
The CLARIN-DK Text Tonsorium

Bart Jongejan
Department of Nordic Studies and Linguistics

University of Copenhagen, Denmark
bartj@hum.ku.dk

Abstract
The Text Tonsorium (TT) is a workflow management system (WMS) for Natural Lan-
guage Processing (NLP). The software implements a design goal that sets it apart from
other WMSes: it operates without manually composed workflow designs. The TT invites
tool providers to register and integrate their tools, without having to think about the
workflow designs that new tools can become part of. Both input and output of new tools
are specified by expressing language, file format, type of content, etc. in terms of an
ontology. Likewise, users of the TT define their goal in terms of this ontology and let the
TT compute the workflow designs that fulfill that goal. When the user has chosen one of
the proposed workflow designs, the TT enacts it with the user’s input. This untraditional
approach to workflows requires some familiarization. In principle, the TT cannot predict
which of the proposed workflow designs is most appropriate, because the text may have
peculiarities that are as yet uncharted. The user has to make the choice. In this paper,
we reflect on the experiences with providing, testing and using workflows aimed at an-
notating transcripts of parliamentary debates. We propose possible improvements of the
TT that can facilitate its use by the wider clarin community.

1 Introduction
Many developments in workflow management systems (WMS) are aimed at bringing down work-
flow execution time and handling ever bigger amounts of data. In the user community that
clarin addresses, on the other hand, ease of use, especially for users with a nontechnical back-
ground, and adaptability to special needs, are often more important than speed and data size.

Our aim is to let small and medium scale scholarly projects benefit from an easy to use and
open WMS that manages a well-maintained collection of state of the art NLP tools. This WMS
is the Text Tonsorium (TT). It was constructed by the clarin-dk staff (Offersgaard et al.,
2011), but it has been away from the clarin.dk web site for some years. After many technical
improvements, it is again part of clarin-dk, this time with a new interface.

Traditionally, workflow management systems require (expert) users for the construction of
workflow designs. A good example of such a system is WebLicht1 (Hinrichs et al., 2010). The
characteristic that sets the TT apart from traditional WMSes is that workflow designs are
computed automatically. Central to this computation is an ontology that is used to describe
all data objects involved in workflows. Tools, too, are described by this ontology, since the TT,
when computing workflow designs, only needs to know what kind of data enters a tool and what
kind of data comes out. A technical description that explains how the TT computes workflow
designs is in Jongejan (2016). More about the user perspective of the TT, as conceived during
the dk-clarin project, is in Offersgaard et al. (2011) and in Jongejan (2013).

Users experience the TT as a very different service, compared to traditional workflow manage-
ment systems, because the TT dispenses with the expert user who creates and shares workflow

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1https://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/Main_Page

Bart Jongejan 2021. The CLARIN-DK Text Tonsorium. Selected papers from the CLARIN Annual Conference
2020. Linköping Electronic Conference Proceedings 180: 180 111–121.

111

∵
Ambiguity unambiguous
Appearance normalised
Type of content text
Format plain
Language German
Presentation normal

→
CST's RTFreader

Ambiguity unambiguous
Appearance normalised
Type of content segments,tokens[Simple]
Format plain text with ASCII 127 characters
Language German
Presentation normal

→
Create pre-tokenized Clarin Base Format text

Ambiguity unambiguous
Appearance normalised
Type of content segments,tokens[Simple]
Format TEIP5DKCLARIN_ANNOTATION
Language German
Presentation normal

→
3-CBF-Tokenizer

Ambiguity unambiguous
Appearance normalised
Type of content tokens
Format TEIP5DKCLARIN_ANNOTATION
Language German
Presentation normal

→
CST-Lemmatiser

Ambiguity unambiguous
Appearance normalised
Type of content lemmas
Format TEIP5DKCLARIN_ANNOTATION
Language German
Presentation normal

+
3

⇒
TEI P5 anno to Org-mode

Ambiguity unambiguous
Appearance normalised
Type of content tokens,lemmas
Format Org-mode
Language German
Presentation normal

Figure 1: Graph of a workflow design with five tools. The flow is from top to bottom. The output
from tools marked with a number is sent to the next tool and to any tool that has the same
number mentioned as input. Here, the 3rd tool sends output to the 4th and the 5th tool.

