~ The 12h Swedish
Aerospace Technology Congress

FT2025 in Stockholm

SWEDISH AEROSPACE <}> AT THE CROSSROADS

Improving System Safety in Aviation: Supporting STPA with AI Models

Luiz Eduardo Galvio Martins!, Ana Estela Antunes da Silva%, Gabriel Nogueira Pacheco!, Andrey Toshiro
Okamura?, Niklas Lavesson®, Tony Gorschek?

!Department of Science and Technology, Federal University of Sdo Paulo, Sio José dos Campos, Brazil
E-mail: legmartins@unifesp.br, gpacheco@unifesp.br
’Faculty of Technology, State University of Campinas, Limeira, Brazil
E-mail: aeasilva@unicamp.br, a213119@dac.unicamp.br
3Department of Software Engineering, Blekinge Institute of Technology, Karlskrona, Sweden
E-mail: niklas.lavesson@bth.se, tony.gorschek@bth.se

Abstract

Background: System safety in aeronautics is critical, as it directly affects aircraft reliability,
efficiency, safety, and security. Given the complexity of modern aviation systems and the
potential consequences of failures, a structured and proactive safety approach is essential.
System-Theoretic Process Analysis (STPA) is a modern hazard analysis method designed to
identify and mitigate risks. Unlike traditional methods that focus primarily on component failures,
STPA accounts for both failures and unsafe interactions among system elements, including
human operators, software, and organizational factors. Problem: Despite its effectiveness, STPA
poses challenges in practical application. The process is time-consuming and requires extensive
expertise in system safety, control theory, and system dynamics. Analysts must heavily rely on
expert judgment to define losses, hazards, safety constraints, and unsafe control actions.
Additionally, training in STPA is resource-intensive, making automation an appealing solution
to streamline the process. Goal: To address these challenges, we developed two Al-driven
pipelines to automate the initial steps of STPA, reducing reliance on expert knowledge and
enhancing efficiency. Method: The first pipeline leverages a fine-tuned Llama3.1-8B model to
extract losses, hazards, and constraints from ConOps documents. The second pipeline, BERT
Error Detection for STPA (BEDS), improves accuracy by classifying, verifying, detecting errors,
and suggesting potential corrections for the extracted elements. Results: The first pipeline was
trained using 134 ConOps documents paired with corresponding STPA safety analysis elements.
The dataset comprised 35 authentic documents from the CORDIS repository and 99 Al-generated
examples. The model achieved a mean precision of 79.73%, recall of 81.09%, and an F1-score of
80.22%. For the second pipeline, 1,084 sentences were extracted from values identified during
the first step of STPA. Three classifiers were developed: the sentence identifier achieved a mean
accuracy of 95.20%, the incorrect sentence detector 88.61%, and the sentence error identifier
83.44%. While the pipelines were designed to work together, they can also be used independently.
Conclusion: This study tackles the challenges of applying STPA in aeronautics by introducing
two automated pipelines to streamline the initial process steps. The first pipeline, powered by a
fine-tuned Llama3.1-8B model, extracts losses, hazards, and constraints from ConOps
documents. The second pipeline, BEDS, verifies and corrects these elements with high accuracy.
The results demonstrate strong precision and recall scores, highlighting the potential to reduce
both the time and expertise required for STPA analysis in complex aviation systems.
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1 Introduction

In the context of safety-critical systems, system safety refers
to a disciplined approach to identifying, analyzing, and
mitigating hazards that could lead to accidents, injuries, or
loss of life. System safety is the application of engineering
and management principles, criteria, and techniques to
achieve acceptable risk levels throughout the life cycle of a
system whose failure could result in catastrophic
consequences [1, 2].

Due to the complexity of modern aviation systems and the
potential consequences of failures, a structured and proactive
safety approach is necessary. System-Theoretic Process
Analysis (STPA) is a hazard analysis method designed to
identify and mitigate risks. Unlike traditional methods that
concentrate primarily on component failures, STPA considers
both failures and unsafe interactions among system elements,
including human operators, software, and organizational
factors [3].

