

Improving System Safety in Aviation: Supporting STPA with AI Models

Luiz Eduardo Galvão Martins1, Ana Estela Antunes da Silva2, Gabriel Nogueira Pacheco1, Andrey Toshiro

Okamura2, Niklas Lavesson3, Tony Gorschek3

1Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil

E-mail: legmartins@unifesp.br, gpacheco@unifesp.br
2Faculty of Technology, State University of Campinas, Limeira, Brazil

E-mail: aeasilva@unicamp.br, a213119@dac.unicamp.br

 3Department of Software Engineering, Blekinge Institute of Technology, Karlskrona, Sweden

E-mail: niklas.lavesson@bth.se, tony.gorschek@bth.se

Abstract

Background: System safety in aeronautics is critical, as it directly affects aircraft reliability,

efficiency, safety, and security. Given the complexity of modern aviation systems and the

potential consequences of failures, a structured and proactive safety approach is essential.

System-Theoretic Process Analysis (STPA) is a modern hazard analysis method designed to

identify and mitigate risks. Unlike traditional methods that focus primarily on component failures,

STPA accounts for both failures and unsafe interactions among system elements, including

human operators, software, and organizational factors. Problem: Despite its effectiveness, STPA

poses challenges in practical application. The process is time-consuming and requires extensive

expertise in system safety, control theory, and system dynamics. Analysts must heavily rely on

expert judgment to define losses, hazards, safety constraints, and unsafe control actions.

Additionally, training in STPA is resource-intensive, making automation an appealing solution

to streamline the process. Goal: To address these challenges, we developed two AI-driven

pipelines to automate the initial steps of STPA, reducing reliance on expert knowledge and

enhancing efficiency. Method: The first pipeline leverages a fine-tuned Llama3.1-8B model to

extract losses, hazards, and constraints from ConOps documents. The second pipeline, BERT

Error Detection for STPA (BEDS), improves accuracy by classifying, verifying, detecting errors,

and suggesting potential corrections for the extracted elements. Results: The first pipeline was

trained using 134 ConOps documents paired with corresponding STPA safety analysis elements.

The dataset comprised 35 authentic documents from the CORDIS repository and 99 AI-generated

examples. The model achieved a mean precision of 79.73%, recall of 81.09%, and an F1-score of

80.22%. For the second pipeline, 1,084 sentences were extracted from values identified during

the first step of STPA. Three classifiers were developed: the sentence identifier achieved a mean

accuracy of 95.20%, the incorrect sentence detector 88.61%, and the sentence error identifier

83.44%. While the pipelines were designed to work together, they can also be used independently.

Conclusion: This study tackles the challenges of applying STPA in aeronautics by introducing

two automated pipelines to streamline the initial process steps. The first pipeline, powered by a

fine-tuned Llama3.1-8B model, extracts losses, hazards, and constraints from ConOps

documents. The second pipeline, BEDS, verifies and corrects these elements with high accuracy.

The results demonstrate strong precision and recall scores, highlighting the potential to reduce

both the time and expertise required for STPA analysis in complex aviation systems.

Keywords: System Safety, STPA, AI-driven Pipeline, ConOps, Loss, Hazard

mailto:legmartins@unifesp.br
mailto:gpacheco@unifesp.br
mailto:aeasilva@unicamp.br
mailto:a213119@dac.unicamp.br
mailto:niklas.lavesson@bth.se
mailto:tony.gorschek@bth.se

1 Introduction

In the context of safety-critical systems, system safety refers

to a disciplined approach to identifying, analyzing, and

mitigating hazards that could lead to accidents, injuries, or

loss of life. System safety is the application of engineering

and management principles, criteria, and techniques to

achieve acceptable risk levels throughout the life cycle of a

system whose failure could result in catastrophic

consequences [1, 2].

Due to the complexity of modern aviation systems and the

potential consequences of failures, a structured and proactive

safety approach is necessary. System-Theoretic Process

Analysis (STPA) is a hazard analysis method designed to

identify and mitigate risks. Unlike traditional methods that

concentrate primarily on component failures, STPA considers

both failures and unsafe interactions among system elements,

including human operators, software, and organizational

factors [3].

Although effective, STPA presents several challenges in its

practical application. It is a time-intensive process that

requires substantial expertise in system safety, control theory,

and system dynamics. Analysts must rely significantly on

expert judgment to identify losses, hazards, safety

constraints, and unsafe control actions. Furthermore, training

in STPA demands considerable resources, which makes

automation an attractive solution to streamline the procedure

[4, 5, 6].

