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Abstract

Natural Language Processing (NLP) research showcases many promising tools and methods for
text analysis. Researchers from diverse fields who want to use NLP for their research are con-
fronted with a wide availability of ready-to-use models that claim excellent performance on stan-
dard benchmarks. Consequently, choosing an appropriate tool has become a task on its own. Our
goal is to exemplify a methodology that stimulates critical evaluation and detailed analysis of
automatic outputs of NLP tools. Particularly, we analyze the case of choosing the best Named
Entity Recognition (NER) tool for a corpus of Dutch biographies. Our use case is an example
of how to make informed decisions by considering different aspects of custom datasets at the
instance and aggregated levels, improving the outcomes of the original research question.

1 Introduction

Recent developments in NLP have seen great progress towards one of CLARIN’s primary goals: pro-
viding (relatively) easy-to-use language technology. This has led to an increase in the use of these tech-
nologies in various domains, such as Digital Humanities (DH) (Colavizza et al., 2021; Ehrmann et al.,
2023; Schweter et al., 2022). However, the same rapid advancement of NLP has left the area with a weak
spot regarding detailed and careful evaluation. Standard benchmarks and metrics often do not provide
insight at the right level of detail for users to establish which tool works best for their specific use case,
or whether a tool is appropriate for their methodological set-up at all (Fokkens et al., 2014). In our view,
choosing an appropriate tool has become a task on its own, and supporting users in this task is an es-
sential part of CLARIN’s mission of making tools available to researchers. Therefore, in this paper we
exemplify a methodology that stimulates critical evaluation and detailed analysis of automatic outputs of
NLP tools, which can help external researchers select the right tool for their specific needs. Specifically,
we propose a visually aided assessment of the strengths and weaknesses of using different models for a
specific use case.

Although the methods proposed here can be applied directly to any span-based NLP tasks, for clarity,
we describe a specific Digital Humanities application of a classic NLP task. Specifically, we assume the
perspective of a historian who wants to perform NER to build networks of people (PER), organizations
(ORG), and places (LOC) from digitized biographies. To achieve this, they must first select an NER model
for their corpus, a dataset of thousands of biographies written in Dutch between the 18th and the 21st
centuries. We propose combining a distant evaluation (global metrics) with a close evaluation of NER
outputs (instance-level inspection) to make more informed choices when selecting a tool and to gain
insight into how such tools will behave when we apply them to our data. This way, the user can ensure
they behave as desired on the instances that matter the most for answering the original research question.

In the remainder of the paper, we start by briefly describing related work on NER classifiers and
evaluation (Section 2), then we describe the dataset that we use to illustrate why careful evaluation is
needed when picking a tool for a custom use case (Section 3.1). Next, we list four different state-of-the-
art NER systems for Dutch (ready to be used out of the box) that we apply to our data to compare their
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performance (Section 3.2). In Section 4 we describe metrics that allow us to visually explore each of the
models’ predictions on specific documents, spotting edge cases where major disagreement exists. This
analysis can be performed even if we do not have gold data available, which is often the case for non-NLP
practitioners. Section 5 then dives into a scenario where we do have a human-labeled dataset; however, in
this case, too, different ways of evaluating (on the same dataset) can lead to different outcomes, showing
the need for grounding the model selection in the research goals that have been established before the
start of the technical implementation. Finally, Section 6 discusses our main findings, and Section 7 shows
some of the limitations of the approach that we took here.

2 Related Work

The techniques for identifying named entities in texts have evolved with the general state of NLP and
have become less interpretable with time. Initially, gazetteers were used to identify entity occurrences
in a text directly. Later, statistical learning and Machine Learning classifiers were used to identify se-
quences of labels as a token classification task with some loose notion of what instances each entity
category should comprehend (Nadeau & Sekine, 2007). After that, neural networks offered the option of
including sentence context to predict a label for each token (Lample et al., 2016), using LSTMs with a
classifier on top (Panchendrarajan & Amaresan, 2018) or using wider contexts by fine-tuning pre-trained
language models such as BERT (Devlin et al., 2019) to perform structured prediction (Akbik, Bergmann,
& Vollgraf, 2019; Yamada et al., 2020), this includes the classifiers used by Stanza, Flair and XLM-R pre-
sented in this paper (for more examples see Yadav and Bethard, 2018). Lastly, with the advent of LLMs,
NER has been re-framed to use prompt engineering where a model such as GPT-x could be queried to
generate as a response the series of entities found in a text, such as Ashok and Lipton, 2023 and Wang
et al., 2023. In this paper, we also test GPT3.5’s capabilities for spotting entities and trying to provide
the spans where they were initially found. We argue that the fact that NER is being constantly re-framed
to work with different techniques, such as prompt engineering, calls for a closer look at how evaluation
is done, since comparison across models keeps getting more difficult given the variety of conceivable
experimental setups. This constant evolution of LLMs related to NER can be seen in even more recent
publications such as (Jiang et al., 2024; Kim et al., 2024; Picco et al., 2023; Tong et al., 2025).

