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Abstract 

Background: System safety in aeronautics is critical, as it directly affects aircraft reliability, 

efficiency, safety, and security. Given the complexity of modern aviation systems and the 

potential consequences of failures, a structured and proactive safety approach is essential. 

System-Theoretic Process Analysis (STPA) is a modern hazard analysis method designed to 

identify and mitigate risks. Unlike traditional methods that focus primarily on component failures, 

STPA accounts for both failures and unsafe interactions among system elements, including 

human operators, software, and organizational factors. Problem: Despite its effectiveness, STPA 

poses challenges in practical application. The process is time-consuming and requires extensive 

expertise in system safety, control theory, and system dynamics. Analysts must heavily rely on 

expert judgment to define losses, hazards, safety constraints, and unsafe control actions. 

Additionally, training in STPA is resource-intensive, making automation an appealing solution 

to streamline the process. Goal: To address these challenges, we developed two AI-driven 

pipelines to automate the initial steps of STPA, reducing reliance on expert knowledge and 

enhancing efficiency. Method: The first pipeline leverages a fine-tuned Llama3.1-8B model to 

extract losses, hazards, and constraints from ConOps documents. The second pipeline, BERT 

Error Detection for STPA (BEDS), improves accuracy by classifying, verifying, detecting errors, 

and suggesting potential corrections for the extracted elements. Results: The first pipeline was 

trained using 134 ConOps documents paired with corresponding STPA safety analysis elements. 

The dataset comprised 35 authentic documents from the CORDIS repository and 99 AI-generated 

examples. The model achieved a mean precision of 79.73%, recall of 81.09%, and an F1-score of 

80.22%. For the second pipeline, 1,084 sentences were extracted from values identified during 

the first step of STPA. Three classifiers were developed: the sentence identifier achieved a mean 

accuracy of 95.20%, the incorrect sentence detector 88.61%, and the sentence error identifier 

83.44%. While the pipelines were designed to work together, they can also be used independently. 

Conclusion: This study tackles the challenges of applying STPA in aeronautics by introducing 

two automated pipelines to streamline the initial process steps. The first pipeline, powered by a 

fine-tuned Llama3.1-8B model, extracts losses, hazards, and constraints from ConOps 

documents. The second pipeline, BEDS, verifies and corrects these elements with high accuracy. 

The results demonstrate strong precision and recall scores, highlighting the potential to reduce 

both the time and expertise required for STPA analysis in complex aviation systems.  
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1 Introduction 

In the context of safety-critical systems, system safety refers 

to a disciplined approach to identifying, analyzing, and 

mitigating hazards that could lead to accidents, injuries, or 

loss of life. System safety is the application of engineering 

and management principles, criteria, and techniques to 

achieve acceptable risk levels throughout the life cycle of a 

system whose failure could result in catastrophic 

consequences [1, 2]. 

Due to the complexity of modern aviation systems and the 

potential consequences of failures, a structured and proactive 

safety approach is necessary. System-Theoretic Process 

Analysis (STPA) is a hazard analysis method designed to 

identify and mitigate risks. Unlike traditional methods that 

concentrate primarily on component failures, STPA considers 

both failures and unsafe interactions among system elements, 

including human operators, software, and organizational 

factors [3]. 

Although effective, STPA presents several challenges in its 

practical application. It is a time-intensive process that 

requires substantial expertise in system safety, control theory, 

and system dynamics. Analysts must rely significantly on 

expert judgment to identify losses, hazards, safety 

constraints, and unsafe control actions. Furthermore, training 

in STPA demands considerable resources, which makes 

automation an attractive solution to streamline the procedure 

[4, 5, 6]. 

To address these challenges, we have developed two AI-

driven pipelines to automate the first step of STPA, reducing 

reliance on expert knowledge and enhancing efficiency. The 

first pipeline leverages a fine-tuned Llama3.1-8B model to 

extract losses, hazards, and constraints from ConOps 

documents. The second pipeline, BERT Error Detection for 

STPA (BEDS), improves accuracy by classifying, verifying, 

detecting errors, and suggesting potential corrections for the 

extracted elements. The purpose of this work is to present and 

analyze the potential of the initial results obtained from the 

two AI-driven pipelines developed for automating the first 

step of STPA. 

The remainder of this paper is organized as follows: in 

Section 2 we present the related work found in the literature; 

Section 3 explains the architecture, the dataset and the fine-

tuning performed in the first pipeline; Section 4 explains the 

architecture, the data processing and the fine-tuning 

performed in the second pipeline; in Section 5 we discuss the 

preliminary results obtained with the pipelines; and in Section 

6 we present the conclusions and directions for future work. 

2 Related Work 

There are some works that apply machine learning associated 

with the STPA process. Acar Celik et al. [7] apply STPA in a 

pedestrian collision detection component in autonomous cars, 

which uses machine learning. There was a concern in 

applying STPA in this component, as standards in automotive 

vehicles such as ISO 26262 do not explicitly describe how to 

regulate deep learning algorithms.  