To address these challenges, we have developed two AI-

driven pipelines to automate the first step of STPA, reducing

reliance on expert knowledge and enhancing efficiency. The

first pipeline leverages a fine-tuned Llama3.1-8B model to

extract losses, hazards, and constraints from ConOps

documents. The second pipeline, BERT Error Detection for

STPA (BEDS), improves accuracy by classifying, verifying,

detecting errors, and suggesting potential corrections for the

extracted elements. The purpose of this work is to present and

analyze the potential of the initial results obtained from the

two AI-driven pipelines developed for automating the first

step of STPA.

The remainder of this paper is organized as follows: in

Section 2 we present the related work found in the literature;

Section 3 explains the architecture, the dataset and the fine-

tuning performed in the first pipeline; Section 4 explains the

architecture, the data processing and the fine-tuning

performed in the second pipeline; in Section 5 we discuss the

preliminary results obtained with the pipelines; and in Section

6 we present the conclusions and directions for future work.

2 Related Work

There are some works that apply machine learning associated

with the STPA process. Acar Celik et al. [7] apply STPA in a

pedestrian collision detection component in autonomous cars,

which uses machine learning. There was a concern in

applying STPA in this component, as standards in automotive

vehicles such as ISO 26262 do not explicitly describe how to

regulate deep learning algorithms.

The work of Ghosh et al. [8] deals with components of

autonomous cars. In this work, the authors apply STPA to

identify risks of cyberattacks on software components, and

machine learning is applied in algorithms for capturing

external information, such as radars, for example. The authors

argue that, with the increase of autonomous cars on the road

in recent years, there is also an increase in potential attacks

on these vehicles. Although there are threat analysis guides

for vehicles like the ISO 21434 standard mentioned by the

authors, there are still no methods specifically designed for

autonomous cars. Therefore, the authors conducted a

comparison between the ISO 21434 standard and STPA-Sec,

an adaptation of STPA for security. The advantages of

applying STPA-Sec, raised by the authors, are the ability to

model malicious interactions on the road, such as objects and

other users, and to identify critical paths for the vehicle's

operation.

There are some works that use Large Language Models

(LLMs) to assist in STPA analysis. Diemert and Weber [9]

investigate the integration of LLMs in the hazard analysis

processes, which the authors call Co-Hazard Analysis

(CoHA). In the CoHA method, the authors teach Chat-GPT

3.0 coding to understand the description of the system of

interest and provide the model with various queries to identify

the unsafe Control Actions of the system described. The

LLM's response is then marked in three categories: the

response is correct and useful, the response is correct but not

useful, and the response is incorrect. The authors then

compare the proportion of each marking at different levels of

system complexity. The authors state that CoHA can be

moderately useful for simpler systems. However, as the

complexity of the system increases, the performance of the

LLM declines.

Yi Qi et al. [10] examine the application of STPA to

Automatic Emergency Brake (AEB) and Electricity Demand

Side Management (DSM) systems, utilizing Chat Generative

Pre-Trained Transformer (ChatGPT). They investigated the

impact of prompt engineering on STPA results. According to

the authors, comparative results indicate that using ChatGPT

without human intervention may be inadequate due to

reliability issues. However, with careful design, it has the

potential to outperform human experts. However, authors

also identify future challenges, such as concerns regarding the

trustworthiness of LLMs and the need for standardization and

regulation in this field.

Charalampidou et al. [11] investigate the usefulness of LLMs,

such as GPT4 from OpenAI, in applying the STPA hazard

analysis in socio-technical systems. They applied the process

of STPA to the ROLFER search and rescue drone system.

Firstly, the system was discussed in detail with the LLM,

defining its purpose, goals, components, and operations.

Then, the LLM was talked through the steps of STPA and

prompted to generate their specifications. These outputs were

compared with those from the human safety team that applied

STPA to the same system. The team discovered that LLM can

be beneficial in certain aspects, such as loss scenario and

safety specification generation and helping the researchers to

reach a better understanding of the system, but have

drawbacks in others, such as the generation of Unsafe Control

Actions and being used as a verification tool of the STPA

results of the human analysts. Authors concluded that by

using LLM tools such as ChatGPT-4, the total time needed

for a complete execution of an STPA analysis in a complex

sociotechnical system can be greatly decreased due to the

generation of questions that help with the understanding of

the system, and the generation of the causal scenarios and

safety specifications. ChatGPT-4 can also be used to check

for duplicate or similar safety specifications and UCAs, a

rather tedious and time-consuming procedure.

In general, the works described recommend not using LLMs

as substitutes for human analysts, but rather as a tool to assist

in reducing the time required to complete the analysis. We

can understand that the application of machine learning in

STPA hazard analysis tasks is a research topic yet to be

explored.

3 The First Pipeline: (SHACO)-Llama

The manual execution of STPA, a cornerstone for ensuring

safety in complex systems, presents considerable challenges.

