
offering a desktop GUI), CommandLineApplication, SoftwareLibrary and others in this
add-on vocabulary.

• Software Input/Output Data16 – This minimal vocabulary defines just two new properties that
allows for software metadata to express what kind of data it consumes (e.g. takes as input) and
what kind of data it produces (e.g. output). It does not define actual data types because schema.org
already has classes covering most common data types (e.g. AudioObject, ImageObject,
VideoObject, TextDigitalDocument, etc...) and properties like encodingFormat to
tie these to MIME-types or inLanguage to tie it to natural languages.

Do note that describing a full API is explicitly out of scope for our project. A full API descrip-
tion would describe exactly which function or web-endpoints take and return what data. Although
this too can be considered a type of metadata, such functionality goes beyond what we consider
the primary software metadata which end-users need to make a informed decision regarding the
suitability of a tool for their ends. Other existing projects such as the OpenAPI Initiative17 delve
into this realm for Web APIs. For software libraries there are various existing API documentation
generators18 that derive documentation directly from the source code in a formalised way. We do
not intend to duplicate those efforts.

5 Architecture

The full architecture of our pipeline is illustrated schematically in Figure 1. Although we demonstrate
this in the context of the CLARIAH project, the underlying technology is generic and can also be used
for other projects.

Figure 1: The architecture of the CLARIAH Tool Discovery pipeline. Key steps are numbered in red and
referenced in the text.

16https://github.com/SoftwareUnderstanding/software-iodata
17https://www.openapis.org
18e.g. doxygen, sphinx, rustdoc, etc...

https://github.com/SoftwareUnderstanding/software-iodata
https://www.openapis.org

Using the input from the source registry, our harvester19 (1) (van Gompel et al., 2024) fetches all the
git repositories and queries any service endpoints. It does so at regular intervals (e.g. once a day). This
ensures the metadata is always up to date. When the sources are retrieved, it looks for different kinds of
metadata it can identify there and calls the converter (2) powered by codemetapy20 (van Gompel, 2024)
to turn and combine these into a single codemeta representation. This produces one codemeta JSON-LD
file per input tool.

All of these together are loaded in our tool store (3), powered by codemeta-server21 (van Gompel,
2023) and codemeta2html22. This is implemented as an RDF triple store and serves both as a backend to
be queried programmatically using SPARQL, as well as a simple web frontend to be visited by human
end-users as a catalogue. The frontend for CLARIAH is accessible as a service at https://tools.clariah.nl
and shown in Figures 2 and 3. At the time of writing, there are 114 registered source repositories and 34
web endpoints.

Figure 2: Screenshot of the CLARIAH Tool Store showing the index page

5.1 Propagation to Software Catalogues

Our web front-end is not the final destination; our aim is to propagate the metadata we have collected
to other existing portal/catalogue systems (4), such as the CLARIN VLO, the CLARIN Switchboard,
the SSH Open Marketplace, and CLARIAH’s Ineo23. The latter has already been implemented, the VLO
export will be done via a conversion from codemeta to CMDI, and the Marketplace conversion has started
in collaboration with DARIAH.

Propagation of software metadata can be visualised as a simple input/output process where the input
side connects to our tool store, either via our SPARQL endpoint or by simply obtaining the entire (or

19https://github.com/proycon/codemeta-harvester, marked with a red 1 in Figure 1
20https://github.com/proycon/codemetapy
21https://github.com/proycon/codemeta-server
22https://github.com/proycon/codemeta2html
23https://vlo.clarin.eu/, https://switchboard.clarin.eu/, https://marketplace.sshopencloud.eu/, https://ineo.tools

https://tools.clariah.nl
https://github.com/proycon/codemeta-harvester
https://github.com/proycon/codemetapy
https://github.com/proycon/codemeta-server
https://github.com/proycon/codemeta2html
https://vlo.clarin.eu/
https://switchboard.clarin.eu/
https://marketplace.sshopencloud.eu/
https://ineo.tools

Figure 3: Screenshot of the CLARIAH Tool Store showing the metadata page for a specific tool

a specific part of the) graph in JSON-LD. This may be a periodic query or even a real-time query. The
output side connects to either a catalogue-specific API or directly to some kind of database underlying the
catalogue system. The process itself consists of conversion from our codemeta representation to whatever
representation is suited for the catalogue system.