Although effective, STPA presents several challenges in its
practical application. It is a time-intensive process that
requires substantial expertise in system safety, control theory,
and system dynamics. Analysts must rely significantly on
expert judgment to identify losses, hazards, safety
constraints, and unsafe control actions. Furthermore, training
in STPA demands considerable resources, which makes
automation an attractive solution to streamline the procedure
[4,5,6].

To address these challenges, we have developed two Al-
driven pipelines to automate the first step of STPA, reducing
reliance on expert knowledge and enhancing efficiency. The
first pipeline leverages a fine-tuned Llama3.1-8B model to
extract losses, hazards, and constraints from ConOps
documents. The second pipeline, BERT Error Detection for
STPA (BEDS), improves accuracy by classifying, verifying,
detecting errors, and suggesting potential corrections for the
extracted elements. The purpose of this work is to present and
analyze the potential of the initial results obtained from the
two Al-driven pipelines developed for automating the first
step of STPA.

The remainder of this paper is organized as follows: in
Section 2 we present the related work found in the literature;
Section 3 explains the architecture, the dataset and the fine-
tuning performed in the first pipeline; Section 4 explains the
architecture, the data processing and the fine-tuning
performed in the second pipeline; in Section 5 we discuss the
preliminary results obtained with the pipelines; and in Section
6 we present the conclusions and directions for future work.

2 Related Work

There are some works that apply machine learning associated
with the STPA process. Acar Celik et al. [7] apply STPA ina
pedestrian collision detection component in autonomous cars,
which uses machine learning. There was a concern in
applying STPA in this component, as standards in automotive
vehicles such as ISO 26262 do not explicitly describe how to
regulate deep learning algorithms.

The work of Ghosh et al. [8] deals with components of
autonomous cars. In this work, the authors apply STPA to
identify risks of cyberattacks on software components, and
machine learning is applied in algorithms for capturing
external information, such as radars, for example. The authors
argue that, with the increase of autonomous cars on the road
in recent years, there is also an increase in potential attacks
on these vehicles. Although there are threat analysis guides
for vehicles like the ISO 21434 standard mentioned by the
authors, there are still no methods specifically designed for
autonomous cars. Therefore, the authors conducted a
comparison between the ISO 21434 standard and STPA-Sec,
an adaptation of STPA for security. The advantages of
applying STPA-Sec, raised by the authors, are the ability to
model malicious interactions on the road, such as objects and
other users, and to identify critical paths for the vehicle's
operation.

There are some works that use Large Language Models
(LLMs) to assist in STPA analysis. Diemert and Weber [9]
investigate the integration of LLMs in the hazard analysis
processes, which the authors call Co-Hazard Analysis
(CoHA). In the CoHA method, the authors teach Chat-GPT
3.0 coding to understand the description of the system of
interest and provide the model with various queries to identify
the unsafe Control Actions of the system described. The
LLM's response is then marked in three categories: the
response is correct and useful, the response is correct but not
useful, and the response is incorrect. The authors then
compare the proportion of each marking at different levels of
system complexity. The authors state that CoHA can be
moderately useful for simpler systems. However, as the
complexity of the system increases, the performance of the
LLM declines.

Yi Qi et al. [10] examine the application of STPA to
Automatic Emergency Brake (AEB) and Electricity Demand
Side Management (DSM) systems, utilizing Chat Generative
Pre-Trained Transformer (ChatGPT). They investigated the
impact of prompt engineering on STPA results. According to
the authors, comparative results indicate that using ChatGPT
without human intervention may be inadequate due to
reliability issues. However, with careful design, it has the
potential to outperform human experts. However, authors
also identify future challenges, such as concerns regarding the
trustworthiness of LLMs and the need for standardization and
regulation in this field.