Particularly in its initial phases, which involve the meticulous

analysis of Concept of Operations (ConOps) documents,

STPA is recognized as a resource-intensive and time-

consuming endeavor. The inherent complexity of modern

systems, detailed within extensive ConOps documents that

can range from 10 to 200 pages, demands careful examination

by human analysts, introducing potential for subjectivity,

inconsistencies, and limitations in scalability. To address

these issues, the first pipeline, termed STPA Hazard Analysis

from ConOps (SHACO)-Llama, was developed. This

innovative approach leverages advanced Natural Language

Processing (NLP) techniques to automate the extraction of

fundamental STPA elements (specifically losses, system-

level hazards, and safety constraints) directly from ConOps

documents. The primary objective of SHACO-Llama is to

streamline the initial STPA process, thereby reducing the

reliance on extensive expert judgment during these early

stages and enhancing the overall efficiency and consistency

of safety analysis.

The development of this pipeline targets a critical bottleneck

in the STPA workflow: the first step involving the

identification of losses, hazards, and constraints. Automating

this step can yield cascading benefits throughout the safety

analysis lifecycle, potentially accelerating the entire safety

assurance process. This automation signifies a broader shift

towards employing sophisticated NLP and Large Language

Model (LLM) capabilities for the analysis of complex

engineering documentation. Such an approach moves beyond

traditional rule-based systems or simpler machine learning

models, indicating a maturation of NLP to a point where it

can be effectively applied to the extraction of safety-critical

information from technical texts, albeit with necessary human

oversight.

3.1 Architecture of the SHACO-Llama Pipeline

The SHACO-Llama pipeline is architecturally designed to

ingest ConOps documents as input and subsequently output

the initial set of STPA elements: losses, system-level hazards,

and safety constraints. At the core of this pipeline lies a fine-

tuned Llama3.1-8B model, an LLM developed by Meta [12].

The selection of Llama3.1-8B was predicated on its favorable

balance of high performance and computational efficiency for

specialized tasks, coupled with its robust instruction-

following capabilities and open-source accessibility, which

are crucial for research and development. The 8B parameter

variant, specifically, offers a practical equilibrium between

analytical power and the resources required for fine-tuning

and deployment.

ConOps documents, which serve as the primary input, are

foundational artifacts in system development. These

documents typically adhere to established standards, such as

IEEE Std 1362-1998 [13] and IEEE/ISO/IEC 29148-2011

[14], and provide detailed descriptions of system objectives,

operational scenarios, and stakeholder needs from which

safety elements must be inferred. The outputs generated by

the pipeline (losses, system-level hazards, and safety

constraints) are fundamental to the STPA methodology as

comprehensively detailed by Leveson and Thomas [3]. The

pipeline's operation can be characterized as an abstractive

summarization task; it does not merely extract verbatim text

but rather generates these STPA elements based on its

contextual understanding of the input ConOps document.

This capability is particularly significant because critical

safety elements like losses and hazards are often implicitly

described rather than explicitly stated in ConOps documents,

requiring a level of inference akin to that performed by human

safety analysts. The model’s proficiency in instruction-

following is vital, as the fine-tuning process essentially trains

it to adhere to the complex "instruction" of transforming a

narrative ConOps document into a structured set of STPA

elements.

3.2 Dataset Curation: The SHACO Corpus

A pivotal component in the development of the SHACO-

Llama model was the creation of a specialized dataset, the

STPA Hazard Analysis from ConOps (SHACO) corpus. This

dataset was meticulously curated due to the absence of

existing, suitable datasets for fine-tuning an LLM for the

specific task of STPA element extraction from ConOps

documents. The SHACO dataset comprises 134 ConOps

documents, each meticulously paired with its corresponding

STPA elements (losses, hazards, and safety constraints).

A hybrid strategy was employed for the compilation of this

dataset to ensure both authenticity and sufficient volume for

model training:

Authentic Documents: This subset includes 35 real-world

ConOps documents, primarily from the aviation domain.

These were sourced from publicly accessible repositories

such as the Community Research and Development

Information Service (CORDIS) [15] and the NASA

Technical Reports Server (NTRS) [16]. The corresponding

STPA elements for these authentic documents were generated

by human experts, adhering to the guidelines presented in the

STPA Handbook [3].

AI-Generated Documents: To significantly augment the

dataset, an additional 99 ConOps documents along with their

associated STPA analyses were generated. This was achieved

through sophisticated prompt engineering techniques applied

to state-of-the-art LLMs, including ChatGPT and Claude

Sonnet 3.5. This generative approach was necessitated by the

inherent difficulty in sourcing a large volume of publicly

available, authentic ConOps documents with corresponding

STPA analyses, often due to proprietary or sensitive

information. The generation process involved carefully

designed prompts and a structured pipeline to ensure the

structural integrity and content validity of the synthetic

documents, demonstrating an emerging application of LLMs

as tools for creating training data for other specialized AI

models.

