ARCHE Suite: A Flexible Approach to Repository Metadata Management

Mateusz Zéltak Martina Trognitz
ACDH-CH OEAW martina.trognitz@oeaw.ac.at
Vienna, Austria Matej Duréo
mateusz.zoltak@oeaw.ac.at mate]j.durcoloeaw.ac.at
Abstract

This article presents an innovative approach to metadata handling implemented in the ARCHE
Suite repository solution. It first discusses the technical requirements for metadata management
and contrasts them with the shortcomings of existing solutions. Then, it demonstrates how the
ARCHE Suite addresses those problems. After one year of use, we can assert that the approach
implemented in the ARCHE Suite is viable and provides important benefits. We aim to establish
the ARCHE Suite as an open-source repository solution to be used also by other parties.

1 Introduction

The Austrian Centre for Digital Humanities and Cultural Heritage (ACDH-CH) at the Austrian Academy
of Sciences in Vienna runs the repository ARCHE for persistent hosting of humanities research data.
ARCHE is certified as a CLARIN B-centre. Between 2017 and 2020, the underlying software technology
we used was Fedora Commons version 4 with Blazegraph as a metadata store. Due to many serious
shortcomings related to metadata management, the increasing amount of technical issues, and a lack of
adequate alternatives, we decided to develop our own repository solution: the ARCHE Suite.

This paper specifies core requirements for metadata management and explains why they are not met
by the existing repository solutions Fedora Commons (The Fedora Leadership Group, 2016), DSpace
(Smith et al., 2013), Dataverse (King, 2007) or Invenio (Holm Nielsen, 2019) '. We describe how the
desired features have been implemented in our solution and how they are used in our metadata manage-
ment workflows. Finally, we discuss the challenges posed by our solution and summarise our first-year
experiences of using it.

2 Technical Requirements for Metadata Handling

Metadata is a vital part of every data repository, indispensable for finding, understanding, and reusing
the data. To fully comply with the FAIR Data Principles that emphasise machine-actionability (Wilkin-
son et al., 2016), data and metadata have to be machine-readable and interoperable, which poses many
challenges. The most important one includes ensuring metadata interoperability and consistency while
preserving its descriptive precision. Handling these challenges governs our core technical requirements
for the ARCHE Suite.

2.1 Ensuring Metadata Interoperability

In the humanities and cultural heritage disciplines, the tremendous amount of metadata standards (e.g.,
(Riley, 2010)) stands in the way of metadata interoperability. To overcome this, CLARIN has introduced
the Component Metadata Infrastructure (CMDI) (Broeder et al., 2012), a standardised (ISO 24622-1,
24622-2) metadata framework with a built-in interoperability mechanism. Another compromise widely
used across all disciplines is to apply the DCMI Metadata Terms (DCMI Usage Board, 2020), with the

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

"Webpage for Fedora Commons: duraspace.org/fedora/, for DSpace: duraspace.org/dspace/, for Dataverse: dataverse.org/,
and for Invenio: invenio-software.org/

Mateusz ZoMttak,Martina Trognitz and Matej Durlo 2022. ARCHE Suite: A Flexible Approach to Repos-
itory Metadata Management. Selected papers from the CLARIN Annual Conference 2021. Ed. by Mon-
ica Monachini and Maria Eskevich. Linkoping Electronic Conference Proceedings 189, pp. 190-199. DOI:
https://doi.org/10.3384/9789179294441

190

caveat of losing the potentially richer metadata to one basic common set of metadata descriptors. The
repository solutions most popular among CLARIN B centres - Fedora Commons 3 and DSpace (see
Tables 1 and 2) - force users to use Dublin Core (DC) as a repository-native metadata format in a more
or less explicit way.