Charalampidou et al. [11] investigate the usefulness of LLMs,
such as GPT4 from OpenAl, in applying the STPA hazard
analysis in socio-technical systems. They applied the process
of STPA to the ROLFER search and rescue drone system.
Firstly, the system was discussed in detail with the LLM,
defining its purpose, goals, components, and operations.
Then, the LLM was talked through the steps of STPA and
prompted to generate their specifications. These outputs were
compared with those from the human safety team that applied
STPA to the same system. The team discovered that LLM can
be beneficial in certain aspects, such as loss scenario and
safety specification generation and helping the researchers to
reach a better understanding of the system, but have
drawbacks in others, such as the generation of Unsafe Control



Actions and being used as a verification tool of the STPA
results of the human analysts. Authors concluded that by
using LLM tools such as ChatGPT-4, the total time needed
for a complete execution of an STPA analysis in a complex
sociotechnical system can be greatly decreased due to the
generation of questions that help with the understanding of
the system, and the generation of the causal scenarios and
safety specifications. ChatGPT-4 can also be used to check
for duplicate or similar safety specifications and UCAs, a
rather tedious and time-consuming procedure.

In general, the works described recommend not using LLMs
as substitutes for human analysts, but rather as a tool to assist
in reducing the time required to complete the analysis. We
can understand that the application of machine learning in
STPA hazard analysis tasks is a research topic yet to be
explored.

3 The First Pipeline: (SHACO)-Llama

The manual execution of STPA, a cornerstone for ensuring
safety in complex systems, presents considerable challenges.
Particularly in its initial phases, which involve the meticulous
analysis of Concept of Operations (ConOps) documents,
STPA is recognized as a resource-intensive and time-
consuming endeavor. The inherent complexity of modern
systems, detailed within extensive ConOps documents that
can range from 10 to 200 pages, demands careful examination
by human analysts, introducing potential for subjectivity,
inconsistencies, and limitations in scalability. To address
these issues, the first pipeline, termed STPA Hazard Analysis
from ConOps (SHACO)-Llama, was developed. This
innovative approach leverages advanced Natural Language
Processing (NLP) techniques to automate the extraction of
fundamental STPA elements (specifically losses, system-
level hazards, and safety constraints) directly from ConOps
documents. The primary objective of SHACO-Llama is to
streamline the initial STPA process, thereby reducing the
reliance on extensive expert judgment during these early
stages and enhancing the overall efficiency and consistency
of safety analysis.

The development of this pipeline targets a critical bottleneck
in the STPA workflow: the first step involving the
identification of losses, hazards, and constraints. Automating
this step can yield cascading benefits throughout the safety
analysis lifecycle, potentially accelerating the entire safety
assurance process. This automation signifies a broader shift
towards employing sophisticated NLP and Large Language
Model (LLM) capabilities for the analysis of complex
engineering documentation. Such an approach moves beyond
traditional rule-based systems or simpler machine learning
models, indicating a maturation of NLP to a point where it
can be effectively applied to the extraction of safety-critical
information from technical texts, albeit with necessary human
oversight.

3.1 Architecture of the SHACO-Llama Pipeline

The SHACO-Llama pipeline is architecturally designed to
ingest ConOps documents as input and subsequently output
the initial set of STPA elements: losses, system-level hazards,

and safety constraints. At the core of this pipeline lies a fine-
tuned Llama3.1-8B model, an LLM developed by Meta [12].
The selection of Llama3.1-8B was predicated on its favorable
balance of high performance and computational efficiency for
specialized tasks, coupled with its robust instruction-
following capabilities and open-source accessibility, which
are crucial for research and development. The 8B parameter
variant, specifically, offers a practical equilibrium between
analytical power and the resources required for fine-tuning
and deployment.

ConOps documents, which serve as the primary input, are
foundational artifacts in system development. These
documents typically adhere to established standards, such as
IEEE Std 1362-1998 [13] and IEEE/ISO/IEC 29148-2011
[14], and provide detailed descriptions of system objectives,
operational scenarios, and stakeholder needs from which
safety elements must be inferred. The outputs generated by
the pipeline (losses, system-level hazards, and safety
constraints) are fundamental to the STPA methodology as
comprehensively detailed by Leveson and Thomas [3]. The
pipeline's operation can be characterized as an abstractive
summarization task; it does not merely extract verbatim text
but rather generates these STPA elements based on its
contextual understanding of the input ConOps document.
This capability is particularly significant because critical
safety elements like losses and hazards are often implicitly
described rather than explicitly stated in ConOps documents,
requiring a level of inference akin to that performed by human
safety analysts. The model’s proficiency in instruction-
following is vital, as the fine-tuning process essentially trains
it to adhere to the complex "instruction" of transforming a
narrative ConOps document into a structured set of STPA
elements.