The development of the SHACO dataset represents a

significant undertaking, as the efficacy of fine-tuned LLMs is

heavily contingent on the quality, relevance, and scale of the

training data. This hybrid approach provided a pragmatic

solution to the challenge of data scarcity in this specialized

domain.

3.3 Model Adaptation: Fine-tuning Llama3.1-8B

The adaptation of the pre-trained Llama3.1-8B model for the

specific task of generating STPA elements from ConOps

documents was achieved through a supervised fine-tuning

process. This methodology employed transfer learning,

thereby building upon the extensive foundational knowledge

already encoded within the Llama3.1-8B model while

tailoring its capabilities to the nuances of STPA element

extraction. The SHACO dataset was partitioned, with 80% of

the data allocated for training the model and the remaining

20% reserved for testing and evaluation.

The fine-tuning workflow involved tokenizing the raw text

from the SHACO dataset using the Llama3.1-8B model's

native tokenizer, facilitated by the Hugging Face

Transformers library [18]. The actual fine-tuning was

orchestrated using the SFT Trainer module from the Hugging

Face TRL (Transformer Reinforcement Learning) library.

Given the substantial size of the Llama3.1-8B model, several

advanced optimization techniques were crucial for enhancing

training efficiency and managing computational resources:

Unsloth Framework: This framework was integrated to

achieve approximately 2.4 times faster training speeds and a

58% reduction in memory utilization, making the fine-tuning

process feasible on single-GPU infrastructures.

QLORA (Quantized Low-Rank Adaptation): This

Parameter-Efficient Fine-Tuning (PEFT) technique was

employed to minimize the number of trainable parameters

while preserving model performance. QLORA

implementation involved 4-bit NormalFloat (NF4)

quantization of the base model, double quantization to further

compression constants, and paged optimizers to manage

memory fluctuations during training. Small, trainable Low-

Rank Adaptation (LoRA) matrices (with rank r=16 and LoRA

alpha of 16) were added to key weight matrices within the

transformer architecture, specifically the query, key, value,

output, and feed-forward network projection layers. The

LoRA update is represented by h=Wx+ΔWx=Wx+BAx,

where W are the frozen pre-trained weights and ΔW is

factorized into low-rank matrices B∈Rd×r and A∈Rr×k.

Figure 1: Overall pipeline for SHACO-Llama.

The model was fine-tuned for 10 epochs, utilizing a

maximum sequence length of 8,192 tokens to accommodate

comprehensive ConOps documents. An AdamW 8-bit

optimizer with a linear learning rate scheduler was used for

the training process. The application of PEFT techniques like

QLORA was instrumental in making the fine-tuning of such

a large model tractable on consumer-grade hardware, thereby

democratizing access to advanced LLM capabilities for

specialized research domains. The overall process, from

initial data acquisition to the final deployment for inference,

is visually captured in Figure 1.

See Section 5.1.1 for the SHACO-Llama evaluation

methodology.

4 The Second Pipeline: BEDS

The first pipeline - just described in section 3 - aims to extract

hazards, losses and constraints from CONOps documents

applying the summarization task. Like all uses of LLMs, this

task can be error prone [10,11]. Thus, to ensure more quality

to the extracted sentences, the second pipeline begins with a

LLM specifically trained to classify hazards, losses and

constraints. In addition, the creation of this classifier allows

users who already have pre-defined hazards, losses and

constraints, can verify their adequation to the STPA process

without having to use the first pipeline. This gives the

possibility of individual use of each pipeline.

Therefore, a second pipeline, named BEDS (BERT Error

Detection for STPA) was developed. BEDS is a tool to help

identifying possible writing errors in sentences generated

from the analysis and to offer suggestions to correct these

errors. The pipeline uses a combination of classification

models, in a way each sentence goes through a path of a

specific combination of models according to its first

classification into the three classes (hazard, loss and

constraint).

The primary objective of the BEDS pipeline is to reduce the

time and effort required to verify the first step of the STPA

analysis and allow the analysts to allocate their time to more

time-consuming activities in other steps. As a verification

step for the STPA analysis, BEDS was developed to work in

conjunction with the output obtained by SHACO-Llama.

However, as previously mentioned, BEDS has a modular

implementation that allows independent use to check for

analysis inconsistencies from any source.

4.1 Architecture of the BEDS Pipeline

As the name suggests, BEDS uses fine-tuned BERT [15]

models at its core. BERT was chosen for its wide application

in the scientific community for NLP tasks, and due to its

ability to adapt the models to downstream tasks. In this case,

the task used was classification.

The BEDS pipeline is designed to ingest the sentences related

to the initial set of STPA elements as input and subsequently

output a report of the validity of the inserted elements. BEDS

verifies the validity of input sentences based on the STPA

Handbook [3].