Selected papers from the CLARIN Annual Conference 2020

112

designs with other less expert users. True, users do not have to think about the technisch as-
pects of workflows, but users must decide for themselves which of the automatically computed
workflow designs to choose. This choice can be difficult and time consuming, and would have
been made once and for all, if a human expert user had created a workflow design for them. It is
therefore necessary to offer guidance to inexperienced users. On the one hand, metadata about
tools and datatypes must be presented in an understandable way and in the places where they
can be helpful. On the other hand, knowledge and experiences must be shared between users,
first and foremost by way of named, descriptive bookmarks that can be attached to workflow
designs that have been tried out and used.

The structure of this paper is as follows. Section 2 is about the current state of the TT.
Section 3 presents a condensed technical outline of the TT. Section 4 explains how the data is
described by metadata and how the tools are described in terms of the metadata characterizing
their input and output data. Section 5 is a case study of the design, implementation and use of
the Danish ParlaMint workflow design. In Section 6 we outline an improvement that some users
have proposed, but that cannot be realized. To make good for this, Section 7 is an exposition
of our plans for making an interface to the TT that can be easy to use by the larger clarin
community. Section 8 tells where the TT can be found on the internet. Finally, in Section 9,
concluding remarks follow.

2 Current State
There are currently over 40 tools2 integrated in the TT, spanning from tokenization to syntactic
parsing and from PDF-to-text conversion to text-to-speech transformation. Some tools were
developed to address the needs of a single project and later generalized to make them useful
for a wider segment of researchers. An example of spin-off from two consecutive and unrelated
projects is that the TT is able to annotate a wide class of TEI P5 formatted texts with lemmas,
part-of-speech (PoS) tags and syntactic dependencies.

Many of the tools are multi-lingual. The CST lemmatizer (Jongejan and Dalianis, 2009)
(CSTlemma), for example, lemmatizes 28 languages3. The Danish linguistic resources for
CSTlemma cover three historical periods: medieval, late modern and contemporary. A few tools,
such as the Named Entity Recognizer, work only for Danish.

3 Technical Outline
3.1 Software Components
The TT is a web application that consists of a hub and a webservice for each tool that is
orchestrated by the TT. The integrated tools communicate with the hub by the HTTP protocol,
but do not communicate with each other. Users interact only with the hub.

3.2 Tool Integration
The TT offers an easy way of embedding a tool in an ecosystem of already existing tools. First, a
tool provider visits the administration page of the TT and enters boiler plate metadata (ToolID,
ContactEmail, Version, Title, ServiceURL, Publisher, ContentProvider, Creator, InfoAbout, De-
scription) as well as metadata that describes the input and the output of the tool in terms of
language, file format, and a few other dimensions. The TT then creates a program stub in the
PHP language for a web service that is already tailored to the tool to be integrated.

3.3 Workflow Composition
The TT uses dynamic programming with memoization to compute all workflow designs that
combine tools such that the output will be in agreement with the user’s specifications, given the

2See https://cst.dk/texton/help
3Some of training data sets with which CSTlemma was trained, to wit the MULTEXT East free and non-

commercial lexicons (Erjavec et al., 2010a; Erjavec et al., 2010b), were found in the Slovenian clarin portal.

Selected papers from the CLARIN Annual Conference 2020

113

user’s input. Computation of these designs, pruning unlikely designs and removing irrelevant
details from the presentation of the list of remaining candidates, is relatively fast, given that
there may be thousands of viable designs to sift through. This process can take anywhere from
a few seconds to a couple of minutes.

Fig. 1 shows the full details of a single workflow design. In this case, the TT had recognized the
input as plain text and the user had defined the goal as German lemmas. The shown workflow
design is one out of 50 designs, a number that would have been reduced to ten if the user also
had mentioned that the output had to be in ORG-mode format.

3.4 Workflow Enactment
When the user has chosen one of the proposed candidate workflow designs, the TT enacts that
workflow with the data that the user has uploaded as input. The input, intermediary results
and final results are temporarily stored on the computer on which the TT runs.