Recently, more attention has been paid to expanding NER into other specific domains (De Los Reyes
et al., 2021; Li et al., 2022). This includes a wide variety of annotated datasets to train task-specific
classifiers (Arnoult et al., 2021), pre-trained language models with historic corpora (Manjavacas Arevalo
& Fonteyn, 2022; Schweter et al., 2022) and general techniques to identify entities beyond the standard
core labels and resources (Luthra et al., 2023; Tedeschi & Navigli, 2022).

There is also important work on evaluation for NER beyond just applying scores. For example, Ushio
and Camacho-Collados (2021) show a tool for directly comparing different flavors of transformer models
fine-tuned in several well-known benchmark datasets. Closer to our approach, Fu et al. (2020) present a
tool that shows a behavioral overview of model outputs by bucketing entities according to their attributes.
Their tool generates an HTML report that helps users interpret at the corpus level where the NER models
fail the most. In contrast, our approach focuses on instance-level inspection of errors, where a researcher
can explore errors based on edge cases or instances of particular interest.

3 Methodology

3.1 Case Study: NER for Dutch Biographies
The Biography Portal of the Netherlands1 (BPN) is an online collection containing several biographical
dictionaries written in the country through the years. It includes 25 different existing collections with
biographical information on the inhabitants of the Netherlands, with more than 75,000 biographical en-
tries. We are interested in applying NER to the BPN texts, which comprise biographies written between
the 18th and 21st centuries; thus, they can be partly seen as a type of historical text (Romary, 2014). This
domain poses its own set of challenges, such as: Language variety and dynamic changes through the cen-

1http://www.biografischportaal.nl
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turies, a mixture of record typologies (each collection contains a specific style and idiosyncrasies when
describing people), significant divergence in biography length, a prominent presence of abbreviations
and rare entities that do not necessarily exist nowadays, to mention a few.

We created a human-labeled dataset containing a subset of 346 biographies of various lengths (some
biographies have only dozens of tokens, and others have thousands). This subset was generated by strat-
ified sampling to keep the original dataset’s source distribution, ensuring we have examples from each
collection. Annotators were asked to follow the guidelines for labeling three core entities: Persons (PER),
Locations (LOC), and Organizations (ORG), as well as Dates (TIME), works of art (WOA), and miscel-
laneous (MISC). For this paper, we will focus only on the three core entities. Of the 346 biographies,
50 were triply annotated, for which we obtained an inter-annotator agreement of 78.3 Krippendorff’s
Alpha,2 had a round of discussions, and proceeded to annotate the rest with a partial overlap to ensure
agreement remained high. We also asked annotators to manually correct tokenization errors and re-split
or merge sentences when necessary to end up with a clean pre-tokenized dataset in conll format, as is
customary for standard NER evaluation. We describe the annotated subset in Table 1, where we also
include the mean, median, standard deviation and maximum of entities annotated in the documents to
showcase the diversity of the documents.

Category Count Mean Median Max StdDev
PER 5,743 17 10 92 18.7
LOC 3,879 11 8 77 12.0
ORG 2,196 6 2 58 9.8
ALL 11,818 34 21 164 35.8

Tokens 189,507 548 245 3,126 613.8
Sents 8,210 23 21 210 13.5
Docs 346 - - - -

Table 1: General statistics of our manually annotated corpus. We include the average, maximum, and
median of occurrences per document to illustrate the heterogeneity of the dataset at the document level.