This four-step pipeline consists of: (1) identification of the

sentence's classification as losses, hazards, or constraints; (2)

verification of the sentence's validity in accordance with the

STPA Handbook guidelines; (3) identification of possible

faults; and (4) provision of alternative writing suggestions for

the sentence. The resultant report comprises the analyzed

sentence, an indicator of its validity relative to the STPA

guidelines, potential faults with associated probabilities for

non-valid sentences, and a list of suggested revisions along

with their similarity to the original sentence. Figure 2

illustrates the workflow of the BEDS pipeline.

In the STPA Handbook [3], several key instructions are

provided for correctly defining analysis elements. Regarding

losses, it is essential to consider stakeholders and their valued

objects, with each object translated into a loss statement. For

hazards, the system boundaries under analysis must be

identified, and a hazard statement should describe a system

state that, in conjunction with adverse environmental

conditions, results in a loss. Vague descriptions such as

"component failure" and "unsafe state" should be avoided.

Finally, constraints are defined as conditions that must be

satisfied to prevent hazards, typically by inverting the hazard

condition in the statement.

In this pipeline, the capacity of the model to correctly classify

valid and non-valid sentences is crucial, for this classification

determines if the sentences are adequate or if the sentences

need further analysis.

4.2 Dataset curation: STPA Step 1 Sentences

Also affected by the scarcity of STPA-related data, BEDS

needed a suitable dataset to train the models for their intended

purposes. The STPA Step 1 Sentences dataset is made up of

sentences from various domains that are used as the main data

for training.

This dataset was created by extracting fragments of STPA

analyses found in presentations at the MIT STAMP

Workshops (https://psas.scripts.mit.edu/home/stamp-

workshops/). This dataset contains nine columns, of which

the first is the prediction data (the extracted sentence), three

are target labels for classification (each for the first three

pipeline steps), and the last five are metadata to improve

traceability. The first target label is the class of the sentence,

which can be one of the three STPA elements. The second

target label is the validity of the sentence according to the

STPA Handbook, which can be valid or non-valid. The last

target label, given only to the invalid sentences, is the main

fault observed in the sentence that differs from what is

recommended by the handbook. The remaining columns are

the metadata related to the sentence, such as domain, year,

title, URL, and number of the presentation.

The resulting dataset contains 1,084 rows of varied classes

and domains. 50 of those, however, were manually written

(through paraphrase) and added to compensate for some class

imbalance found in the dataset. As the dataset is an integral

part of the pipeline development, the validity column was

verified by specialists with three to four years of experience

in STPA analysis. This contribution was necessary to ensure

the valid sentences in this dataset correctly follow the STPA

guidelines, and that the models can reliably classify the

sentences.

4.3 Model Adaptation: Fine-tuning BERT

The BEDS pipeline uses specifically the “bert-base-uncased”

model [17] throughout its classifiers. The fine-tuning process

included converting categorical labels to numerical values,

creating dataset subsets for each pipeline step, and encoding

text with BERT’s tokenizer. The training was facilitated by

the Hugging Face Transformers library [18].

The classification models were evaluated using a 5-fold

cross-validation technique, stratified on the class column.

This allows the partitioning of 80% for training and 20% for

testing for each iteration, where the testing data is not seen

anywhere during training. As the final value for each step’s

performance, the mean between the results from the five

iterations was used.

For the final step of BEDS, a sentence-transformer similarity

model [19] using "all-mpnet-base-v2" is employed to suggest

a sentence similar to the original. The sentence similarity

model was trained using the

"ContrastiveTensionLossInBatchNegatives" loss function.

5 Analysis and Results

In this section we present the results of preliminary

evaluations of the two pipelines developed for the automation

of the first step of STPA.

5.1 SHACO-Lhama Pipeline Evaluation

This subsection presents the evaluation results for the

SHACO-Llama pipeline, which was developed to automate

the initial step of the STPA by extracting losses, system-level

hazards, and safety constraints directly from Concept of

Operations (ConOps) documents.

5.1.1 Evaluation Methodology

The performance of the SHACO-Llama model was primarily

assessed using the BERT-Score metric [20]. BERT-Score

was selected over traditional metrics like BLEU or ROUGE

because it evaluates semantic similarity rather than exact

lexical matching, a critical distinction for LLM-generated

STPA elements where conveying precise meaning matters

more than reproducing identical tokens or phrases. The

evaluation focused on three components of BERT-Score:

Precision (semantic relevance of generated output to the

reference), Recall (semantic representation of reference text

in the output), and the F1-Score (the harmonic mean of

Precision and Recall).

5.1.2 Quantitative Performance

The SHACO-Llama model, based on a fine-tuned Llama3.1-

8B architecture, was evaluated on a reserved 20% test portion

of the SHACO dataset. The quantitative performance, as

measured by BERT-Score, is summarized in Table 1.

