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Abstract
The integration of quantum computing and neural networks has emerged as a promising ap-
proach to address complex industrial challenges, particularly in predictive maintenance.his pa-
per presents results from a Proof of Concept (PoC) developed in collaboration with Embraer
and SENAI UpLab. Traditional predictive maintenance methods often struggle with the high-
dimensional data and complex failure patterns inherent in aerospace systems. Quantum machine
learning (QML) algorithms, including Quantum Neural Networks (QNNs) and Quantum Support
Vector Classifiers (QSVCs), utilize quantum principles that can offer computational advantages
for certain classes of problems. We apply two quantum machine learning approaches, Quantum
Neural Networks (QNNs) and Quantum Support Vector Classifiers (QSVCs), to model the de-
gradation patterns of robotic arm components in aerospace manufacturing. The framework is
validated using real-world data from aerospace manufacturing robotic systems provided by EM-
BRAER, showing promising results in terms of accuracy, efficiency, and robustness. This work
contributes to research on industrial applications of quantum computing and represents a step
toward intelligent maintenance systems for manufacturing applications.
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1 Introduction

In the aerospace industry, predictive maintenance (PdM) is
of great importance to ensure production line availability,
product quality and cost control [1]. By anticipating poten-
tial equipment failures and anomalies before they occur, PdM
strategies aim to minimize unscheduled downtime and en-
hance flight safety, reduce operational costs, and, most crit-
ically, enhance flight safety [2]. However, modern aircraft
manufacturing systems generate complex, high-dimensional
sensor data. Analyzing this data effectively to extract subtle
precursors of failure poses significant challenges for tradi-
tional, classical computational methods, which may struggle
with the scale and intricacy of the underlying patterns [3].

Recent advancements in quantum computing offer novel ap-

proaches for tackling computationally hard problems, includ-
ing those in machine learning and data analysis [4]. Quantum
machine learning (QML) algorithms, in particular, hold the
potential to identify complex correlations and patterns in data
that are intractable for classical algorithms. Motivated by
these developments, we introduce the Dobslit Quantum Pre-
dictive Maintenance (Dob QPM) system, a framework de-
signed to address the challenges of predictive maintenance in
the aviation sector through the application of quantum tech-
nologies.

Dob QPM leverages state-of-the-art quantum concepts, in-
cluding quantum machine learning, dimensionality analysis,
and quantum modeling techniques, to provide an innovative
solution for fault and anomaly prediction. Its primary ob-
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jective is to enhance the predictive capabilities for identifying
potential failures in aircraft systems, thereby contributing to
safer and more reliable operations. The system architecture,
detailed in the Methods section, employs a hybrid approach
incorporating distinct quantum algorithms to analyze opera-
tional data.

Beyond its immediate application in PdM, the Dob QPM
framework is envisioned as a foundational step towards more
advanced quantum-enhanced systems. Future perspectives
include its expansion into environmental quantum sensing,
potentially leading to the development of one of Brazil’s
first Quantum Internet of Things (QIoT) systems tailored
for aerospace applications. Such a system could integrate
quantum sensors and quantum processing for unprecedented
monitoring capabilities.

This paper details the Dob QPM system. We first describe the
quantum algorithms employed (QSVC and QCNN) and the
implementation methodology, including the simulation envir-
onment and data processing steps. Subsequently, we present
the results of initial benchmarking analyses comparing Dob
QPM’s performance against classical approaches, highlight-
ing potential advantages in predictive power.

2 Methods
The Dob QPM system utilized two distinct, non-correlated
quantum machine learning algorithms: the Quantum Support
Vector Classifier (QSVC) and the Quantum Convolutional
Neural Network (QCNN).

2.1 Classical Benchmark Configuration

For classical benchmarking, we implemented a Support Vec-
tor Classifier (SVC) using a linear kernel with regularization
parameter C=2. To address class imbalance in the dataset, we
applied class weighting with a ratio of 40:1 for the minority
class. The model was trained on the preprocessed training set
(80% of the data) and evaluated on the test set (20%).

2.2 Quantum machine learning

Quantum machine learning (QML) represents an emerging
frontier where quantum computing principles enhance tra-
ditional machine learning algorithms [5]. By leveraging
quantum mechanical phenomena like superposition, entan-
glement, and interference, QML algorithms aim to achieve
computational advantages or improved performance on cer-
tain problem classes.