3.2 NER Models
We consider four candidate models that deliver (at least) the three desired NER labels, PER, LOC, and
ORG. We focus only on those three because their definition is less controversial than other entity cate-
gories, yet disagreement still emerges across model (Nadeau & Sekine, 2007). Three of the four models
have a similar architecture with only minor variants on the top layers of the classifiers, which could make
us think there will not be much difference in the final results. Importantly, all models are readily avail-
able to use out-of-the-box, which is very attractive for a non-NLP researcher, primarily if the models are
published with a high F1 score (around 90 points) associated with them. Commonly, the reported scores
are in one of the most famous benchmarks for NER, in our case, the Dutch portion of conll-02 Shared
Task (Tjong Kim Sang, 2002). The systems we will benchmark here are:

• Flair NLP: This open-source NLP framework (Akbik, Bergmann, Blythe, et al., 2019) contains
very strong models for the NER task. The latest model is based on FLERT (Schweter & Akbik,
2020), an optimized method for NER in different languages, including Dutch. The basic architecture
is the cross-lingual version of RoBERTa (Y. Liu et al., 2019), with a CRF layer on top to improve
the structured prediction. This model was fine-tuned to account for document-level features using
the Conll-02 dataset and reports a global F1 score of 94.5 on the Dutch test set.

• Stanza: The stanza NER model for Dutch is based on a concatenation of BERT (Devlin et al.,
2019) pre-trained vectors and a character-based bidirectional LSTM with a CRF layer on top for the
structured prediction. The corpus used for training the Dutch model is from Nothman et al. (2013).

2We use the NLTK implementation with binary distance to compute the agreement of labels.



Figure 1: We display the table of metrics in a spreadsheet. With conditional formatting, we can display
it as a heatmap, where the rows with more discrepancy stand out because of the contrast of colors. This
allows us to spot right away which documents show key differences in model behavior.

They report a macro F1 score of 89 in conll-02 and 94.8 on the WikiNER test (Ghaddar & Langlais,
2017).

• Fine-tuned XLM-R: this is a model3 published in the HuggingFace repository and is described
as a Named Entity Recognition model for ten high-resourced languages (Arabic, German, En-
glish, Spanish, French, Italian, Latvian, Dutch, Portuguese and Chinese) based on the Cross-lingual
RoBERTa base model (Conneau et al., 2020). It has been fine-tuned with a neural linear layer on
top that has been fine-tuned to recognize LOC, ORG, and PER. Given how easy it is to run models
published on HuggingFace and that the model card claims to have been trained in the most impor-
tant NER resources, it is feasible that someone will base their research on the information published
there.

• gpt3.5-turbo: Finally, given the recent popularity of LLMs with the claims that they can provide
very strong performance in almost any task (Min et al., 2023), we also explore the alternative of
prompting gpt3.5 (Brown et al., 2020) for obtaining NER labels. Since our focus is not on prompt
engineering (P. Liu et al., 2023), we measure the performance as a zero-shot setting with an intuitive
prompt and visualize how it compares to applying NER-specific models on our dataset. Specifically,
we provide the following prompt: Identify and Label (PERSON, ORGANIZATION, TIME, LOCA-
TION, ARTWORK, MISC) all of the Named Entities in the following text. Return also the character
spans in which these entities appear. Return the results in TSV Format with Columns: [Entity, Label,
Span Start, Span End]. Text: <ANSWER>

4 Inspection of Model Behavior

We can spot interesting behavior in specific instances by comparing raw model outputs in parallel. An
instance can be a sentence, paragraph, or document, depending on the required granularity. By looking
closely at relevant instances, we can investigate which errors or tagging biases occur with the different
models and make decisions accordingly. It would be impossible to inspect every single instance closely.
Therefore, we propose to use the predictions of all models to compute straightforward metrics as a proxy
for spotting edge cases, that is, to highlight the documents that will be the most useful to examine closely
for understanding model behavior and anticipating whether that behavior is optimal for the intended use
case. This is possible even when there is no human-annotated data available at all.

3https://huggingface.co/Davlan/xlm-roberta-base-ner-hrl
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Figure 2: We can visualize which entities are preferred by most models and which ones cause more
disagreement among them.

We also use a set of visualizations built on top of everyday tools to inspect the instances and make
the process more user-friendly. We specifically use spreadsheets to show what we call divergence ma-
trices (see Section 4.1 and Figure 1). Additionally, we created a small Flask web app4 that integrates
visualizations from displaCy5 to see the spans in the text; and Google Charts6 to show aggregated
statistics.

4.1 Divergence Matrix
A divergence matrix Z is defined as a collection of P instances {p0, p1, . . . , pP } (for our use case hee
we chose a document as the instance unit), a set of N systems (models) denoted as {s0, s1, . . . , sN}, and
M evaluation metrics {m1,m2, . . . ,mM}, therefore Z has dimensions P × (S ∗M). In this context, a
row represents an instance pi, and each column Zi,j,k signifies the performance score of system sj when
evaluated using metric mk on instance pi with i = 0, 1, . . . , P ; j = 0, 1, . . . , N ; k = 0, 1, . . . ,M .
Consequently, the matrix encapsulates the evaluated models’ performance across all instances and met-
rics (See Figure 1). Metrics can be defined as required per use case, here we show 3 example metrics:

Entity Frequency: get the raw counts of Named Entities found in each document according to each
model. These are counted per category (PER, LOC, ORG), and also globally (the sum of all categories).