Figure 2: BEDS Pipeline Architecture

Table 1: BERT-Score results for SHACO-Llama.

Precision Recall F1-Score

0.7937 (~79%) 0.8109 (~81%) 0.8022 (~80%)

5.1.3 Discussion of Results

The F1-score of approximately 80% for SHACO-Llama

indicates a substantial potential for such models to serve as

assistive tools for safety analysts, potentially reducing the

time and manual effort for the initial STPA steps. However,

the F1-score also underscores that full automation without

human oversight and verification is not yet advisable,

particularly in safety-critical domains. While the BERT-

Scores suggest good semantic alignment with expert-defined

STPA elements, qualitative reviews by experienced STPA

analysts revealed that some model-generated hazard

formulations occasionally deviated from the strict principles

outlined in the STPA handbook [3], highlighting the

continued need for expert validation. The model development

and evaluation faced constraints that likely influenced

performance. The primary limitation was hardware resources,

with training conducted on a single NVIDIA A100 GPU with

40 GB of VRAM. More extensive computational power could

have enabled the exploration of larger models or more

exhaustive hyperparameter tuning. Secondly, data

availability posed challenges. While the SHACO dataset was

curated for this research, a larger and more diverse set of

authentic, expert-annotated ConOps and STPA analyses

would be ideal for enhancing model generalization. The

current reliance on a significant portion of AI-generated

ConOps, though a pragmatic approach, might introduce

certain biases. Given these constraints, an F1-score of about

80% indicates potential for enhancement with better

resources and data.

5.2 BEDS Pipeline Evaluation

This subsection presents the evaluation results for the BEDS

pipeline, which was developed to help verify the losses,

system-level hazards, and system-level constraints from the

initial step of the STPA.

5.2.1 Evaluation Methodology

The models trained in this pipeline were evaluated using

traditional classification metrics. As a classification task,

Accuracy is widely used to measure the general performance

of the models. Meanwhile, F1-Score (the harmonic mean of

Precision and Recall) is a robust alternative metric to better

evaluate models in cases where the data used has a class

imbalance. Closer results between the Accuracy and F1-

Score mean a stable overall performance, while a gap in the

metrics can show a difficulty of the model to generalize an

imbalanced dataset.

5.2.2 Quantitative Performance

The BEDS pipeline is divided into three classification steps

built on BERT models. The quantitative performance,

calculated as the mean from 5-fold cross-validation, is

summarized in Table 2.

Table 2: Classification results for BEDS.

Step Accuracy (σ) F1-Score (σ)

1 - Identify the class 95.20% 95.08%

2 - Determine the validity 88.61% (±7.24) 86.27% (±7.68)

3 - Classify possible faults 83.44% (±9.11) 73.16% (±16.44)

The pipeline organizes the input data through filters (the first

filter is the sentence class, and the second filter is the validity

of the sentence) so each sentence can be processed by a

dedicated classifier. The BEDS first step consists of a single

classifier, which achieved 95.20% of accuracy and 95.08% of

F1-Score. The second step consists of three classifiers, one

for each class (losses, hazards, and constraints) which

achieved 90.37% (loss), 79.00% (hazard) and 96.47%

(constraint) of accuracy, and 89.08% (loss), 75.78% (hazard),

and 93.95% (constraint) of F1-Score, respectively. Similarly,

the BEDS third step consists of three classifiers which

achieved 74.50% (loss), 79.59% (hazard), and 96.25%

(constraint) of accuracy, and 66.35% (loss), 57.32% (hazard),

95.83% (constraint) of F1-Score, respectively. The overall

performance of each step, calculated as the mean between its

classifiers, is summarized in Table 2.

BEDS showed decreasing values of the metrics as the

pipeline advanced. It was also possible to observe an increase

in the standard deviations over the three steps. As previously

mentioned, for each successive step in the pipeline the input

sentences are filtered and inserted into a dedicated classifier.

This mechanism is also implemented during training, so each

model can learn through a specific group of data. This causes

a scarcity of data to be used both during training and testing,

which may indirectly affect the results in later steps.

5.2.3 Discussion of Results

BEDS showed decreasing values of the metrics as the

pipeline advanced. To give precise predictions, BEDS

organizes the input data through filters (such as the class or

validity of the sentence) so each sentence can be processed

by a dedicated classifier. This mechanism is also

implemented during training, so each model can learn

through a specific group of data. This causes a scarcity of data

to be used both during training and testing, which may

indirectly affect the results in later steps.

Another phenomenon observed is the disparity among the

results of the last classification step and the other two

classification steps. Although the third step keeps a similar

accuracy to the previous two steps, its F1-Score has a lower

value. It is possible to interpret this problem as the classifier

voting for the majority class in most of the sentences (hence

the high accuracy), but it is not as efficient in detecting and

classifying sentences in minority classes (resulting in an

increased number of false positives and negatives,

consequently decreasing the F1-Score). The small amount of

data mentioned previously, combined with a possible class

imbalance found in the third step, could be the cause of the

lower results.