The results from each step in a running workflow can be inspected as soon as the step has
been executed. The results can be downloaded as a zipped archive. The user can choose whether
or not to include all input and intermediary results in the zip-file.

3.5 Data Formats
The TT handles Office documents, TEI P5 documents, HTML, PDF, images of text, plain text,
JSON, ORG-mode tables, CONLL (14 column CONLL-2009 as well as 10 column CoNLL-U),
CWB (Corpus Workbench), bracketed (Lisp-like) text, and WAV sound files. Some formats are
only available on the input or on the output side.

The TT is primarily designed for annotation tools that output their result without also copying
the input to the output. By allocating stand-off annotations in files separate from the input
and from other annotations, the TT has the freedom to send intermediary results from earlier
processes in any combination as inputs to later processes, thus circumventing a need to have
data definitions for each possible combination.

Since users normally require output that contains results from several workflow steps com-
bined, some data definitions for combinations of text and/or annotations have been made, em-
ploying expressive formats such as JSON, ORG mode tables, CONNL, CWB and TEI P5. Fig. 1
illustrates this: tokens and lemmas are in separate files, the first as the output of a tokenizer
and the latter as the output of a lemmatizer. These two intermediary results are both sent to
the final tool, which combines the tokens and the lemmas in a table with two columns, using
the ORG-mode formatting mode.

Complex data types are not restricted to the final result of a workflow. If there is a tool that
accepts a complex data type, workflow designs can be computed that take user input of that
type. Such data types can also occur as intermediary result.

4 Metadata
Seven dimensions are used to describe data: the Type of Content, the Language, the Format, the
Historical Period, the Appearance, the Assemblage, and the Ambiguity, see Fig 2.

The TT treats all dimensions on an equal footing: it does not care whether a tool transforms
data between two Languages , or between two Formats, or between two Types of Content.

Each of these dimensions needs to be populated with values. For example, this is the current
list of values that Type of Content can take: text, tokens, sentences, segments, paragraphs,
PoS tags, lemmas, word classes, (syntactic) dependencies, tagged terms, named en-
tities, morphemes, noun phrases, repeated phrases, N-gram frequencies, keywords,
multiple word terms, lexicon, and head movements. These Types of Content are primitive.
There are also some complex Types of Content that combine two or more primitive Types of
Content. For an example of their use, see Section 3.5 and Fig. 1, where we see two examples of
complex Types of Content that combine more primitive Types of Content: segments,tokens
and tokens,lemmas.

Selected papers from the CLARIN Annual Conference 2020

114

(a) Example of independent dimensions. (b) Examples of subspecification of some
values in the Type of Content dimension.

Figure 2: Dimensions and subspecifications of values along one of the dimensions.

The TT handles one more level of specification. In this extra level it is possible to discern
variants of a given value in a dimension. For example, there may be a need to discriminate
between Universal PoS tags and the PoS tag set used in the Penn Treebank, which are specifica-
tions of the value PoS tags in the Type of Content dimension. Similarly, it might be useful to
distinguish between JPEG, PNG and SVG, which are specifications of the value image in the
Format dimension. See Fig 2. The purpose of this extra level of information is to make matching
tools with each other, with input data and with output requirements, more forgiving. It also
helps to keep technical details away from the user.

5 Use case: Annotation of a Danish Parliamentary Corpus
The ParlaMint project4 has the aim to make national parliamentary data in several countries
available in a uniform format and enriched with linguistic annotations. The chosen format follows
the TEI P5 guidelines. We have decided to annotate the Danish parliamentary data with morpho-
syntactic descriptions (msd), lemmas and syntactic dependency relations.

For handling the linguistic annotation process of the Danish ParlaMint data, the choice fell
upon the TT, since it already had several tools for transformation and annotation of TEI P5
data.