The connection to the SSHOC Open Marketplace is still ongoing work24. For this conversion, we load
the JSON-LD graph into an in-memory triple store, iterate over specific triples, and then perform API
calls to the SSHOC Open Marketplace API.

In the case of CLARIN’s VLO the codemeta schema has been translated into a CMDI profile (Wind-
houwer & Goosen, 2022). The VLO’s harvester has been extended to, next to the traditional OAI proto-
col, allow other ”protocols” to be plugged in25. In this case the plugin takes the JSON-LD dump from the
tool store and converts the records to equivalent CMDI records compliant with the profile. The changes
we in CLARIAH made to the VLO’s harvester are currently being tested by CLARIN. Once a new stable
version of this harvester has been released the harvesting cycle of CLARIN will be extended to harvest
the metadata.

Finally, CLARIAH’s Ineo also has a harvesting cycle, which transforms the JSON-LD records into the
JSON expected by Ineo’s update API. These transformations are minimal as the tool metadata has been
designed with this target catalogue in mind.

6 Validation & Curation

Having an automated metadata harvesting pipeline may raise some concerns regarding quality assurance.
Data is automatically converted from heterogeneous sources and immediately propagated to our tool
store, this is not without error. In absence of human curation, which is explicitly out of our intended scope,
we tackle this issue through an automatic validation mechanism. This mechanism provides feedback for
the developers or curators.

24An initial prototype can be found at https://github.com/proycon/codemeta2mp
25https://github.com/clarin-eric/oai-harvest-manager, https://github.com/CLARIAH/oai-harvest-manager

https://github.com/proycon/codemeta2mp
https://github.com/clarin-eric/oai-harvest-manager
https://github.com/CLARIAH/oai-harvest-manager

The harvested codemeta metadata is held against a validation schema (SHACL) that tests whether cer-
tain fields are present (completeness), and whether the values are sensible (accuracy; it is capable of de-
tecting various discrepancies). The validation process outputs a human-readable validation report which
references a set of carefully formulated software metadata requirements 26. These requirements state ex-
actly what kind of metadata we expect for software in the CLARIAH project, using normative keywords
such as MUST, SHOULD and MAY in accordance with RFC2119 (Bradner, 1997). These requirements
provide instructions to developers about how they can provide this metadata in their codemeta.json
or codemeta-harvest.json if metadata can not be automatically extracted from existing sources.
The validation schema and requirements document are specific to the CLARIAH project, but may serve
as an example for others to adapt and adopt. An example of a validation report referencing the metadata
requirements is shown in Figure 4.

Figure 4: Screenshot of a validation report for a particular tool, viewed from the tool store

Using this report, developers can clearly identify what specific requirements they have not met. The
over-all level of compliance is expressed on a simple scale of 0 (no compliance) to 5 (perfect compliance),
and visualised as a coloured star rating in our interface. This evaluation score and the validation report
itself becomes part of the delivered metadata and is something which both end users as well as other
systems can filter on. It may even serve as a kind of ‘gamification’ element to spur on developers to
provide higher quality metadata.

We find that human compliance remains the biggest hurdle and it is hard to get developers to provide
metadata beyond what we can extract automatically from their existing sources. The metadata compli-
ance rankings for CLARIAH are shown in Figure 5.

Figure 5: Histogram of metadata compliance ranking in CLARIAH (114 tools), the ranking is to the
number of stars given (0 to 5, where 5 is perfect compliance)

For propagation to systems further downstream, we set a threshold rating of 3 or higher. Downstream
systems may of course posit whatever criteria they want for inclusion, and may add human validation

26https://github.com/CLARIAH/clariah-plus/blob/main/requirements/software-metadata-requirements.md.

https://github.com/CLARIAH/clariah-plus/blob/main/requirements/software-metadata-requirements.md

and curation. As metadata is stored at the source, however, we strongly recommend any curation efforts
to be directly contributed back upstream to the source, through the established mechanisms in place by
whatever forge (e.g. GitHub) they are using to store their source code.