3.2 Dataset Curation: The SHACO Corpus

A pivotal component in the development of the SHACO-
Llama model was the creation of a specialized dataset, the
STPA Hazard Analysis from ConOps (SHACO) corpus. This
dataset was meticulously curated due to the absence of
existing, suitable datasets for fine-tuning an LLM for the
specific task of STPA element extraction from ConOps
documents. The SHACO dataset comprises 134 ConOps
documents, each meticulously paired with its corresponding
STPA elements (losses, hazards, and safety constraints).

A hybrid strategy was employed for the compilation of this
dataset to ensure both authenticity and sufficient volume for
model training:

Authentic Documents: This subset includes 35 real-world
ConOps documents, primarily from the aviation domain.
These were sourced from publicly accessible repositories
such as the Community Research and Development
Information Service (CORDIS) [15] and the NASA
Technical Reports Server (NTRS) [16]. The corresponding
STPA elements for these authentic documents were generated
by human experts, adhering to the guidelines presented in the
STPA Handbook [3].
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Al-Generated Documents: To significantly augment the
dataset, an additional 99 ConOps documents along with their
associated STPA analyses were generated. This was achieved
through sophisticated prompt engineering techniques applied
to state-of-the-art LLMs, including ChatGPT and Claude
Sonnet 3.5. This generative approach was necessitated by the
inherent difficulty in sourcing a large volume of publicly
available, authentic ConOps documents with corresponding
STPA analyses, often due to proprietary or sensitive
information. The generation process involved carefully
designed prompts and a structured pipeline to ensure the
structural integrity and content validity of the synthetic
documents, demonstrating an emerging application of LLMs
as tools for creating training data for other specialized Al
models.

The development of the SHACO dataset represents a
significant undertaking, as the efficacy of fine-tuned LLMs is
heavily contingent on the quality, relevance, and scale of the
training data. This hybrid approach provided a pragmatic
solution to the challenge of data scarcity in this specialized
domain.

3.3 Model Adaptation: Fine-tuning Llama3.1-8B

The adaptation of the pre-trained Llama3.1-8B model for the
specific task of generating STPA elements from ConOps
documents was achieved through a supervised fine-tuning
process. This methodology employed transfer learning,
thereby building upon the extensive foundational knowledge
already encoded within the Llama3.1-8B model while
tailoring its capabilities to the nuances of STPA element
extraction. The SHACO dataset was partitioned, with 80% of

the data allocated for training the model and the remaining
20% reserved for testing and evaluation.

The fine-tuning workflow involved tokenizing the raw text
from the SHACO dataset using the Llama3.1-8B model's
native tokenizer, facilitated by the Hugging Face
Transformers library [18]. The actual fine-tuning was
orchestrated using the SFT Trainer module from the Hugging
Face TRL (Transformer Reinforcement Learning) library.
Given the substantial size of the Llama3.1-8B model, several
advanced optimization techniques were crucial for enhancing
training efficiency and managing computational resources:

Unsloth Framework: This framework was integrated to
achieve approximately 2.4 times faster training speeds and a
58% reduction in memory utilization, making the fine-tuning
process feasible on single-GPU infrastructures.

QLORA (Quantized Low-Rank Adaptation): This
Parameter-Efficient Fine-Tuning (PEFT) technique was
employed to minimize the number of trainable parameters
while  preserving model  performance. = QLORA
implementation involved 4-bit NormalFloat (NF4)
quantization of the base model, double quantization to further
compression constants, and paged optimizers to manage
memory fluctuations during training. Small, trainable Low-
Rank Adaptation (LoRA) matrices (with rank r=16 and LoRA
alpha of 16) were added to key weight matrices within the
transformer architecture, specifically the query, key, value,
output, and feed-forward network projection layers. The
LoRA update is represented by h=Wx+AWx=Wx+BAx,
where W are the frozen pre-trained weights and AW is
factorized into low-rank matrices B €Rd xr and 4 ERr xk.