A tool for annotation of Danish (plain) text with PoS tags, lemmas, and syntactic de-
pendency relations was already integrated in the TT. This tool, dapipe5, is based on UD-
pipe (Straka and Straková, 2017) and trained by colleagues at the IT University of Copenhagen.
Per default, dapipe expects plain text and does everything necessary: segmentation, tokenization,
PoS tagging, morphological analysis, lemmatization, and syntax analysis. Our first experiment
was to iterate over all <seg> elements in each input file, for each element (1) extracting the
content, (2) saving it in a plain text file, (3) running dapipe with that file as input, and (4)
transform dapipe’s output to follow the TEI P5 standard. This was the most straightforward
way to use dapipe in the ParlaMint project, but it caused a considerable overhead, since dapipe
had to be started and initialized with the Danish language model for every single utterance.
Then we discovered that there is a possibility to feed dapipe with an already tokenized and seg-

4ParlaMint: Towards Comparable Parliamentary Corpora (https://www.clarin.eu/content/
parlamint-towards-comparable-parliamentary-corpora)

5https://github.com/ITUnlp/dapipe

Selected papers from the CLARIN Annual Conference 2020

115

(a) Workflow using dapipe for all linguistic
annotations.

(b) Workflow using CSTlemma for better
lemmatization. CSTlemma using dapipe’s
POS as hint.

(c) Workflow that uses an alternative tagger
to provide hints to CSTlemma.

Figure 3: Three candidate workflow designs (out of 21) that were tried for annotating transcripts
of parliamentary debates in Denmark. (b) was chosen because it was the only design guaranteeing
congruence between lemmas and PoS tags.

Selected papers from the CLARIN Annual Conference 2020

116

mentized input. We decided to choose another, more complex but more efficient solution: first
tokenize and segmentize the input, using TEI elements to indicate the tokens and segments,
and then send these preprocessed data through dapipe in one go. Dapipe’s output could then
be matched to the proper tokens and segments.

The other four processes (PoS tagging, morphosyntactic analysis, lemmatization, and syntax
analysis) remained unseparable, however. To integrate dapipe in the TT, we therefore created an
aggregate content type and a ‘splitter’ tool that does nothing but outputting just one of the four
annotation layers in the aggregated content type: PoS tags, morphology (later in the process
to be combined into msd), lemmas or syntactic dependencies. Now we could segmentize and
tokenize a TEI document, while keeping its TEI structure, feed it to dapipe, and retrieve the
annotation layers as <spanGrp> elements in output TEI files. These annotation layers could then
be merged into the input. This workflow design is illustrated in Fig. 3(a).

On inspection, the lemmas produced by dapipe were not very good. Not as good, we believed,
as the lemmas that another integrated tool, CSTlemma, would have produced. We mapped
the Universal PoS tagset, which dapipe employed, to the PoS tag set employed by CSTlemma.
When that had been implemented in the TT, workflow designs that contained both dapipe
and CSTlemma were shown in the list of proposed workflow designs. One of these is shown
in Fig. 3(b). So now we had a workflow design using dapipe for all annotation layers and
another workflow design that ignored dapipe’s lemma output, using CSTlemma lemmas instead.
Comparing the two outputs, it became clear that CSTlemma produced better lemmas than
dapipe. We discovered another difference between the lemma predictions: whereas CSTlemma
computed the lemma of a word according to rules dictated by the PoS tag assigned to that
word, dapipe, when computing the lemma, seemed unaware that another part of dapipe was
predicting the PoS tag of that word. The result was that a word could be PoS tagged as a verb,
but lemmatized as though it was a noun.

It is in such experimental phases of projects that the TT shows its advantage over hand-made
workflow designs: without a considerable investment of human working hours, we were able to
compare two workflow designs before deciding which one to use to annotate all documents in the
Danish corpus. On the one hand we had results produced by dapipe only, with lemmas and PoS
tags predicted independently, and on the other hand we had results produced by dapipe and
CSTlemma in unison, with lemmas created conditioned by the PoS tags produced by dapipe.
On beforehand, it was impossible to know which result would be the best one. Dapipe’s lemmas
could be erroneous, but would be erroneous independently of any errors in dapipe’s PoS tags.
CSTlemma’s lemmas could be more or less erroneous than dapipe’s. If there were lots of PoS
tagging errors, CSTlemma’s results would very likely be worse than dapipe’s, but if there were
few PoS tagging errors, the lemmas would be of higher quality. No programmatic method would
be able to predict which approach would be the best one. Only experimentation could tell.