CLARIN B Centre City Software
ASV Leipzig Leipzig Fedora Commons, v3
ACDH-CH - ARCHE Vienna ARCHE Suite
Bayerisches Archiv fiir Sprachsignale Munich own solution
Berlin-Brandenburg Academy of Sciences and Berlin Fedora Commons, v3
Humanities

Center of Estonian Language Resources Tartu META-SHARE & own (Entu)
CLARIN.SI Language Technology Centre Ljubljana DSpace
Eberhard Karls Universitit Tiibingen Tiibingen Fedora Commons, v3 (v4 planned)
Hamburger Zentrum fiir Sprachkorpora Hamburg Fedora Commons, v3
Institut fiir Maschinelle Sprachverarbeitung Stuttgart Fedora Commons
Instituut voor de Nederlandse Taal Leiden own
Leibniz-Institut fiir Deutsche Sprache Mannheim Fedora Commons
LINDAT/CLARIAH-CZ Praha DSpace
MPI for Psycholinguistics Nijmegen Fedora Commons, v3 (v4 planned)
PORTULAN CLARIN Lisboa META-SHARE & own
Sprakbanken Gothenburg DSpace & own (Korp, etc.)
The ILCACLARIN Centre at the Institute for Pisa DSpace
Computational Linguistics

The Language Bank of Finland Helsinki META-SHARE & own (tools)
Universitit des Saarlandes Saarbriicken Fedora Commons
ZIM Centre for Information Modelling Graz Fedora Commons, v3 (v4 planned)
CLARIN-PL Language Technology Centre Wroctaw DSpace
CLARINO Bergen Center Bergen DSpace
CMU-TalkBank Pittsburgh own (talkbank)
The CLARIN Centre at the University of Copenhagen DSpace & eSciDoc

Copenhagen

Table 1: Repository software solutions used by CLARIN B centres according to the CLARIN’s Centre
Registry. The information is based on a centre’s registry entry or its latest CoreTrustSeal document.

In the last years, a new concept for (meta-)data interoperability has gained prominence: the Linked
Open Data (LOD) principles with five levels (stars) of compliance(Berners-Lee, 2009). Four-star LOD
(Berners-Lee, 2009; Holborn, 2014) requires data to be provided in a W3C-compliant standard like RDF
(W3C et al., 2014) or SPARQL (W3C et al., 2013). This is easily met by using DC because of a well-
defined mapping to RDF (W3C et al., 2014; Nilsson et al., 2008). The real challenge, however, is to
additionally meet the requirements of five-star LOD, which includes the use of external links (Berners-
Lee, 2009; Holborn, 2014). Using external URLs as DC term values meets the requirements but results in
a repository inaccessible to human users, who expect human-readable labels like 'Karl Baedeker’ rather
than URIs or URLs like ’arche.acdh.oeaw.ac.at/api/35998°. Using both URLs and human-friendly text
labels as values results in problems with DC properties used multiple times (e.g. dc:creator) because
the corresponding labels and URLs cannot be paired anymore. Overall, the only viable solution to fully
adopt five-star LOD seems to be providing full RDF support.

Fedora Commons 3 does not have any RDF support. This has been changed in Fedora Commons
4 where RDF became a native metadata format. Unfortunately, Fedora Commons 4 and 5 suffer from a
serious feature drop compared to the previous version (most notably the lack of a search API and dissem-

Selected papers from the CLARIN Annual Conference 2021
191

Repository software No. of centres

ARCHE Suite 1
DSpace 7
Entu 1
eSciDoc 1
Fedora Commons 9 (v3:6)
META-SHARE 2
own solution 6

Table 2: Popularity of repository software solutions used by CLARIN B Centres listed in Table 1.

ination methods). As a result, the adoption of Fedora Commons 4 and 5 has never become widespread.
The lack of the search API has been addressed in version 62 but the introduced API has no RDF support.
On top of that, Fedora Commons 4-6 enforce a hard-coded metadata schema for all metadata properties
managed by the service (media type, binary content size, creation and modification date, etc.).

Dataverse presents a mixed approach. On the input side, it requires metadata to follow a bespoke
Dataverse schema making it interoperable with other Dataverse repositories only. On the output side,
metadata can be serialised into a few schemas (Institute for Quantitative Social Science, 2021), e.g.
schema.org’s Dataset RDF schema serialised as JSON-LD.