7 Discussion & Related Work

We limit automatic metadata extraction to those fields and sources that we can extract fairly reliably and
unambiguously. In certain cases, it is already a sufficient challenge to map certain existing vocabularies
onto codemeta and schema.org, as concepts are not always used in the same manner and do not always
map one-to-one.

We do extract certain information from README files, but that is mostly limited to badges which
follow a very standard pattern that is easy to extract with simple regular expressions. Extracting more
data from READMEs is something that was done in Kelley and Garijo, 2021 and predecessor Mao et al.,
2019; they analyse the actual README text and extract metadata from it. They use various methods to
do so, including building supervised classifiers to identify common section headers and mapping those
to a metadata category such as ‘description’, ‘installation’, ‘license’, etc. . . . Their classifiers, however,
only produced adequate results for four common categories, so they diverted to alternative methods such
as exploration/detection of other files (like LICENSE), using regular expressions to capture badges, and
calling APIs like GitHub’s. All of those techniques we have implemented as well in our harvesting
pipeline. In line with their findings, we did not expect much from supervised classification (measured
against the effort that goes into labelling data) so did not pursue that.

With the advent of Large Language Models in recent years, we can also envision these playing a role
in metadata extraction. We would, however, caution restraint here as their innate nature to hallucinate and
lack of transparency is at odds with the objective to extract accurate metadata. Our extraction pipeline
focusses on using relatively simple techniques to quickly get high precision results and on re-using
already existing metadata schemes. We do think it is good practise to have developers manually provide
metadata, we just want to ensure they only need to do it once alongside their own source-code, using
schemas they use anyway, and not duplicate the effort for every software catalogue or package manager.

We also want to draw a quick line of comparison with the Research Software Directory (Cahen et al.,
2024; Spaaks, 2018). This is an open-source content management system for software catalogues, so
a different beast than our metadata extraction pipeline. They do, however, offer some integrations with
third party services such as GitHub, Zenodo, ORCID, etc. . . to automatically extract or autocomplete cer-
tain metadata. It illustrates there are hybrid approaches possible where a content management system is
available for human metadata curation, but with key parts automated to reduce both the human workload
as well as the common pitfalls we addressed in section 2.

8 Conclusion & Future Work

We have shown a way to store metadata at the source and reuse existing metadata sources, recombining
and converting these into a single unified LOD representation using largely established vocabularies. We
developed tooling for codemeta that is generically reusable and available as free open source software27.
We hope that our pipeline results in metadata that is accurate and complete enough for scholars to assess
whether certain software is worth exploring for their research. We think this is a viable solution against
metadata or entire catalogues going stale, in worst case unbeknownst to the researcher who might still
rely on them. Quality assurance can be addressed, in part, via automated validations against carefully
formulated validation rules. Furthermore, we also showed that the metadata we collect can be propagated
to other downstream software catalogue systems.

Future work will focus on keeping in sync with vocabulary developments in CodeMeta and
schema.org, as well as on working on the automatic propagation of harvested metadata into catalogue
systems such as the SSHOC Open Marketplace.

27GNU General Public Licence v3

Acknowledgements

The FAIR Tool Discovery track has been developed as part of the CLARIAH-PLUS project (NWO grant
184.034.023), as part of the Shared Development Roadmap.

Connectivity to the SSHOC Open Marketplace is being continued in the SSHOC-NL project as part
of Task 1.1.

References

Borek, L., Dombrowski, Q., Perkins, J., & Schöch, C. (2016). Tadirah: A case study in pragmatic clas-
sification. Digit. Humanit. Q., 10(1). http: / /dblp.uni- trier.de/db/ journals /dhq/dhq10.html#
BorekDPS16

Bradner, S. (1997). IETF RFC 2119: Key words for use in RFCs to Indicate Requirement Levels. http:
//www.ietf.org/rfc/rfc2119.txt

Cahen, E. J., Mijatovic, D., Garcia Gonzalez, J., Maassen, J., Jong, M., Meeßen, C., Rüster, M., Hanisch,
M., & Ziegner, N. (2024). Research Software Directory (as a service). Zenodo. https://doi.org/
10.5281/ZENODO.14243099