The model was fine-tuned for 10 epochs, utilizing a
maximum sequence length of 8,192 tokens to accommodate
comprehensive ConOps documents. An AdamW 8-bit
optimizer with a linear learning rate scheduler was used for
the training process. The application of PEFT techniques like
QLORA was instrumental in making the fine-tuning of such
a large model tractable on consumer-grade hardware, thereby
democratizing access to advanced LLM capabilities for
specialized research domains. The overall process, from
initial data acquisition to the final deployment for inference,
is visually captured in Figure 1.

See Section 5.1.1 for the SHACO-Llama evaluation
methodology.

4 The Second Pipeline: BEDS

The first pipeline - just described in section 3 - aims to extract
hazards, losses and constraints from CONOps documents
applying the summarization task. Like all uses of LLMs, this
task can be error prone [10,11]. Thus, to ensure more quality
to the extracted sentences, the second pipeline begins with a
LLM specifically trained to classify hazards, losses and
constraints. In addition, the creation of this classifier allows
users who already have pre-defined hazards, losses and
constraints, can verify their adequation to the STPA process
without having to use the first pipeline. This gives the
possibility of individual use of each pipeline.

Therefore, a second pipeline, named BEDS (BERT Error
Detection for STPA) was developed. BEDS is a tool to help
identifying possible writing errors in sentences generated
from the analysis and to offer suggestions to correct these
errors. The pipeline uses a combination of classification
models, in a way each sentence goes through a path of a
specific combination of models according to its first
classification into the three classes (hazard, loss and
constraint).

The primary objective of the BEDS pipeline is to reduce the
time and effort required to verify the first step of the STPA
analysis and allow the analysts to allocate their time to more
time-consuming activities in other steps. As a verification
step for the STPA analysis, BEDS was developed to work in
conjunction with the output obtained by SHACO-Llama.
However, as previously mentioned, BEDS has a modular
implementation that allows independent use to check for
analysis inconsistencies from any source.

4.1 Architecture of the BEDS Pipeline

As the name suggests, BEDS uses fine-tuned BERT [15]
models at its core. BERT was chosen for its wide application
in the scientific community for NLP tasks, and due to its
ability to adapt the models to downstream tasks. In this case,
the task used was classification.

The BEDS pipeline is designed to ingest the sentences related
to the initial set of STPA elements as input and subsequently
output a report of the validity of the inserted elements. BEDS
verifies the validity of input sentences based on the STPA
Handbook [3].

This four-step pipeline consists of: (1) identification of the
sentence's classification as losses, hazards, or constraints; (2)
verification of the sentence's validity in accordance with the
STPA Handbook guidelines; (3) identification of possible
faults; and (4) provision of alternative writing suggestions for
the sentence. The resultant report comprises the analyzed
sentence, an indicator of its validity relative to the STPA
guidelines, potential faults with associated probabilities for
non-valid sentences, and a list of suggested revisions along
with their similarity to the original sentence. Figure 2
illustrates the workflow of the BEDS pipeline.

In the STPA Handbook [3], several key instructions are
provided for correctly defining analysis elements. Regarding
losses, it is essential to consider stakeholders and their valued
objects, with each object translated into a loss statement. For
hazards, the system boundaries under analysis must be
identified, and a hazard statement should describe a system
state that, in conjunction with adverse environmental
conditions, results in a loss. Vague descriptions such as
"component failure" and "unsafe state" should be avoided.
Finally, constraints are defined as conditions that must be
satisfied to prevent hazards, typically by inverting the hazard
condition in the statement.

In this pipeline, the capacity of the model to correctly classify
valid and non-valid sentences is crucial, for this classification
determines if the sentences are adequate or if the sentences
need further analysis.