Invenio allows any metadata schema which can be defined using the JSON Schema (CERN et al.,
2021). Such a solution can be considered RDF-compliant to a large extent because RDF metadata can be
serialised as JSON-LD, and the resulting JSON-LD structure can be described in the JSON Schema. The
limitation here is that there can be many valid RDF to JSON-LD serialisations, and it can be impossible
to describe all of them using the JSON Schema.

DSpace defaults to Dublin Core but can be set up to accept any flat metadata schema. The limitation is
that it requires metadata to be provided serialised as XML in the way that a property is represented as an
XML tag and the value is the tag’s content. This is incompatible with RDF in two ways: First, it forbids
ingestion of RDF metadata containing URI values because in RDF-XML the URIs are stored as XML
tag attributes and not as a tag’s content. Second, the flat internal metadata model makes it impossible to
store multiple values (URLs and labels) of the same metadata property in such a way that relationships
between them (e.g.this is a label for this URL) are maintained. Despite the limitations on the data input
side, DSpace allows a few RDF serialisation options on the output side. E.g. generation of an OAI-PMH
record in the RDF-XML format with an XSLT stylesheet. Another option is to couple DSpace with a
triplestore (DuraSpace, 2021).

The interoperability imperative combined with the heterogeneous formats landscape implies that most
repositories have to handle more than one metadata format. The enforcement of a metadata schema (often
DC) by a repository software is undesired as it either prevents the handling of domain-specific metadata
schemas or requires extensive customisation. A typical way of overcoming limitations imposed on the
metadata schema by a repository software is to materialise domain-specific formats as separate repository
data streams. The main disadvantage of this approach is making the information redundant, which brings
the risk of inconsistency. Furthermore, if a presentation format has to be changed, e.g. because a CMDI
profile definition is updated, all materialised metadata records have to be regenerated and updated even
if there is no change in the metadata values themselves. Similarly, if a metadata value changes, both the
repository-native metadata format as well as all materialised metadata data streams have to be updated.

A better solution is to keep a single copy of all metadata values in a schema-agnostic metadata store
and to allow for on-demand conversion to the desired metadata format with a templating system. DSpace
and Fedora Commons have no embedded support for on-the-fly metadata conversion, Dataverse provides
a fixed set of built-in conversions as described above, and Invenio allows to write custom metadata
schema conversion plugins in Python.

?Fedora Commons 6 was released on 30th June 2021, while development on the ARCHE Suite had already begun by end of
2019. The information on Fedora Commons 6 provided here originate from its technical documentation and not from testing.

Selected papers from the CLARIN Annual Conference 2021
192

2.2 Ensuring Metadata Consistency

Ensuring metadata consistency, preferably at the ingest stage already, involves several aspects to be
considered in the context of the repository management software. First, the way in which metadata checks
are defined. This can be done either by specifying the allowed schema when using configuration files or
by plugging in own code which performs the checks. Dataverse only supports the former method, Fedora
Commons 4 only the latter, DSpace and Invenio both, and Fedora Commons 3 has no support for custom
metadata checks. Executing a pluggable code only after the data were stored in the repository, like in
Fedora Commons 4, does not allow for reliable metadata checks because it either allows the metadata to
stay in an inconsistent state or rejects it without notifying the client about the ingestion failure.

The second aspect regarding metadata consistency concerns the software layer, in which the metadata
restrictions are verified. To ensure that checks can not be bypassed, they have to be enforced by a single
software component responsible for handling all data irrespective of the ingestion interface.

The third important factor is the ability to ingest the data using ACID — atomicity, consistency, iso-
lation, durability — (Haerder and Reuter, 1983) transactions. It is especially important from the LOD
perspective where consistency of one repository resource metadata may depend on a successful creation
(or update) of another repository resource. Unfortunately, ACID transactions are poorly supported by
existing repository solutions.