We did a third experiment. We reasoned that if dapipe makes many PoS tagging errors, and
if there is an alternative PoS tagger that makes fewer errors, than we should feed CSTlemma
with PoS tags created by the alternative PoS tagger. Skimming through the list of workflow
designs that the TT proposed, we found a workflow design that incorporated the Brill tagger, see
Fig. 3(c). We run the same test document through all three workflows and compared the lemmas.
As expected, workflow 3(a) and workflow 3(c) produced lemmas that not always were congruent
with the PoS-tags predicted by dapipe. Furthermore, workflow 3(b) showed few lemmatization
errors, compared to the other two, and many of the errors were due to PoS-errors. Since PoS
errors percolate to the the syntax analysis, it seemed reasonable to also let the PoS errors
percolate to the lemmatization, especially if the original dapipe lemmas had more errors than
CSTlemma lemmas. After comparing the three workflow designs, we selected the workflow design
depicted in Fig. 3(b).

The Danish Parliamentary corpus contains 688 xml files and cover a period from October 2014
until September 2020. We will annotate these files in groups comprising one year of debates at

Selected papers from the CLARIN Annual Conference 2020

117

a time, which amounts to about 100 documents per group. We expect that each group takes
about 2 hours to be completely processed.

During the test phase of the workflow, we were in need of a visualisation of the results. The
correctness of the syntactic annotation in the TEI P5 formatted workflow output was very
hard to check, so we added an extra tool to the TT that transforms the hard-to-read TEI P5
format to a plain, easier to read CONLL-U format. To make the validation even more easy, we
added another tool to the TT, a tool that converts the CONLL-U format to the Penn Treebank
bracketed list format, which displays the syntactic dependencies as a tree structure.

Given that the TT was to have a workflow that enriches ParlaMint TEI P5 textual input with
PoS, morpho-syntactic, lemma and syntax annotations, it was interesting to see that the same
workflow designs could be applied to non-ParlaMint texts. From an earlier project, we knew
that there are users who use the TT to annotate TEI P5 documents with PoS tags and lemmas,
while retaining many sorts of TEI P5 tags attached to words in the input file, such as <add>,
<app>, , <ex>, <lem>, and <rdg>. Now these users in addition can enrich their texts with
syntax annotations.

6 An Improvement that is not coming
There is an improvement that is hard, if not impossible, to deliver. The Text Tonsorium has the
technical expertise to construct workflow designs that ... work, but it does not have the expertise
to tell which workflow design is the best in a given situation.

In other workflow management systems, users rely on the expert knowledge of an experienced
colleague who manually picks the tools that, together, constitute the best workflow design for
a given task. End-users do therefore not have to choose between lemmatizer A and lemmatizer
B. Not only that makes life easy for users, a hand-made workflow design can be used again and
again, given a name, described and shared with other users. There are however some pitfalls:

1. Some tools may have changed, delivering output that is not quite the same as when the
workflow was manually designed. The quality label may loose its credibility over time.

2. Some tools may improve so much that the same expert user would choose that tool instead
of the one that was chosen as part of the manually edited workflow design. So end-users do
not reap the fruits of technological progress.

3. Tools may reach end-of-life and stop being executable. Workflow designs that depend on
such tools stop functioning as well. Reproducability of earlier experiments suddenly stops,
and an expert user (the same or a new one) has to be called in to design a new workflow.

4. Workflow designers may for whatever reason choose to design several workflows that attain
the same goal. The end-user would then have to choose the workflow that fits the actual
situation best. That, of course, weakens the utility of having expert human users whose
task it is to make choices on behalf of end-users.

5. Expert users may shun away from parts of the solution space for various reasons, but those
reasons need not always be valid in situations that end-users encounter:

(a) An expert user may disregard some tools for reasons that have little to do with their
function, just to be on the safe side. For example, a tool may be known to be excessively
resource gobbling, or slow, or unable to handle large input, or in an unstable beta phase
of development. However, such problems may be of no importance for an end-user,
hardware resources may become better and software may become available in a more
stable version.