Quantum Support Vector Classifier

The Quantum Support Vector Classifier (QSVC) stands as one
of the most promising implementations in this domain, offer-
ing a quantum-enhanced version of the classical Support Vec-
tor Machine (SVM) [6].

Classical Support Vector Machines

In classical machine learning, SVMs are powerful supervised
learning models for classification and regression tasks [7].

The fundamental principle involves finding the optimal hy-
perplane that maximally separates different classes in the fea-
ture space. For non-linearly separable data, SVMs employ
the "kernel trick" to map input data into a higher-dimensional
space where separation becomes possible.

The mathematical formulation involves solving the quadratic
programming problem:

minimize
w,b,ξ

1
2

w⊤w+C∑
i

ξi

subject to yi(w⊤
φ(xi)+b)≥ 1−ξi,

ξi ≥ 0 ∀i

(1)

where w is the weight vector, C is the regularization para-
meter, ξi are slack variables, and φ(xi) represents the feature
mapping.

Quantum Enhancement

The quantum version of SVM exploits two key quantum ad-
vantages [8]:

Quantum Feature Mapping The quantum feature map typ-
ically consists of:

|φ(x)⟩=U(x) |0⟩⊗n where U(x) =
⊗

i

Ri(θi) (2)

1. Data Encoding: Classical data x is encoded into
quantum states using techniques like angle encoding

2. Entangling Layers: After initial encoding, entangling
gates create quantum correlations:

Uent = ∏
i, j

CNOTi j (3)

3. Variational Layers: Additional parameterized rotations
enhance expressivity:

Uvar(θ) = ∏
i

Ri(θi) (4)

Quantum Kernel Estimation

The quantum kernel is estimated by:

K(xi,x j) = | ⟨φ(xi)|φ(x j)⟩ |2 (5)

Advantages of QSVC

• Potential Quantum Advantage: For certain feature
maps, the quantum kernel may be classically intractable
to compute [9]

• Rich Feature Spaces: Quantum circuits can create com-
plex decision boundaries item Noise Resilience: Some
QSVC variants show robustness to certain types of noise



Challenges and Considerations

• Circuit expressivity versus overfitting trade-off

• Measurement overhead for kernel estimation

• Current hardware limitations in NISQ era [10]

Quantum Convolutional Neural Networks (QCNNs)

Quantum Convolutional Neural Networks (QCNNs) repres-
ent a quantum analogue of classical Convolutional Neural
Networks (CNNs), designed to harness quantum mech-
anical principles for enhanced feature extraction in high-
dimensional data. Building upon the quantum-enhanced
framework demonstrated by the Quantum Support Vector
Classifier (QSVC) on the previous subsection, QCNNs ex-
tend these advantages to hierarchical pattern recognition tasks
critical for predictive maintenance.

Architecture

The QCNN architecture comprises three key components:

1. Quantum Convolutional Layers: Replace classical fil-
ters with parameterized quantum circuits (PQCs):

U(θ) = ∏
i

Ri(θi) ·CNOTi, j (6)

where Ri(θi) implements data-encoding rotations and
CNOT gates establish entanglement between qubits [9].

2. Quantum Pooling Layers: Reduce quantum state di-
mensionality through partial measurement, preserving
entanglement in remaining qubits [11].

3. Hybrid Training: Combines quantum circuit evalu-
ations with classical optimization:

L (θ) = ∑
i
(⟨ψ(xi)|M|ψ(xi)⟩− yi)

2 (7)

where M is a measurement operator and yi are classical
labels.

Advantages of QCNN

QCNNs offer unique benefits for aerospace applications:

• Exponential Feature Space: Like QSVC’s quantum
kernels, QCNNs exploit Hilbert space dimensionality to
detect subtle failure patterns [8].

• Temporal Correlation Capture: Entangling gates
model time-dependent degradation in sensor data (e.g.,
MA1 current readings in Section 3).

• Noise Resilience: Certain architectures demonstrate ro-
bustness to hardware noise [12].

Challenges and Outlook

Current limitations mirror those of QSVCs in the NISQ era
[10]:

• Circuit depth constraints due to decoherence

• Measurement overhead for expectation estimation

• Barren plateaus in high-dimensional parameter spaces
[13]

The Dob QPM system’s integration of QCNNs (Table 2)
demonstrates their potential for industrial applications,
though further validation on quantum hardware remains es-
sential [5].