Invenio provides only a basic optimistic concurrency control on a single resource modification request
level. Dataverse, DSpace and Fedora Commons 3 lack any concurrency control on the client API level
and our experience with the previous ACDH-CH repository based on Fedora Commons 4 proved its
transaction support to be intrinsically broken. Reasons for this are that Fedora Commons 4 and 5 lack a
built-in search feature and the synchronisation with an external search engine like Solr or a triplestore
is done only after the transaction commit. This makes it impossible for the ingestion client to search for
any ingested data until the transaction’s end. Furthermore, there is no locking system preventing parallel
transactions from modifying the same repository resource (a lack of a so-called transaction separation).
As a consequence, Fedora Commons 4 and 5 commit and rollback transaction operations provide no
guarantee regarding the final state of resources modified by a transaction. Additionally, there are smaller
issues like requests made within a transaction not extending the transaction timeout. The latter can lead
to the failure of a large resource upload (e.g. few gigabytes in size) when the upload takes more time
than the transaction timeout. The Fedora Commons 6 documentation suggests no changes in this regard.

2.3 Requirements List
To sum up, the desired repository solution should:

* Provide RDF support as the only viable way of fulfilling the five-star LOD principles

* Not enforce any particular metadata schema

* Avoid metadata duplication that comes from materialising metadata in different formats
Allow for defining upon-ingestion metadata consistency checks in a flexible way

* Ensure metadata consistency in a way that cannot be easily bypassed

* Provide fully ACID transactions

* Allow for writing extensions in many programming languages.

Unfortunately, none of the existing solutions provides support for all the points from this list. For this
reason, we have developed a new repository software: the ARCHE Suite.

3 The ARCHE Suite

The ARCHE Suite is a bespoke, in-house repository solution that we developed from scratch within
half a year in 2020, including the migration from the old Fedora 4-based repository. Before going into
production it underwent an external code review. The ARCHE Suite is built in a modular, service-oriented
manner, consisting of multiple interconnected components that communicate through well-defined APIs
(see Figure 1). All software components are available on GitHub® and the documentation is provided at
acdh-oeaw.github.io/arche-docs/.

3 github.com/acdh-oeaw?q=arche

Selected papers from the CLARIN Annual Conference 2021
193

arche-docker

GUI X REST API)

arche-
resolver

docker-config

| arche-gui
(REST API X REST API)

arche-
arche- schema arche- arche- arche-
ref-sources arche- ingest thumbnails biblatex
schema-ingest
arche-lib arche-
o Refi arche- lib-disserv
(e “EXFCS APX)AI-PMH APX arche-core APl) lib-schema
arche- arche- arche-
. doorkeeper
arche- arche- oaipmh core m
openrefine fes Iib-asrcch:r-na
arche-lib arche-lib
Postgresql Database

Figure 1: ARCHE Suite components. As can be seen, a microservice-based approach has been used.

Here, we detail the technical implementation of the metadata-related requirements formulated above.
We focus on the developed software solution, ARCHE Suite, as opposed to ARCHE, the specific repos-
itory instance certified as a CLARIN B Centre provided by the ACDH-CH with the ARCHE Suite as
the underlying technology. While ARCHE Suite is schema-agnostic, in ARCHE every resource must be
described with metadata respecting a bespoke and elaborate schema (Trognitz and Dur¢o, 2018).

3.1 RDF Support

We decided to avoid dependency on a triplestore and to use a relational database as a metadata store
instead. The database schema is developed in a way it can store any RDF data, i.e. does not enforce any
particular RDF schema. There were two main reasons for this decision. First, using a triplestore makes
it difficult to implement ACID transactions because triplestores do not recognize this concept. Second,
using a relational database backend allowed us to significantly lower CPU and memory consumption of
the repository (see Figure 2). On average we achieved 10 times lower memory usage and 10 to 25 times
lower CPU usage. It is also important that we avoided resource usage peaks coming from the triplestore
(see the middle of the right-hand column charts in Figure 2). Last but not least it sped up data ingestion
by a factor of four. As a result, the ARCHE Suite supports RDF as metadata format both on the input and
output side but does not natively provide a SPARQL endpoint. A dedicated search API is used instead.
However, a triplestore can be paired with the ARCHE Suite either by using the plugins system described
below or by periodic synchronisation. We already successfully tested the periodic synchronisation sce-
nario.*

To compensate for the lack of a native SPARQL endpoint, the ARCHE Suite REST API allows to
flexibly define the amount of linked data to be provided, e.g. it is possible to extend a REST API call
response with metadata of ’all resources that are pointed to by a given resource’ or metadata of ’all
resources that point to a given resource’ or metadata of ’all resources which can be reached by following
a given RDF property’ or all of them. This solution proved to be very convenient and for performance
reasons we strongly prefer it over a triplestore (see Figure 2)°.