Entity Density: In this case, we divide the entity frequency by the number of tokens in the instance to
get a weighted metric and be less biased towards extensive documents.

Entity Divergence: We define this metric by considering an array of frequencies from model0 to
modelN , where each element is the entity frequency predicted by a modeln. Then, we compute the
divergence as the standard deviation of this array. The reasoning is that models will obtain the same
amount of labels for easy instances (all models will agree), whereas instances with complex cases or
cases with noise will have a high divergence.

To avoid falling again into the trap of looking at these metrics only globally, we can display the
divergence matrix as a heatmap, where higher numbers ger darker colors and lower numbers approach
to no-color. This way, it is visually easy to spot problematic instances (where color intensity changes
dramatically across columns). For example, in Figure 1, the matrix is displayed in a spreadsheet, which
has a low threshold for users. In this example, the instance that stands out the most is the biography of

4Available here: https://github.com/angel-daza/bios-dutch
5https://demos.explosion.ai/displacy-ent
6https://developers.google.com/chart/
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Figure 3: We can also visualize the predicted labeled-span divergences of all models in parallel. Some
errors are systematic and can be later counteracted by post-processing.

Charlotte Sophie von Aldenburg, where the matrix shows that there is substantial disagreement between
models in LOC and PER assignments.

4.2 Entity Agreement Heatmap
If we dig into an instance (document) with high divergence and visualize the label overlap of all models
in it, we can spot where in the text they converge and where they disagree. Figure 2 illustrates the example
of Charlotte Sophie von Aldenberg. We classify text spans (entity candidates) into five buckets according
to the certainty of correctness using models in a voting mechanism: the entities that have the votes of
N models are highlighted in blue (FULL), in dark green are the entities that N − 1 models identified
(HIGH), in light green N − 2 (MED), in yellow N − 3 (WEAK) and the rest of entities are labeled in red
(LOW) meaning that the certainty of them being the right span is low since most models voted differently.
For example, the last name von Aldenburg is obviously derived from the fact that Charlotte came
from the nobility related to the Aldenburg location, hence the disagreement.

4.3 Parallel Span Comparison
Another example where we can see this LOC-PER confusion is in the entity overlap (Figure 3). Take the
span Varel, Kniphausen en Doorenwerth, which is basically an enumeration of places that
Charlotte is a lady of. However, some models interpreted that this segment could mean she is the wife of
and thus classifies the subsequent Entities as people (in this case, stanza was the model that committed
this confusion consistently, whereas flair got them right). Because none of the NER systems are trained
to deal with these cases, we see a higher disagreement in how they are labeled and, hence, the high
divergence across PER and LOC in this document. If we should pick a tool based on this aspect, we could
deduce that the flair model behaves more closely to what we would expect with this kind of case.

These simple visualizations already give us a deeper insight into how models behave with our specific
examples of interest without the need to spend time generating labeled data. Nevertheless, if the model is
to be used at scale, relying on a handful of examples is not sufficient. The need for evaluating the model
outputs vs. human annotations is still the desirable scenario. In the next section, we explore different
ways of doing this.



PER LOC ORG MICRO MACRO
SYSTEM P R F1 P R F1 P R F1 P R F1 P R F1
stanza iob 77.0 85.0 81.0 82 85.0 83.0 58.0 52.0 55.0 76.0 79.0 77.0 72.0 74.0 73.0
flair iob 81.0 89.0 85.0 86.0 92.0 89.0 69.0 65.0 67.0 81.0 85.0 83.0 79.0 82.0 80.0

stanza span 61.1 89.7 72.7 64.0 93.7 76.0 42.9 75.3 54.7 59.2 89.1 71.1 56.0 86.2 67.8
flair span 53.4 83.9 65.3 66.9 93.4 78.0 47.5 78.9 59.3 56.7 86.4 68.4 55.9 85.4 67.5

Table 2: Comparison of the same models when feeding pre-tokenized data vs. feeding raw text