(b) An expert workflow designer has to make assumptions about the input data that per-
haps do not apply in the end-user’s setting. For example, the expert may assess the
quality of tools by running them with a text corpus that is an homogeneous mix of

Selected papers from the CLARIN Annual Conference 2020

118

many text types as input, while the end-user may work with text types with peculiar
characteristics, such as bad spelling, OCR-errors, social media jargon, sociolects, or
transcribed speech.

(c) The expert just does not think that very complex workflow designs are worth testing.
The idea that simple, short workflow designs are to be preferred can steer a human
expert towards suboptimal solutions.

The TT displays all viable workflow designs that fulfill the user’s goal. There is little that can
be done about this. The accumulation of metadata about the tools that together constitute a
workflow design does not sum up to an overall quality assessment of the workflow design. The
same tool can be considered a strong link in one workflow design, but a weak link in another
one, so there is not a ‘tool quality measure’ that can be used in the computation of an ‘workflow
quality measure’. The only way to improve on this is to add metadata that encompasses two or
more tools at the same time.

7 Coming Improvements
The TT has the potential to generate thousands of useful workflow designs. In order to make this
an advantage over WMSes that require manual composition of workflow designs, it is necessary
to guide users when they state their goal, so that they are not overwhelmed by too many designs
to choose from. There are only a few drop down lists that the user has to consider, but specifying
a goal can still be hard, since some of the values to choose from are relatively arcane.

The leading idea of the improvements we envision is that the specification of the goal can
be done in easy steps. For each choice to be made, users will be guided by explanations and
examples. Users who are already acquainted to the TT can skip this guidance, if they like.

Firstly, we want to find equivalents of the concepts that are used in the TT in the clarin
Concept Registry (CCR). The TT can use the CCR descriptions for those concepts for which
approved CCR equivalents exist. If we find that a candidate CCR concept would have been
the perfect choice, we will communicate that finding to the Concept Registry Coordinators. If
the TT needs a concept for which no CCR equivalent exist, we will try to make that a CCR
candidate (‘medieval’, ‘OCR’, ‘blackletter’, ‘pruned’).

Secondly, we want to construct an assortment of output samples that we can show to users,
so they can make better informed choices.

The TT is not able to compute workflow designs for all goal specifications that the user can
make. Whether or not any workflow designs exist for a given input and goal can only be found out
by letting the TT try to find those candidates. As a third improvement to the user experience,
we need to inform users that an empty list of workflow designs is not a shortcoming and does
not mean that there is a bug in the TT. An informed user whose goal cannot be fulfilled by the
TT, might even appreciate that he or she did not have to spend hours on trying to manually
compose a workflow design that cannot be composed, given the current set of available tools.

A fourth improvement will be the possibility to bookmark a workflow design. To bookmark a
selected workflow design, the user will have to provide both a name and a reason for marking
the workflow design, if possible comparing it with other already bookmarked workflow designs.
Shared bookmarks make it easier to cooperate in a project and are useful as a reminder for
future use. Bookmarks cannot be guaranteed to exist forever, however. Changes in the registered
metadata of a tool can potentially invalidate a bookmarked workflow design. If that is the case,
the bookmark must be marked obsolete and deleted after a grace period of for example two
years. When a user has uploaded input to the TT, only bookmarked workflow designs will be
shown that can be applied to that input.

An alternative to a bookmark is simply freezing and saving the workflow design itself. Tech-
nically, that would not be very different from bookmarking a workflow design, but conceptually
there is a difference: a saved workflow design exists until someone deletes it. It can continue
to exist, even if the TT has evolved so much that the saved workflow design no longer can be

Selected papers from the CLARIN Annual Conference 2020

119

executed. A bookmark is merely a pointer with some metadata attached to it. From their ex-
perience with bookmarks to websites, users do not expect that bookmarks to workflow designs
can be used in all eternity. Since the TT is meant to be expanding and improving over time,
bookmarks are more useful than frozen and saved workflow designs.

Researchers and students from the Faculty of Humanities at the University of Copenhagen
will be involved in testing and improving the new interface to the TT.