4.2 Dataset curation: STPA Step 1 Sentences

Also affected by the scarcity of STPA-related data, BEDS
needed a suitable dataset to train the models for their intended
purposes. The STPA Step 1 Sentences dataset is made up of
sentences from various domains that are used as the main data
for training.

This dataset was created by extracting fragments of STPA
analyses found in presentations at the MIT STAMP
Workshops (https://psas.scripts.mit.edu/home/stamp-
workshops/). This dataset contains nine columns, of which
the first is the prediction data (the extracted sentence), three
are target labels for classification (each for the first three
pipeline steps), and the last five are metadata to improve
traceability. The first target label is the class of the sentence,
which can be one of the three STPA elements. The second
target label is the validity of the sentence according to the
STPA Handbook, which can be valid or non-valid. The last
target label, given only to the invalid sentences, is the main
fault observed in the sentence that differs from what is
recommended by the handbook. The remaining columns are
the metadata related to the sentence, such as domain, year,
title, URL, and number of the presentation.
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Figure 2: BEDS Pipeline Architecture

The resulting dataset contains 1,084 rows of varied classes
and domains. 50 of those, however, were manually written
(through paraphrase) and added to compensate for some class
imbalance found in the dataset. As the dataset is an integral
part of the pipeline development, the validity column was
verified by specialists with three to four years of experience
in STPA analysis. This contribution was necessary to ensure
the valid sentences in this dataset correctly follow the STPA
guidelines, and that the models can reliably classify the
sentences.

4.3 Model Adaptation: Fine-tuning BERT

The BEDS pipeline uses specifically the “bert-base-uncased”
model [17] throughout its classifiers. The fine-tuning process
included converting categorical labels to numerical values,
creating dataset subsets for each pipeline step, and encoding
text with BERT’s tokenizer. The training was facilitated by
the Hugging Face Transformers library [18].

The classification models were evaluated using a 5-fold
cross-validation technique, stratified on the class column.
This allows the partitioning of 80% for training and 20% for
testing for each iteration, where the testing data is not seen
anywhere during training. As the final value for each step’s
performance, the mean between the results from the five
iterations was used.

For the final step of BEDS, a sentence-transformer similarity
model [19] using "all-mpnet-base-v2" is employed to suggest
a sentence similar to the original. The sentence similarity
model was trained using the
"ContrastiveTensionLossInBatchNegatives" loss function.

5 Analysis and Results

In this section we present the results of preliminary
evaluations of the two pipelines developed for the automation
of the first step of STPA.

5.1 SHACO-Lhama Pipeline Evaluation

This subsection presents the evaluation results for the
SHACO-Llama pipeline, which was developed to automate
the initial step of the STPA by extracting losses, system-level
hazards, and safety constraints directly from Concept of
Operations (ConOps) documents.

5.1.1 Evaluation Methodology

The performance of the SHACO-Llama model was primarily
assessed using the BERT-Score metric [20]. BERT-Score
was selected over traditional metrics like BLEU or ROUGE
because it evaluates semantic similarity rather than exact
lexical matching, a critical distinction for LLM-generated
STPA elements where conveying precise meaning matters
more than reproducing identical tokens or phrases. The
evaluation focused on three components of BERT-Score:
Precision (semantic relevance of generated output to the
reference), Recall (semantic representation of reference text
in the output), and the FI-Score (the harmonic mean of
Precision and Recall).

5.1.2 Quantitative Performance

The SHACO-Llama model, based on a fine-tuned Llama3.1-
8B architecture, was evaluated on a reserved 20% test portion
of the SHACO dataset. The quantitative performance, as
measured by BERT-Score, is summarized in Table 1.



Table 1: BERT-Score results for SHACO-Llama.