The data model assumes a direct connection between the metadata RDF graph and the repository
structure: Every node in an ingested RDF metadata graph corresponds to a repository resource. The
repository can be configured either to automatically create repository resources when an unknown RDF
graph node is found in the metadata graph or to treat it as a metadata inconsistency and raise an error.

Figure 3 illustrates this connection by showing how ingested RDF nodes are processed into repository
resources. In the upper part of Figure 3 an RDF graph representing a collection with the title Collection 1
and the author John Doe, who comes with one custom (https://myNmsp/Doe/John) and one external

4See the arche2spargl Docker image: github.com/csae8092/arche2sparql
3See also ARCHE REST API scalability testing on acdh-oeaw.github.io/arche-docs/aux/metadata_api_performance.html

Selected papers from the CLARIN Annual Conference 2021
194

Blazegraph

Fedora

|
. Other

Blazegraph

. Fedora

B ArcHE suite
[l ArcHE suite

. Other

18000
18000

g

14400
14400

M

I |“-'- LN | L Tl =1l
7200 10800
Time [s]

7200 10800
Time [s]

3600

I”Ih

5h run with no ingestion - memory usage

5h run with no ingestion - CPU usage

400

300
00
o]

6000
000
000

o -~ < 3Y
abesn NdD% abelany [a] ebesn Aloweaw abelany

25200
25200

21600

|

18000

18000

14400
14400

Time [s]
Time [s]

10800
10800

|

!

ﬂ

1.'“\1

W

i

|
|

|

Ingestion of 8000 resources - memory usage

Ingestion of 8000 resources - CPU usage

o o
o

esn Nd0% abelany [an] ebesn Aiowsw abelany

500
000
0

200 J\
0

2500
2000

[=2]

]

Figure 2: Comparison of hardware resources usage of the same repository implemented using Fedora
Commons 4 coupled with a Blazegraph triplestore (stacked bars differentiating Fedora, Blazegraph and
other components) and using the ARCHE Suite (denoted by the black line). The ingestion scenario data
series for the ARCHE Suite is shorter because the ingestion finished faster.

Selected papers from the CLARIN Annual Conference 2021
195

identifier (https://viaf/123), is being ingested into the repository. The result is represented on the upper
right-hand side of Figure 3: except for the identifiers, the RDF nodes now correspond to repository
resources. Each resource was assigned an additional repository identifier (starting with https.://repoUrl/).
The identifiers of John Doe were imported from the RDF nodes as URIs into the repository and will be
interpreted as RDF nodes upon export.

The lower part of Figure 3 represents a second ingest of another RDF graph with information about
a collection with the title Collection 2 that has the same author John Doe. The author John Doe is
referenced with an already stored identifier (https://viaf/123) and an additional identifier is provided in
the graph (https://gnd/456). The result from this second ingest is represented by the lower right-hand part
of Figure 3: an additional repository resource for Collection 2 was created and the additional identifier
for the author is added as an URI to the already existing resource representing John Doe.

https://repourl/2345 ()——hasTitle

Collection 1
https://repoUrl/2345

_:collectionl

LI Collection 1

hasAuthor

hasAuthor

hasFirstName

> https://repourl/2346 ()

https://myNmsp/Doe/john () hasFirstName

hasLastName hasLastName

hasldentifier hasldentifier

() https://viaf/123

https://repoUrl/2346
https://viaf/123

https://myNmsp/Doe/john /

hasldentifier

hasldentifier

|

https://repourl/2345 (}——hasTitle

Collection 1
https://repoUrl/2345

_:collection2

hasTitle hasldentifier

Collection 2
hasAuthor .