5.2.4 Identified Limitations

Similarly to the SHACO-Llama pipeline, BEDS suffers from

the small amount of data available in its dataset, both for

training and testing the models. Data is a vital part of the

research, as it enables the pipeline to learn from more

examples and better generalize the classification predictions.

Another problem, specific to BEDS, is that it does not take

into account the context of the sentence, nor the specialized

human knowledge expected to interpret each sentence.

Similarly, it does not take into account domain specificities

such as certain practices or conventions known within an

industry or company. Consequently, BEDS analyses each

sentence in an isolated context and predicts only based on

what it has learned through its training phase. Considering

these limitations, BEDS also has potential for future

improvement.

6 Conclusion

This work presented two AI-driven pipelines designed to

automate and enhance the initial steps of System-Theoretic

Process Analysis (STPA) in the aviation domain. The

SHACO-Llama pipeline employs a fine-tuned Llama3.1-8B

model to extract safety-relevant elements—losses, hazards,

and constraints—from ConOps documents, achieving

promising results in terms of precision, recall, and F1-score.

Complementarily, the BEDS pipeline supports verification

and correction of the extracted elements using fine-tuned

BERT models, demonstrating high classification accuracy

across various stages.

The preliminary results highlight the potential of these

pipelines to significantly reduce the time, cost, and expertise

required in early-stage STPA analysis while maintaining high

levels of accuracy and interpretability. Nonetheless, certain

limitations, such as reliance on synthetic training data and the

need for domain-specific contextual understanding,

underscore the importance of human oversight in safety-

critical applications.

The first pipeline, SHACO-Llama, represents a significant

innovation by leveraging a fine-tuned Llama3.1-8B language

model to automatically extract critical STPA elements—

losses, hazards, and safety constraints—directly from

Concept of Operations (ConOps) documents. This

contribution marks a notable advancement in applying large

language models (LLMs) to interpret complex technical

documentation and support safety analysis at scale, offering

both high semantic fidelity and improved analyst

productivity.

The second pipeline, BEDS (BERT Error Detection for

STPA), complements SHACO-Llama by introducing an

intelligent verification layer. It classifies the extracted

elements, checks their validity against STPA guidelines,

detects specific writing faults, and suggests corrected

formulations. This pipeline not only improves the reliability

and trustworthiness of automated STPA outputs but also

reduces the cognitive load on human analysts by flagging

inconsistencies and offering refined alternatives.

Together, these pipelines demonstrate a synergistic

contribution: SHACO-Llama accelerates the extraction

process, while BEDS ensures the quality and correctness of

the outputs. Preliminary evaluation results indicate strong

performance, with SHACO-Llama achieving an F1-score of

~80% and BEDS reaching up to 95% accuracy in

classification tasks.

While challenges remain—particularly in data availability,

contextual understanding, and full automation—the

presented pipelines offer a foundational framework for

integrating AI into safety-critical engineering workflows.

Future work will focus on expanding the dataset with

additional real-world examples, refining the models'

capabilities with larger architectures and improved training

methodologies, and integrating both pipelines into a cohesive

tool chain. Ultimately, this research contributes to the

advancement of semi-automated safety analysis methods and

lays the groundwork for broader adoption of AI in the field of

aviation system safety. Moreover, the authors intend to: (i)

increase the datasets used in order to improve the metrics

obtained in both, pipeline 1 and pipeline 2; (ii) create sanity

check modules in pipeline 1 in order to verify that there are

no requirements documents (ConOps) with missing or invalid

parts according to the STPA process; (iii) test document

summarization and sentence classification approaches using

LLMs directly and compare them to the fine-tuned models

Acknowledgment

The authors wish to thank São Paulo Research Foundation

(FAPESP). This work was supported in part by a grant from

2023/03393-5. This study was financed in part by the

Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior - Brasil (CAPES) - Finance Code 001.

References

[1] N. G. Leveson. Engineering a Safer World: Systems

Thinking Applied to Safety. The MIT Press, 2012.

[2] N. G. Leveson. An Introduction to System Safety

Engineering. The MIT Press, 2023.

[3] N. G. Leveson and J. P. Thomas. STPA Handbook,

2018. Available:

https://psas.scripts.mit.edu/home/get_file.php?name=

STPA_Handbook.pdf

[4] J. Chen, S. Zhang, Y. Lu and P. Tang, "STPA-based

hazard analysis of a complex UAV system in take-off,"

2015 International Conference on Transportation

Information and Safety (ICTIS), Wuhan, China, 2015,

pp. 774-779, doi: 10.1109/ICTIS.2015.7232133

[5] B. Olberts and Y. Dittjen, "Model Based STPA for

Assisted Driving Functions," 2023 ACM/IEEE

International Conference on Model Driven

Engineering Languages and Systems Companion

(MODELS-C), Västerås, Sweden, 2023, pp. 85-86,

doi: 10.1109/MODELS-C59198.2023.00027.