Precision Recall F1-Score

0.7937 (~79%) 0.8109 (~81%) 0.8022 (~80%)

5.1.3 Discussion of Results

The Fl-score of approximately 80% for SHACO-Llama
indicates a substantial potential for such models to serve as
assistive tools for safety analysts, potentially reducing the
time and manual effort for the initial STPA steps. However,
the Fl-score also underscores that full automation without
human oversight and verification is not yet advisable,
particularly in safety-critical domains. While the BERT-
Scores suggest good semantic alignment with expert-defined
STPA elements, qualitative reviews by experienced STPA
analysts revealed that some model-generated hazard
formulations occasionally deviated from the strict principles
outlined in the STPA handbook [3], highlighting the
continued need for expert validation. The model development
and evaluation faced constraints that likely influenced
performance. The primary limitation was hardware resources,
with training conducted on a single NVIDIA A100 GPU with
40 GB of VRAM. More extensive computational power could
have enabled the exploration of larger models or more
exhaustive  hyperparameter tuning. Secondly, data
availability posed challenges. While the SHACO dataset was
curated for this research, a larger and more diverse set of
authentic, expert-annotated ConOps and STPA analyses
would be ideal for enhancing model generalization. The
current reliance on a significant portion of Al-generated
ConOps, though a pragmatic approach, might introduce
certain biases. Given these constraints, an F1-score of about
80% indicates potential for enhancement with better
resources and data.

5.2 BEDS Pipeline Evaluation

This subsection presents the evaluation results for the BEDS
pipeline, which was developed to help verify the losses,
system-level hazards, and system-level constraints from the
initial step of the STPA.

5.2.1 Evaluation Methodology

The models trained in this pipeline were evaluated using
traditional classification metrics. As a classification task,
Accuracy is widely used to measure the general performance
of the models. Meanwhile, F1-Score (the harmonic mean of
Precision and Recall) is a robust alternative metric to better
evaluate models in cases where the data used has a class
imbalance. Closer results between the Accuracy and F1-
Score mean a stable overall performance, while a gap in the
metrics can show a difficulty of the model to generalize an
imbalanced dataset.

5.2.2 Quantitative Performance

The BEDS pipeline is divided into three classification steps
built on BERT models. The quantitative performance,

calculated as the mean from 5-fold cross-validation, is
summarized in Table 2.

Table 2: Classification results for BEDS.

Step Accuracy () F1-Score (o)

1 - Identify the class 95.20% 95.08%
2 - Determine the validity 88.61% (£7.24)86.27% (+7.68)
3 - Classify possible faults 83.44% (£9.11) 73.16% (£16.44)

The pipeline organizes the input data through filters (the first
filter is the sentence class, and the second filter is the validity
of the sentence) so each sentence can be processed by a
dedicated classifier. The BEDS first step consists of a single
classifier, which achieved 95.20% of accuracy and 95.08% of
F1-Score. The second step consists of three classifiers, one
for each class (losses, hazards, and constraints) which
achieved 90.37% (loss), 79.00% (hazard) and 96.47%
(constraint) of accuracy, and 89.08% (loss), 75.78% (hazard),
and 93.95% (constraint) of F1-Score, respectively. Similarly,
the BEDS third step consists of three classifiers which
achieved 74.50% (loss), 79.59% (hazard), and 96.25%
(constraint) of accuracy, and 66.35% (loss), 57.32% (hazard),
95.83% (constraint) of F1-Score, respectively. The overall
performance of each step, calculated as the mean between its
classifiers, is summarized in Table 2.

BEDS showed decreasing values of the metrics as the
pipeline advanced. It was also possible to observe an increase
in the standard deviations over the three steps. As previously
mentioned, for each successive step in the pipeline the input
sentences are filtered and inserted into a dedicated classifier.
This mechanism is also implemented during training, so each
model can learn through a specific group of data. This causes
a scarcity of data to be used both during training and testing,
which may indirectly affect the results in later steps.

5.2.3 Discussion of Results

BEDS showed decreasing values of the metrics as the
pipeline advanced. To give precise predictions, BEDS
organizes the input data through filters (such as the class or
validity of the sentence) so each sentence can be processed
by a dedicated classifier. This mechanism is also
implemented during training, so each model can learn
through a specific group of data. This causes a scarcity of data
to be used both during training and testing, which may
indirectly affect the results in later steps.