hasldentifier

hasAuthor

. hasFirstName
https://viaf/123 () O https://gnd/456 https://repourl/2346 .

hasLastName

/https://myNmsp/Doe/john /
/ https://gnd/a56 [

Legend hasldentifier.

hasAuthor

O RDF node / repository resource hasldentifier

RDF property >
RDF literal value

"dentifier URI (treated as RDF node on import and export but

does not create a separate repository resource

hasldentifier

https://repoUrl/234 hasTitle

Collection 2
https://repoUrl/2347

hasldentifier

Figure 3: Example of the relation between the ingested RDF data (left) and the ARCHE Suite’s internal
data model (right). Identifiers are accumulated and the second ingestion does not create a new repository
resource for the author but links to the already existing one.

The given example highlights that the data model used in the ARCHE Suite provides a flexible and
uniform framework for handling external authoritative data. As each named entity has exactly one repos-
itory resource storing its data, e.g. information about a person (see Person John Doe in Figure 3), it is
enough to update this resource for the change to be applied across the whole repository, i.e. all resources
referring to a given person as an author (see Collection I and Collection 2 in Figure 3) do not require
updating. Such an update can be done either by manual curation or by automated data retrieval from
external authority files like GND®, VIAF’, ORCID®, GeoNames’, etc. We successfully employed both

strategies .

®www.dnb.de/EN/Professionell/Standardisierung/GND/gnd _node.html
"viaf.org/
8orcid.org/

www.geonames.org/
10For an example of the automatic approach see github.com/acdh-oeaw/arche-ref-sources

9

Selected papers from the CLARIN Annual Conference 2021
196

What makes named entities handling in ARCHE Suite even more convenient is its native support for
multiple identifiers per resource. The ARCHE Suite uses a dedicated and configurable RDF property to
store all possible URIs, i.e. identifiers, of a given resource. In Figure 3 this property is represented as
hasldentifier. All identifiers stored in this RDF property are synonymous and can be used interchange-
ably to denote the resource. For example, if there is a repository resource with multiple identifiers like
the John Doe resource in the lower right-hand part of Figure 3, and a new ingestion is performed denot-
ing John Doe as an author, any of https://repoUrl/2346, https://myNmsp/Doe/John, https://viaf/123 and
https://gnd/456 can be used to refer to the already existing John Doe repository resource in the newly
ingested RDF metadata. On a conceptual level, we can say the ARCHE Suite has built-in support for
the owl:sameAs relation, which maps all URIs being values of the above mentioned configurable RDF
property to a single repository resource.

The described data model also makes the ARCHE Suite well suited to serve as an entity reconciliation
back end. In fact, one of the ARCHE Suite components is a microservice providing an OpenRefine-
compatible API (see left part of Figure 1)!!, which we are already using for curation and enrichment of
metadata.

3.2 Metadata Schema and Metadata Schema Conversion

The ARCHE Suite does not enforce any particular metadata schema. The only requirement is the
metadata to be expressed in RDF. The RDF predicates used for storing metadata internally man-
aged by the repository (e.g. resource checksum, last modification date, etc.) can be adjusted in the
repository configuration on run time. For example, the date of a resource’s last modification can
be easily set either to http://my.own.schema#creationDate, http://purl.org/dc/terms/created or even
http://fedora.info/definitions/v4d/repository#created (for direct compatibility with Fedora Commons
repositories).

The OAI-PMH service shipped with the ARCHE Suite allows converting metadata into various XML-
serialisable formats using a flexible templating system. We have successfully implemented conversions
from our internal metadata schema to CMDI profiles as well as to the schema used by Kulturpool (the
Austrian Europeana aggregator) which allows us to entirely avoid materialising metadata in specific
formats (cf. OAI_DC!?, Kuturpool'? and CMDI profile p_1288172614023'4 serialisations of the same
resource).