8 Availability
There is an online version of the TT at the address https://cst.dk/texton/ that can also
be reached via the clarin.dk website (https://clarin.dk/clarindk/tools-texton.jsp). An
identical version can be downloaded from GitHub6. Some of the tools in the GitHub repository
are merely wrappers for open source tools that must be obtained separately, such as LibreOffice
(which is used for conversion of office formats to RTF) and the OCR programs Cuneiform and
Tesseract.

The TT can be installed on a personal computer, for example in the Windows Subsystem for
Linux. Such an instance of the TT even runs while the computer is cut off from the internet and
can then be used for handling very sensitive input, e.g. non-anonymized juridical documents.

9 Conclusion
We have in a few words described the current state of the Text Tonsorium, a Workflow Manager
for NLP tools that has been re-launched to the clarin community. The Text Tonsorium au-
tomatically computes workflow designs that fulfil the user’s goal and excutes the ones that the
user selects. To illustrate that the final, sometimes hard, decision which workflow design to use,
has to be taken by the user and cannot be automated away, we have devoted a section to how a
recent project’s aims were backed by the Text Tonsorium, suggesting several workflow designs,
each with their advantages and disadvantages. Finally, we discuss how we hope to improve the
user experience of the Text Tonsorium. We would be pleased to receive more suggestions from
users and testers in the clarin community.

References
Tomaž Erjavec, Ştefan Bruda, Ivan Derzhanski, Ludmila Dimitrova, Radovan Garabík, Peter Holozan,

Nancy Ide, Heiki-Jaan Kaalep, Natalia Kotsyba, Csaba Oravecz, Vladimír Petkevič, Greg Priest-
Dorman, Igor Shevchenko, Kiril Simov, Lydia Sinapova, Han Steenwijk, Laszlo Tihanyi, Dan Tufiş,
and Jean Véronis. 2010a. MULTEXT-east free lexicons 4.0. Slovenian language resource repository
CLARIN.SI.

Tomaž Erjavec, Ivan Derzhanski, Dagmar Divjak, Anna Feldman, Mikhail Kopotev, Natalia Kotsyba,
Cvetana Krstev, Aleksandar Petrovski, Behrang QasemiZadeh, Adam Radziszewski, Serge Sharoff,
Paul Sokolovsky, Duško Vitas, and Katerina Zdravkova. 2010b. MULTEXT-east non-commercial
lexicons 4.0. Slovenian language resource repository CLARIN.SI.

Erhard W. Hinrichs, Marie Hinrichs, and Thomas Zastrow. 2010. Weblicht: Web-based LRT services for
German. In ACL 2010, Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, July 11-16, 2010, Uppsala, Sweden, System Demonstrations, pages 25–29. The Association
for Computer Linguistics.

Bart Jongejan and Hercules Dalianis. 2009. Automatic training of lemmatization rules that handle
morphological changes in pre-, in- and suffixes alike. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, volume 1, pages 145–153. Association for Computational Linguistics.

Bart Jongejan. 2013. Workflow management in CLARIN-DK. In Proceedings of the workshop on
Nordic language research infrastructure at NODALIDA 2013; May 22-24; 2013; Oslo; Norway. NEALT
6https://github.com/kuhumcst/texton, https://github.com/kuhumcst/texton-bin, https://github.

com/kuhumcst/texton-linguistic-resources and https://github.com/kuhumcst/DK-ClarinTools

Selected papers from the CLARIN Annual Conference 2020

120

Proceedings Series 20, number 89, pages 11–20. Linköping University Electronic Press; Linköpings
universitet.

Bart Jongejan. 2016. Implementation of a workflow management system for non-expert users. In
Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities
(LT4DH), pages 101–108, Osaka, Japan, December. The COLING 2016 Organizing Committee.

Lene Offersgaard, Bart Jongejan, and Bente Maegaard. 2011. How Danish users tried to answer the
unaskable during implementation of clarin.dk. In Proceedings of SDH, November. SDH 2011- Sup-
porting Digital Humanities.

Milan Straka and Jana Straková. 2017. Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 88–99, Vancouver, Canada, August. Association for Computational
Linguistics.

Selected papers from the CLARIN Annual Conference 2020

121