Another phenomenon observed is the disparity among the
results of the last classification step and the other two
classification steps. Although the third step keeps a similar
accuracy to the previous two steps, its F1-Score has a lower
value. It is possible to interpret this problem as the classifier
voting for the majority class in most of the sentences (hence
the high accuracy), but it is not as efficient in detecting and
classifying sentences in minority classes (resulting in an
increased number of false positives and negatives,
consequently decreasing the F1-Score). The small amount of



data mentioned previously, combined with a possible class
imbalance found in the third step, could be the cause of the
lower results.

5.2.4 Identified Limitations

Similarly to the SHACO-LIlama pipeline, BEDS suffers from
the small amount of data available in its dataset, both for
training and testing the models. Data is a vital part of the
research, as it enables the pipeline to learn from more
examples and better generalize the classification predictions.

Another problem, specific to BEDS, is that it does not take
into account the context of the sentence, nor the specialized
human knowledge expected to interpret each sentence.
Similarly, it does not take into account domain specificities
such as certain practices or conventions known within an
industry or company. Consequently, BEDS analyses each
sentence in an isolated context and predicts only based on
what it has learned through its training phase. Considering
these limitations, BEDS also has potential for future
improvement.

6 Conclusion

This work presented two Al-driven pipelines designed to
automate and enhance the initial steps of System-Theoretic
Process Analysis (STPA) in the aviation domain. The
SHACO-Llama pipeline employs a fine-tuned Llama3.1-8B
model to extract safety-relevant elements—losses, hazards,
and constraints—from ConOps documents, achieving
promising results in terms of precision, recall, and F1-score.
Complementarily, the BEDS pipeline supports verification
and correction of the extracted elements using fine-tuned
BERT models, demonstrating high classification accuracy
across various stages.

The preliminary results highlight the potential of these
pipelines to significantly reduce the time, cost, and expertise
required in early-stage STPA analysis while maintaining high
levels of accuracy and interpretability. Nonetheless, certain
limitations, such as reliance on synthetic training data and the
need for domain-specific contextual understanding,
underscore the importance of human oversight in safety-
critical applications.

The first pipeline, SHACO-Llama, represents a significant
innovation by leveraging a fine-tuned Llama3.1-8B language
model to automatically extract critical STPA elements—
losses, hazards, and safety constraints—directly from
Concept of Operations (ConOps) documents. This
contribution marks a notable advancement in applying large
language models (LLMs) to interpret complex technical
documentation and support safety analysis at scale, offering
both high semantic fidelity and improved analyst
productivity.

The second pipeline, BEDS (BERT Error Detection for
STPA), complements SHACO-Llama by introducing an
intelligent verification layer. It classifies the extracted
elements, checks their validity against STPA guidelines,
detects specific writing faults, and suggests corrected
formulations. This pipeline not only improves the reliability

and trustworthiness of automated STPA outputs but also
reduces the cognitive load on human analysts by flagging
inconsistencies and offering refined alternatives.

Together, these pipelines demonstrate a synergistic
contribution: SHACO-Llama accelerates the extraction
process, while BEDS ensures the quality and correctness of
the outputs. Preliminary evaluation results indicate strong
performance, with SHACO-Llama achieving an F1-score of
~80% and BEDS reaching up to 95% accuracy in
classification tasks.

While challenges remain—particularly in data availability,
contextual understanding, and full automation—the
presented pipelines offer a foundational framework for
integrating Al into safety-critical engineering workflows.

Future work will focus on expanding the dataset with
additional real-world examples, refining the models'
capabilities with larger architectures and improved training
methodologies, and integrating both pipelines into a cohesive
tool chain. Ultimately, this research contributes to the
advancement of semi-automated safety analysis methods and
lays the groundwork for broader adoption of Al in the field of
aviation system safety. Moreover, the authors intend to: (i)
increase the datasets used in order to improve the metrics
obtained in both, pipeline 1 and pipeline 2; (ii) create sanity
check modules in pipeline 1 in order to verify that there are
no requirements documents (ConOps) with missing or invalid
parts according to the STPA process; (iii) test document
summarization and sentence classification approaches using
LLMs directly and compare them to the fine-tuned models
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