3.3 Custom Metadata Consistency Checks

The only metadata consistency check performed automatically by ARCHE Suite is the foreign key con-
straint. As described above, all nodes of the RDF metadata graph are represented by repository resources,
making it impossible to remove a repository resource that is pointed to by another resource’s metadata.

All other checks have to be implemented as plugins by the repository administrator. The plugins can
be written in any programming language with the AMQP message queue support'. Plugins bind to
given events (before/after metadata/binary/transaction creation/modification). When an event occurs, the
plugin is provided with resource metadata in the n-triples format and is expected to return metadata in
the n-triples format or to raise an error. Plugins can be used both for metadata checks and enrichment as
well as for synchronisation with external services (e.g. a triplestore).

The plugins system has turned out to be a very flexible and powerful tool. Dedicated plugins have been
implemented for the ARCHE repository: checking metadata property cardinalities (applying different
rules for resources of different RDF classes), minting PIDs, casting metadata property values to their
proper RDF datatypes (including mapping string value labels to SKOS concept URIs for properties

" github.com/acdh-oeaw/arche-openrefine

1Zarche.acdh.oeaw.ac.at/oaipmh/?verb=GetRecord&metadataPrefix=o0ai_dc&identifier=https:/hdl.handle.net/21.11115/
0000-000C-29F8-F

Barche.acdh.oeaw.ac.at/oaipmh/?verb=GetRecord&metadataPrefix=kulturpool&identifier=https://hdl.handle.net/21.11115/
0000-000C-29F8-F

“arche.acdh.oeaw.ac.at/oaipmh/?verb=GetRecord&metadataPrefix=cmdi&identifier=https://hdl.handle.net/21.11115/
0000-000C-29F8-F

15The are more than 20 languages with AMQP Client libraries including Java, C/C++, Python, PHP, Ruby, JavaScript/node.

Selected papers from the CLARIN Annual Conference 2021
197

with controlled vocabularies) and computing aggregated metadata property values (e.g. summary of the
licence types used by resources within a collection).

3.4 Transactions Support

The ARCHE Suite provides full ACID support, although the isolation level is read uncommitted only.
If consistency enforcement is undesired, it can be turned off by a configuration option. Importantly, all
the before event plugins are considered part of an ACID transaction and thus, the ACID properties also
extend to the plugins’ actions. The transactions are backup-safe. In fact, the backup script uses its own
transaction with a serialisable isolation level.

Transactions atomicity guarantees the repository can automatically get back to the pre-transaction
state, i.e. perform a so-called rollback, if there was any error during the ingestion. This means compliance
of metadata to be ingested, with the metadata schema in use can be safely checked by just performing
an ingestion attempt. If there are errors, they are reported and the whole transaction is rolled back. We
use such a workflow successfully for data curation and it proved to work reliably even for very large
transactions, that involve an all day long ingestion of up to thousands of resources.

Due to the low isolation level, ARCHE Suite transactions have a negligible impact on the reposi-
tory performance (see Figure 2) and the transaction commit is immediate. The price to be paid is a
time-consuming rollback process taking up as much as half of the ingestion time. We did not find it
troublesome in practice as the rollback happens only when data contains errors and the time is anyway
needed to fix them.

Parallel transactions as well as parallel requests within the same transactions for faster data ingestion
are also supported but discussing these complex topics in detail goes beyond the scope of this paper.

More information can be found in the ARCHE Suite documentation'©.

3.5 Ingestion Workflows Automation

ARCHE Suite features, especially the flexible plugins system (see Section 3.3) coupled with the ACID
transactions support (see Section 3.1), allow for automated checking of input metadata compliance
with the ARCHE metadata schema and performing fully automated data ingestions in a safe way. Our
latest achievement is a workflow that reads metadata from TEI/XML files, maps them to the ARCHE
metadata schema, and then ingests both, the source XML files and the generated metadata into the
ARCHE repository!’. The TEI/XML data can be stored at any place accessible via the internet, e.g.
in a dedicated repository on the GitHub platform. The metadata creation and repository ingestion
workflow are set up as a continuous deployment workflow using GitHub Actions'®. When data is
stored inside GitHub, the workflow can be automatically triggered every time a new TEI/XML data
release is made. Thanks to the atomicity of the transaction described in Section 3.4, the workflow
execution comes with no risk, as the transaction is rolled back whenever an error is encountered. If
there is no error, the new version of the data is published without the need for any human interaction.