5 Evaluation Modes

When you intend to use automatic outputs to support your research, the ideal case is to have more
than one human annotator and create a labeled subset with information on inter-annotator agreement.
This labeled set can be used to compute evaluation scores that provide information on the quality of
the automatic tools when applied to your data. NLP researchers tend to report results of classifiers with
mainly three metrics: Precision, Recall, and F1 Score. These metrics were inherited from the field of
information retrieval and adopted for other tasks (Powers, 2011). In the next section, we show that even
in this standard scenario, it is essential to be careful with how we evaluate the performance scores. It
remains important to keep the ultimate research goal in mind when determining which model is the best
model for the scenario at hand. Different models will rank as the best according to different criteria.
Often, scores are taken for granted, and differences that appear to be subtle when calculating such scores
could be hiding behavior that is particularly harmful to a specific use case (Fokkens et al., 2014).

5.1 Tokenization Matters
Starting with the CoNLL-02 (Tjong Kim Sang, 2002) and CoNLL-03 shared tasks (Tjong Kim Sang &
De Meulder, 2003), NER has been approached in NLP as a sequence labeling task, where each token is
assigned one label in the IOB format (or related) (Ramshaw & Marcus, 1995). Some of the best-known
benchmarks for NER have also taken this approach (Balasuriya et al., 2009; Tedeschi & Navigli, 2022).
The conll format already presents a pre-tokenized text, which is also split into sentences. The reasoning
behind this is to focus only on evaluating NER performance. The problem is that this approach can give
the false impression that tokenization and sentence splitting are trivial tasks when, in fact, differences in
scores are expected when applying models to untokenized text (Daza et al., 2022). This is particularly
problematic, because the most common scenario for non-NLP users is to apply an out-of-the-box tool to
raw text.

We run two parallel experiments: we evaluate the NER task in its default format (feeding the models
with the clean and tokenized sentences) vs. the performance of the same models when processing raw text
into tokenized text with Named Entities. We call the first evaluation mode IOB match. We performed this
evaluation using the widely used Python module seqeval.7 In the second approach, which we call Span
match, we evaluate identified character spans identified by the tools in the raw text. We used character
span matches to focus on the Named Entities to avoid noise in the results while comparing sentences
of different sizes or tokenization divergences (each model produces different tokens and sentences). In
Table 2, we see that the evaluation of raw text (Span match) gives significantly lower scores. Secondly,
we highlight the fact that in the IOB match mode, the best model is flair, whereas, in the Span match
mode, stanza is the best-performing model.

We consider the Span match mode to be closer to what external users of tools need; therefore, the
following evaluations will be using the Span match mode. Within this approach, we can distinguish two
submodalities: to consider a true positive only those entities whose labeling has an exact match with re-
spect to the gold labels, or to be more lenient and consider as a true positive an entity whose span partially
overlaps with the gold label (and has the same label, of course). A third evaluation modality emerges with

7https://github.com/chakki-works/seqeval
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PER LOC ORG MICRO MACRO
SYSTEM P R F1 P R F1 P R F1 P R F1 P R F1
stanza 61.1 89.7 72.7 64.0 93.7 76.0 42.9 75.3 54.7 59.2 89.1 71.1 56.0 86.2 67.8
flair 53.4 83.9 65.3 66.9 93.4 78.0 47.5 78.9 59.3 56.7 86.4 68.4 55.9 85.4 67.5
xlmr ner 59.8 86.5 70.7 65.0 90.2 75.6 48.8 75.7 59.3 59.8 86.2 70.7 57.9 84.1 68.5
gpt-3.5 0.3 8.2 0.6 0.6 32.2 1.1 0.1 11.1 0.1 0.3 11.9 0.6 0.3 17.2 0.6

Table 3: Strict evaluation NER. We measure how many predicted spans completely match the gold spans,
in terms of span start, end and assigned label.

PER LOC ORG MICRO MACRO
SYSTEM P R F1 P R F1 P R F1 P R F1 P R F1
stanza 64.3 92.6 75.9 65.6 88.7 75.4 50.6 70.5 58.9 62.4 87.6 72.9 60.1 83.9 70.1
flair 59.7 97.4 74.0 68.6 95.9 80.0 54.0 80.8 64.8 61.4 94.1 74.3 60.8 91.4 72.9
xlmr ner 63.6 90.9 74.8 67.4 88.2 76.4 56.0 71.0 62.6 63.6 86.6 73.3 62.3 83.4 71.3
gpt-3.5 3.8 6.0 4.6 1.7 1.5 1.6 0.5 0.4 0.5 2.8 3.5 3.1 2.0 2.7 2.2

Table 4: Partial Evaluation NER

the advent of LLMs. Some papers started to ignore spans when reporting scores by evaluating results as
what we call here bag of entities (Ashok & Lipton, 2023), where the set of predicted entities is compared
versus the set of gold entities in the text.8 All evaluation setups could be considered valid in their own
contexts; however, it is important to avoid comparing numbers obtained with different setups as they are
not measuring the same signals. Next, we describe each evaluation scenario and show a table of scores
when applying each setup. Note that the systems were trained to detect labeled spans (except GPT-3.5);
we are only changing the way we evaluate the models, we are not re-training nor changing anything to
the models. The observed performance differences thus will be solely because of the assumptions behind
each way of evaluating.