2.3 Data Preprocessing and Validation Methodology

The dataset consisted of electrical current readings (MA1
sensor) from an industrial robotic arm used in wing assembly,
collected during a ∼58.7-hour monitoring period from Janu-
ary 3–5, 2024. High-frequency sampling at approximately 5-
second intervals yielded ∼42,000 observations of motor cur-
rent consumption (CE_MA1, in amperes). The dataset was
loaded from a CSV file (anomalies.csv) containing sensor
readings from aerospace manufacturing robotic arms. The
data exhibited significant class imbalance between normal op-
eration (‘NF’) and anomaly events (‘AF’). To address this, we
applied stratified sampling to maintain a controlled ratio of
30% anomaly samples versus 70% normal operation samples
(perc_F_NF = 0.3).

The preprocessing pipeline included the following steps:

• Data Loading and Balancing: The dataset was loaded
and balanced to maintain a 30:70 ratio between anomaly
and normal samples using random sampling with a fixed
random state (random_state=45).

• Feature Engineering: Temporal metadata (_time
column) was removed, and the dataset was shuffled to
eliminate ordering biases.

• Label Encoding: Anomaly labels were encoded using
label encoding (‘NF‘ → 1, ‘AF‘ → -1).

• Train-Test Split: The data was split into 80% training
and 20% test sets using test_size = 0.20with a fixed
random state for reproducibility.

• Feature Scaling: Features were standardized using
StandardScaler to zero mean and unit variance, ap-
plied separately to training and test sets to avoid data
leakage.

The final preprocessed datasets (X_train_prep,
X_test_prep, y_train, y_test) were used for all
subsequent classical and quantum model training and
evaluation.

The quantum algorithms were executed in a simulated envir-
onment due to the current limitations in accessibility and scale



of fault-tolerant quantum hardware. Simulations were per-
formed locally on classical hardware accelerated by a Graph-
ics Processing Unit (GPU), specifically an Nvidia GeForce
MX 350. This setup allowed for the simulation of the required
quantum circuits and iterative testing of the algorithms’ per-
formance in a controlled manner.

3 Results
3.1 Performance Evaluation

Both algorithms were tested on a local simulator (Nvidia
GeForce MX 350 GPU).

Table 1: Performance Metrics of QSVC

Metric Performance

Accuracy 84.048%
Precision 91.489%
Recall 86.000%
F1-Score 88.660%

Table 2: Performance Metrics of QCNN

Metric Performance

Accuracy 91.304%
Precision 91.304%
Recall 91.304%
F1-Score 91.304%

Table 3: Performance Metrics of Classical SVC

Metric Performance

Accuracy 100.000%
Precision 100.000%
Recall 100.000%
F1-Score 100.000%

3.2 Key Findings

While the classical SVC achieved superior performance on
this specific dataset, the quantum algorithms showed prom-
ising results for manufacturing applications. The QCNN
achieved a balanced F1-Score of 91.30%, demonstrating cap-
ability to learn from industrial sensor data.

It is important to emphasize that these results are based
on simulations performed on classical hardware (GPU-
accelerated) and utilized a specific dataset related to manu-
facturing robotics. Further validation with broader datasets
from actual aircraft operations and, eventually, execution on
quantum hardware would be necessary to rigorously quantify
these potential advantages.

4 Discussion
The preliminary results obtained from simulating the Dob
QPM system suggest a promising potential for quantum ma-
chine learning algorithms to enhance predictive maintenance
capabilities in the demanding context of aeronautics.

However, several limitations must be acknowledged. The cur-
rent results are derived from simulations on classical hard-
ware, which cannot fully capture the nuances and potential
speedups achievable on actual quantum computers. The com-
putational cost of simulating quantum systems grows expo-
nentially, limiting the scale of problems addressable via sim-
ulation. Furthermore, the validation was performed using data
from a manufacturing robot, which, while relevant, may not
fully represent the diverse and challenging data streams en-
countered in operational aircraft. Generalizing these findings
requires testing on representative flight data and diverse fail-
ure modes.

Energy efficiency considerations for quantum algorithms re-
main a topic for future research. While near-term quantum
devices (and their simulations) might not always offer an
energy advantage over optimized classical hardware for all
tasks, the long-term potential for quantum algorithms to solve
certain problems with significantly fewer resources remains
an active area of research and a key goal for the Dob QPM
project [14].

Future directions include exploring quantum sensing and
Quantum Internet of Things (QIoT) applications for
aerospace manufacturing monitoring.
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