4 Summary

After a year and a half of using the ARCHE Suite to run the ARCHE repository (as of March 2022, over
1.9 TB of data, 132k resources, 4.5m RDF metadata triples), we can confirm it has met our expecta-
tions. It allows us to use RDF metadata as input and output format, to perform metadata enrichment and
complex consistency checks within the repository software, as well as to avoid duplicating metadata by
materialising various metadata formats. Notably, using the ARCHE Suite has significantly reduced server
resources consumption compared to the previous solution based on Fedora Commons 4 coupled with a
Blazegraph triplestore. We are determined to develop the ARCHE Suite further and seek for cooperation
with other CLARIN partners.

16acdh-oeaw.github.io/arche-docs/aux/parallel_Lingestion.html
7For a practical use case see e.g. github.com/acdh-oeaw/kraus-static/actions
18docs. github.com/en/actions/learn-github-actions

Selected papers from the CLARIN Annual Conference 2021
198

References
Tim Berners-Lee. 2009. Linked data.

Daan Broeder, Menzo Windhouwer, Dieter Van Uytvanck, Twan Goosen, and Thorsten Trippel. 2012. Cmdi: a
component metadata infrastructure. In Describing LRs with metadata: towards flexibility and interoperability
in the documentation of LR workshop programme, volume 1.

CERN, Northwestern University, and contributors. 2021. Inveniordm - reference documentation: Metadata refer-
ence.

DCMI Usage Board. 2020. DCMI metadata terms.
DuraSpace. 2021. Dspace 7.x documentation - linked (open) data.

Theo Haerder and Andreas Reuter. 1983. Principles of transaction-oriented database recovery. ACM Computing
Surveys, 15(4):287-317.

Timothy Holborn. 2014. What is 5 star linked data?
Lars Holm Nielsen. 2019. Inveniordm: a turn-key open source research data management platform.
Institute for Quantitative Social Science. 2021. Dataverse user guide - supported metadata export formats.

Gary King. 2007. An introduction to the dataverse network as an infrastructure for data sharing. Sociological
Methods and Research, 36:173-199.

Mikael Nilsson, Andy Powell, Pete Johnston, and Ambjorn Naeve. 2008. Expressing dublin core metadata using
the resource description framework (RDF).

Jenn Riley. 2010. Seeing standards: A visualization of the metadata universe.

MacKenzie Smith, Mary Barton, Mick Bass, Margret Branschofsky, Greg McClellan, Dave Stuve, Robert Tansley,
and Julie Harford Walker. 2013. Dspace. an open source dynamic digital repository. D-Lib Magazine, 9(1).

The Fedora Leadership Group. 2016. Fedora and digital preservation.

Martina Trognitz and Matej Durco. 2018. One schema to rule them all. the inner workings of the digital archive
ARCHE. Mitteilungen der Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare, 71(1):217-231,
July.

W3C, Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. 2013. Sparql 1.1 query language.

W3C, Richard Cyganiak, David Wood, Markus Lanthaler, Graham Klyne, Jeremy J. Carroll, and Brian McBride.
2014. Rdf 1.1 concepts and abstract syntax.

Mark D. Wilkinson, Michel Dumontier, [Jsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak,
Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau Bouwman, An-
thony J. Brookes, Tim Clark, Merce¢ Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo,
Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe,
Jaap Heringa, Peter A.C ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E.
Martone, Albert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik,
Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris A. Swertz, Mark
Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Kather-
ine Wolstencroft, Jun Zhao, and Barend Mons. 2016. The FAIR guiding principles for scientific data manage-
ment and stewardship. Scientific Data, 3(1), March.

Selected papers from the CLARIN Annual Conference 2021
199