5.2 Full Match
In this setting, an entity is considered correct only if it completely matches the gold span and the la-
bel. In Table 3, we can see several dimensions when comparing different models. If one only analyzes
system-level scores, one would conclude that xlmr ner is the best-performing system on the test set.
However, when we inspect the performance more closely, we gain some insight into what each model is
doing: When evaluating with the exact match setup, GPT 3.5’s performance is definitely poor, and the
reason is that with the prompt that was given, even though it gets several entities correctly, it generates
pseudo-random spans. For the traditional systems, we see that Stanza performs much better for detect-
ing PER than xlmr ner and flair, which is very relevant if, for example, we are primarily interested in
recognizing people. LOC is the easiest category for all models, suggesting fewer unknown entities were
found (compared to the entities seen during training) in the biographical dataset; this is possibly because
most LOC entities are nowadays still popular city and country names that have not changed in the last
three centuries. Flair appears to be much better if we are interested in detecting ORGs. This category is
also the weakest, perhaps because the names of organizations are more sparse, and the definition of an
organization has changed through the years compared to the other two categories.

5.3 Partial Match
This mode behaves quite similarly to the full match. The main difference is that the criteria for consid-
ering a True Positive is looser. The strict match policy is too harsh for cases where the classifier almost
got the whole entity, certainly with the correct label, but missed a couple of tokens compared to the
gold. For example, if a model labeled Charlotte Sophie instead of Charlotte Sophie von

8Note that these F1 scores are compared directly to the IOB scores from previous papers, without highlighting the fact that
LLMs are not predicting spans in text.



PER LOC ORG MICRO MACRO
SYSTEM P R F1 P R F1 P R F1 P R F1 P R F1
stanza 55.1 79.8 65.2 65.9 80.9 72.6 43.2 48.7 45.8 56.2 73.3 63.6 54.7 69.8 61.2
flair 45.4 72.4 55.8 70.5 86.9 77.8 47.0 57.5 51.7 53.1 74.0 61.8 54.3 72.3 61.8
xlmr ner 54.9 77.6 64.3 66.2 80.6 72.7 48.4 51.9 50.1 57.3 73.0 64.2 56.5 70.0 62.4
gpt-3.5 68.9 49.4 57.5 83.5 58.3 68.6 41.5 30.5 35.1 67.6 48.3 56.3 64.6 46.1 53.8

Table 5: Evaluation of NER as bag-of-entities. This setup only considers unique entities per document
and does not consider spans where they appear, nor repetitions of the same entity.

Aldenburg as PER, it is still usable information. In this example, the exact match will penalize twice
the same mistake: the predicted span is a false positive since it does not exist in gold, and also, the gold
span was not predicted, which counts as a false negative. This is not a recommended way of evaluating,
but it is used for some cases (e.g. Luthra et al., 2023), so we keep it here for comparison purposes. Table 4
shows the results when evaluating the models on the same dataset but with the partial-match policy. As
expected, numbers go up compared to the strict match. In this case, there is also a swap in the model
ranking: the best model according to strict match macro F1 was xlmr, and according to partial match
macro F1, the best model overall would be flair.