[6] A. Carniel, J. D. M. Bezerra and C. M. Hirata, "An

Ontology-Based Approach to Aid STPA Analysis," in

IEEE Access, vol. 11, pp. 12677-12697, 2023, doi:

10.1109/ACCESS.2023.3242642.

[7] E. A. Celik et al., “Application of STPA for the

Elicitation of Safety Requirements for a Machine

Learning-Based Perception Component in

Automotive”. In: TRAPP, M.; SAGLIETTI, F.;

SPISLÄNDER, M.; BITSCH, F. (Ed.). Computer

Safety, Reliability, and Security. Cham: Springer

International Publishing, v. 13414. P. 319–332. 2022.

Available: https://link.springer.com/10.1007/978-3-

031-14835-4_21/.

[8] S. Ghosh, A. Zaboli, J. Hong, J. Kwon, “An Integrated

Approach of Threat Analysis for Autonomous Vehicles

Perception System”. IEEE Access, v.11, p.14752–

14777, 2023. Available:

https://ieeexplore.ieee.org/document/10041909/.

[9] S. Diemert, J.H. Weber, “Can Large Language Models

Assist in Hazard Analysis?” In: Guiochet, J., Tonetta,

S., Schoitsch, E., Roy, M., Bitsch, F. (eds) Computer

Safety, Reliability, and Security. SAFECOMP,

Workshops. SAFECOMP 2023. Lecture Notes in

Computer Science, vol 14182. Springer, 2023.

Available: https://doi.org/10.1007/978-3-031-40953-

0_35/.

[10] Yi Qi, Xingyu Zhao, Siddartha Khastgir, Xiaowei

Huang, “Safety analysis in the era of large language

models: A case study of STPA using ChatGPT”,

Machine Learning with Applications, Volume 19,

2025. Available:

https://doi.org/10.1016/j.mlwa.2025.100622/.

[11] S. Charalampidou, A. Zeleskidis, I. M. Dokas, “Hazard

analysis in the era of AI: Assessing the usefulness of

ChatGPT4 in STPA hazard analysis”, Safety Science,

Volume 178, 2024. Available:

https://doi.org/10.1016/j.ssci.2024.106608/.

[12] A. Grattafiori et al. “The Llama 3 Herd of Models”.

2024. Available: https://arxiv.org/abs/2407.21783.

[13] IEEE. IEEE Guide for Information Technology -

System Definition - Concept of Operations (ConOps)

Document. IEEE Std 1362-1998, p. 1–24, 1998.

[14] ISO/IEC/IEEE. ISO/IEC/IEEE International Standard

- Systems and software engineering – Life cycle

processes –Requirements engineering. ISO/IEC/IEEE

29148:2011(E), p. 1–94, 2011.

[15] CORDIS. “Community Research and Development

Information Service,” 2025. [Online]. Available:

https://cordis.europa.eu/. [Accessed: Nov. 5, 2024].

[16] NTRS. “NTRS - NASA Technical Reports Server,”

2025. [Online]. Available: https://ntrs.nasa.gov/.

[Accessed: Feb. 11, 2025].

[17] J. Devlin et al. “BERT: Pre-Training of Deep

Bidirectional Transformers for Language

Understanding”. arXiv:1810.04805, arXiv, 24 May

2019. arXiv.org,

https://doi.org/10.48550/arXiv.1810.04805.

[18] T. Wolf et al. “HuggingFace’s Transformers: State-of-

the-art Natural Language Processing”. 2020.

Available: https://arxiv.org/abs/1910.03771.

[19] Reimers, Nils, and Iryna Gurevych. Sentence-BERT:

Sentence Embeddings Using Siamese BERT-

Networks. arXiv, 2019. DOI.org (Datacite),

https://doi.org/10.48550/ARXIV.1908.10084.

[20] T. Zhang et al. “BERTScore: Evaluating Text

Generation with BERT”. 2020. Available:

https://arxiv.org/abs/1904.09675.

https://link.springer.com/10.1007/978-3-031-14835-4_21/
https://link.springer.com/10.1007/978-3-031-14835-4_21/
https://ieeexplore.ieee.org/document/10041909/
https://doi.org/10.1007/978-3-031-40953-0_35/
https://doi.org/10.1007/978-3-031-40953-0_35/
https://doi.org/10.1016/j.mlwa.2025.100622/
https://doi.org/10.1016/j.ssci.2024.106608/
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1910.03771
https://doi.org/10.48550/ARXIV.1908.10084