Jiménez, R. C., Kuzak, M., Alhamdoosh, M., Barker, M., Batut, B., Borg, M., Capella-Gutiérrez, S.,
Hong, N. P. C., Cook, M., Corpas, M., Flannery, M., Garcı́a, L. J., Gelpi, J. L., Gladman, S. L.,
Goble, C. A., Ferreiro, M. G., González-Beltrán, A. N., Griffin, P., Grüning, B. A., . . . Crouch,
S. (2018). Four simple recommendations to encourage best practices in research software. https:
//api.semanticscholar.org/CorpusID:214915242

Kelley, A., & Garijo, D. (2021). A Framework for Creating Knowledge Graphs of Scientific Software
Metadata. Quantitative Science Studies, 1–37. https://doi.org/10.1162/qss a 00167

Mao, A., Garijo, D., & Fakhraei, S. (2019). SoMEF: A Framework for Capturing Scientific Software
Metadata from its Documentation. 2019 IEEE International Conference on Big Data (Big Data),
3032–3037. https://doi.org/10.1109/BigData47090.2019.9006447

Spaaks, J. (2018). The Research Software Directory and how it promotes software citation [Accessed:
2025-01]. https://blog.esciencecenter.nl/the-research-software-directory-and-how-it-promotes-
software-citation-4bd2137a6b8

van Gompel, M. (2023). codemeta-server (Version 0.4.1). Zenodo. https : / /doi .org/10.5281/zenodo.
10204020

van Gompel, M. (2024). codemetapy (Version 2.5.3). Zenodo. https://doi.org/10.5281/zenodo.11656553
van Gompel, M., de Boer, D., & Broeder, J. (2024). codemeta-harvester (Version 0.4.0). Zenodo. https:

//doi.org/10.5281/zenodo.11472618
van Uytvanck, D., Zinn, C., Broeder, D., Wittenburg, P., & Gardellini, M. (2010). Virtual language ob-

servatory: The portal to the language resources and technology universe. In N. Calzolari, K.
Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, & D. Tapias (Eds.), Lrec.
European Language Resources Association. http://dblp.uni-trier.de/db/conf/lrec/lrec2010.html#
UytvanckZBWG10

Windhouwer, M., & Goosen, T. (2022). Component metadata infrastructure. In D. Fišer & A. Witt (Eds.),
Clarin: The infrastructure for language resources (pp. 191–222). De Gruyter. https://doi.org/doi:
10.1515/9783110767377

http://dblp.uni-trier.de/db/journals/dhq/dhq10.html#BorekDPS16
http://dblp.uni-trier.de/db/journals/dhq/dhq10.html#BorekDPS16
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
https://doi.org/10.5281/ZENODO.14243099
https://doi.org/10.5281/ZENODO.14243099
https://api.semanticscholar.org/CorpusID:214915242
https://api.semanticscholar.org/CorpusID:214915242
https://doi.org/10.1162/qss_a_00167
https://doi.org/10.1109/BigData47090.2019.9006447
https://blog.esciencecenter.nl/the-research-software-directory-and-how-it-promotes-software-citation-4bd2137a6b8
https://blog.esciencecenter.nl/the-research-software-directory-and-how-it-promotes-software-citation-4bd2137a6b8
https://doi.org/10.5281/zenodo.10204020
https://doi.org/10.5281/zenodo.10204020
https://doi.org/10.5281/zenodo.11656553
https://doi.org/10.5281/zenodo.11472618
https://doi.org/10.5281/zenodo.11472618
http://dblp.uni-trier.de/db/conf/lrec/lrec2010.html#UytvanckZBWG10
http://dblp.uni-trier.de/db/conf/lrec/lrec2010.html#UytvanckZBWG10
https://doi.org/doi:10.1515/9783110767377
https://doi.org/doi:10.1515/9783110767377

	Introduction
	The need for high-quality metadata
	Bottom-up harvesting from the source
	A unified vocabulary for software metadata
	Additional Vocabularies

	Architecture
	Propagation to Software Catalogues

	Validation & Curation
	Discussion & Related Work
	Conclusion & Future Work