5.4 Bag of Entities
We could argue that in some oversimplified cases, for example, if the last goal is to build a network, we
only need to encounter the right entities in the text once and do not care about their place in the text. In
this case, it would not matter if Amsterdam is mentioned 20 times in a biography, it only matters that we
recognize it once as a LOC to draw an edge between this person and this location. Nevertheless, note
that this looses track of the instances where Amsterdam appears in the text as an ORG (for example, a
metonymy) or PER (for example if Amsterdam was a last name). Assuming you are willing to take such
risks, by evaluating NER as a bag of entities (the set of all unique SurfaceText Labelmentions in an
instance), we can drop the requirement of detecting the spans, drawing more attention to the importance
of recovering key entities at the expense of losing their original context. We show in Table 5 the precision,
recall, and F1 when evaluating this way. At first glance, the numbers go down to the low 60s. Based on
the Macro F1, we would pick again xlmr ner as the best-performing system according to the test, but by a
much narrower margin. Notably, without the Span requirement, GPT 3.5 outputs are now useful (which
might make this evaluation setup tempting), giving a closer performance related to the NER-specific
systems. The same trends stand at the Entity type level: LOC is the easiest category, followed by PER and
ORG. If we look at PER metrics: Precision, Recall, and F1 on StrictMatch (Table 3 vs BoE in Table 5),
we see a constant decrease in performance (Stanza F1 drops from 72 to 65; Flair F1 drops 63 to 56). This
suggests that, since we are only considering Bag of Entities, the globally frequent entity names, which
are very often predicted correctly, have less weight inflating the performance of the models. This is why
the scores from BoE are lower than the Strict Match in general.

5.5 Precision vs Recall
Another critical aspect to determine is whether we would rather have a system that is biased toward False
Positives (FP) or towards False Negatives (FN). Systems with a higher proportion of FPs translate into
low precision, meaning that more noisy cases will appear in our categories, and systems with a high ratio
of FNs, translate into low recall, indicating that many useful cases will be ignored. We can visualize
the FPs and FNs of each instance separately so a close inspection can show what kind of mistakes are
happening. Importantly, because the NER task is span identification and span labeling, there are different
causes of error: i) The span was correctly identified, but the label is wrong, ii) The span is wrongly
identified, but the label is correct, iii) The span was wrongly identified and the label is wrong, iv) The
labeler did not tag the entity at all. By packing this in a single P, R, or F1 score, we lose the ability



SYSTEM PER LOC ORG TOTAL
stanza 55.10 65.86 43.22 56.22
flair 45.42 70.47 47.01 53.14
xlmr ner 54.93 66.21 48.44 57.33
gpt-3.5 68.85 83.51 41.46 67.55

Table 6: Table of Precisions for each NER label, when evaluated as Bag of Entities

SYSTEM PER LOC ORG TOTAL
stanza 79.79 80.87 48.65 73.28
flair 72.39 86.93 57.46 73.95
xlmr ner 77.62 80.64 51.87 72.95
gpt-3.5 49.43 58.27 30.45 48.28

Table 7: Table of Recalls for each NER label, when evaluated as Bag of Entities

to analyze the nature of the errors. However, visualizing them at the instance level can provide more
explanations of the models’ behavior.

If we evaluate the systems based on their precision (Table 6), the highest precision is for GPT-3.5.
Notably, if we are only interested in recognizing important organizations (and do not care about recall),
then it seems like xlmr is the best-performing system in the test data. On the other hand, if what we need
is to maximize recall, results in Table 7 show that flair is the highest-performing model. We can also
see that GPT3.5’s recall is dramatically worse compared to the other systems, suggesting that (at least
with the current prompt) GPT will systematically ignore several entities, even though it is precise when
generating them (but, once again, this only happens when ignoring spans in the text).

5.6 Micro vs Macro(s)
Evaluating NLP classifiers with Precision, Recall, and F1 is customary. However, it is sometimes surpris-
ingly hard to identify whether the reported metrics are done at the macro level or micro level. Normally,
macro metrics are preferred because they average category-level scores. This alleviates the bias that ex-
ists across classes (although Opitz and Burst (2019) warn that sometimes different formulas are also used
when computing macro scores, resulting in different numbers). Looking at Table 3, it is not surprising
that stanza is the best model according to the micro F1, but xlmr is the best model according to the macro
F1. The reason for this change in ranking occurs because there is a bigger proportion of PER entities in
the corpus, a category for which stanza is much better at labeling, obtaining a higher micro; however,
the macro counteracts this bias and gives a fairer score, showing the system that performs the best across
categories. Hence, we reiterate that an underperforming system could be picked if one does not carefully
make the difference between these two.

6 Findings and Discussion

This section provides an overview and discussion of our most important findings. As mentioned in Sec-
tion 4, we built the visualizations on top of ready-to-use libraries such as Microsoft Excel, DisplaCy and
Google charts. These visualizations need at most a couple of lines of basic code to run. We aim for a low
technical threshold and the technical skills required to use these visualizations are comparable to those
needed for running the tools. The visualizations we propose can help identify where the source of diver-
gences is and remind us that we should check for the following aspects when evaluating. Depending on
which aspects are more relevant to a specific use case, different systems can come up as the best solution
for our specific use case. The following subsections highlight our main findings.

Tokenization Matters NER has traditionally been approached as a sequence labeling task, where each
token is assigned one label in the IOB format (or related) (Ramshaw & Marcus, 1995). Notably, the most



common scenario for non-NLP users is to apply an out-of-the-box tool to raw text. Our experiments show
that evaluation on raw text gives significantly lower scores than the evaluation assuming tokenization
as a given. We consider the Span match mode that starts from raw text to be closer to what external
users of tools need. Similar gaps between results obtained in “clean” experimental settings for standard
benchmarks and real world scenarios may occur for other NLP tasks as well. It is therefore worthwhile to
find out what the experimental setup that led to reported results looked like exactly to get a better feeling
of what may be expected in your own use case. These verifications provide additional information next
to other known factors that may determine results such as differences in genre, domain or time period in
which the data was created.

At the same time, not all errors may be equally problematic. It is therefore worthwhile to consider
how the output of the tools will be used to see how to weigh different kinds of errors. The following
paragraphs highlight relevant aspects in approaching this question.

Full Match vs Partial Match Only entities that match entirely the gold span label are considered cor-
rect in a full match setting. This strict match policy can be too harsh for cases where the classifier almost
got the whole entity with the correct label but missed a couple of tokens compared to the gold (which can
also be fixed with a simple post-processing rule). For example, if a label Charlotte Sophie instead
of Charlotte Sophie von Aldenburg as PER in her own biography can easily be mapped to
the correct person leading to a fully correct outcome for making networks, thus partial match evaluation
could be enough for this case.

Bag of Entities In some cases, e.g. identifying relevant documents or creating networks based on
loose connections, we only need to encounter the correct entity in the text once. It then does not matter
if Amsterdam occurs many times in the document, we only need to recognize it once as a LOC to draw
an edge between this person and Amsterdam. Here, evaluating without the need of validating spans can
be enough.

Precision vs Recall A related aspect is whether high precision (not many false positives) or high recall
(not many items missed, or few false negatives) is more important. Because the NER task is span iden-
tification and span labeling, there are different causes of error: i) The span was correctly identified, but
the label is wrong, ii) The span is wrongly identified, but the label is correct, iii) The span was wrongly
identified and the label is wrong, iv) The labeler did not tag at all the entity. If this information remains
packed in a single P, R, or F1 score, we lose the ability to analyze the errors. Visualizing the FPs and FNs
of individual documents separately can show what kind of mistakes are made so we can act accordingly
to fix them.

7 Limitations

This paper compares four specific NER tools for Dutch that can be applied out of the box. We are
aware that comparison among more tools could provide more decisive conclusions. The tools that we
used as an aid for the instance-level evaluation in principle apply to other languages and text domains,
given that the tool handles “labeled spans” regardless of the nature of the labels and the expected spans;
however, this paper did not provide experiments on other tasks. We focused on NER only to make a
more straightforward point that even an easy task can produce relevant disagreement across pre-trained
models.

As is widely known, the landscape of Large Language Models is evolving incredibly fast, and sev-
eral far more powerful models have appeared since this research started. We want to bring attention to
the fact that evaluation techniques should be fair across model architectures and task definitions. More
importantly, one should proceed with caution when reading about loosely defined experiments, where
LLMs are given more leniency on their inner methods used to produce results, and an assessment for
the specific use case at hand should always be done before assuming someone else’s prompt is what will
work best.

Finally, we also omitted the scenario where a custom model is fine-tuned for the specific corpus. The
reason for this is to emulate the scenario for a Digital Humanities researcher who wishes to use already



available tools instead of creating their own models. These two options are not mutually exclusive, as an
analysis such as the one shown in this paper can motivate the researcher to train their own models if no
available model satisfies the goals of their task at hand.

8 Conclusion

In this paper, we call for a more detailed evaluation of NLP span classification tasks. We apply several
out-of-the-box NER models to a corpus of Dutch Biographies and compare different options for eval-
uation. We aim to illustrate the importance of inspecting the output of models at various levels when
investigating whether their output provides the information that is needed with sufficient reliability. We
also aim to show that a higher F1 score in a benchmark does not necessarily mean that the model will
also be the best choice for our specific use case. We highlight the importance of carefully looking at the
outputs to know whether the selected models are working in the way we intend to, going beyond just
trusting global metrics in the abstract. Finally, we shared the code where we performed all these analyses
as to encourage researchers from various fields to use these methods for their own use cases.
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