The work of Ghosh et al. [8] deals with components of 

autonomous cars. In this work, the authors apply STPA to 

identify risks of cyberattacks on software components, and 

machine learning is applied in algorithms for capturing 

external information, such as radars, for example. The authors 

argue that, with the increase of autonomous cars on the road 

in recent years, there is also an increase in potential attacks 

on these vehicles. Although there are threat analysis guides 

for vehicles like the ISO 21434 standard mentioned by the 

authors, there are still no methods specifically designed for 

autonomous cars. Therefore, the authors conducted a 

comparison between the ISO 21434 standard and STPA-Sec, 

an adaptation of STPA for security. The advantages of 

applying STPA-Sec, raised by the authors, are the ability to 

model malicious interactions on the road, such as objects and 

other users, and to identify critical paths for the vehicle's 

operation. 

There are some works that use Large Language Models 

(LLMs) to assist in STPA analysis. Diemert and Weber [9] 

investigate the integration of LLMs in the hazard analysis 

processes, which the authors call Co-Hazard Analysis 

(CoHA). In the CoHA method, the authors teach Chat-GPT 

3.0 coding to understand the description of the system of 

interest and provide the model with various queries to identify 

the unsafe Control Actions of the system described. The 

LLM's response is then marked in three categories: the 

response is correct and useful, the response is correct but not 

useful, and the response is incorrect. The authors then 

compare the proportion of each marking at different levels of 

system complexity. The authors state that CoHA can be 

moderately useful for simpler systems. However, as the 

complexity of the system increases, the performance of the 

LLM declines. 

Yi Qi et al. [10] examine the application of STPA to 

Automatic Emergency Brake (AEB) and Electricity Demand 

Side Management (DSM) systems, utilizing Chat Generative 

Pre-Trained Transformer (ChatGPT). They investigated the 

impact of prompt engineering on STPA results. According to 

the authors, comparative results indicate that using ChatGPT 

without human intervention may be inadequate due to 

reliability issues. However, with careful design, it has the 

potential to outperform human experts. However, authors 

also identify future challenges, such as concerns regarding the 

trustworthiness of LLMs and the need for standardization and 

regulation in this field.  

Charalampidou et al. [11] investigate the usefulness of LLMs, 

such as GPT4 from OpenAI, in applying the STPA hazard 

analysis in socio-technical systems. They applied the process 

of STPA to the ROLFER search and rescue drone system. 

Firstly, the system was discussed in detail with the LLM, 

defining its purpose, goals, components, and operations. 

Then, the LLM was talked through the steps of STPA and 

prompted to generate their specifications. These outputs were 

compared with those from the human safety team that applied 

STPA to the same system. The team discovered that LLM can 

be beneficial in certain aspects, such as loss scenario and 

safety specification generation and helping the researchers to 

reach a better understanding of the system, but have 

drawbacks in others, such as the generation of Unsafe Control 



Actions and being used as a verification tool of the STPA 

results of the human analysts. Authors concluded that by 

using LLM tools such as ChatGPT-4, the total time needed 

for a complete execution of an STPA analysis in a complex 

sociotechnical system can be greatly decreased due to the 

generation of questions that help with the understanding of 

the system, and the generation of the causal scenarios and 

safety specifications. ChatGPT-4 can also be used to check 

for duplicate or similar safety specifications and UCAs, a 

rather tedious and time-consuming procedure. 

In general, the works described recommend not using LLMs 

as substitutes for human analysts, but rather as a tool to assist 

in reducing the time required to complete the analysis. We 

can understand that the application of machine learning in 

STPA hazard analysis tasks is a research topic yet to be 

explored. 

3 The First Pipeline: (SHACO)-Llama 

The manual execution of STPA, a cornerstone for ensuring 

safety in complex systems, presents considerable challenges. 

Particularly in its initial phases, which involve the meticulous 

analysis of Concept of Operations (ConOps) documents, 

STPA is recognized as a resource-intensive and time-

consuming endeavor. The inherent complexity of modern 

systems, detailed within extensive ConOps documents that 

can range from 10 to 200 pages, demands careful examination 

by human analysts, introducing potential for subjectivity, 

inconsistencies, and limitations in scalability. To address 

these issues, the first pipeline, termed STPA Hazard Analysis 

from ConOps (SHACO)-Llama, was developed. This 

innovative approach leverages advanced Natural Language 

Processing (NLP) techniques to automate the extraction of 

fundamental STPA elements (specifically losses, system-

level hazards, and safety constraints) directly from ConOps 

documents. The primary objective of SHACO-Llama is to 

streamline the initial STPA process, thereby reducing the 

reliance on extensive expert judgment during these early 

stages and enhancing the overall efficiency and consistency 

of safety analysis. 

The development of this pipeline targets a critical bottleneck 

in the STPA workflow: the first step involving the 

identification of losses, hazards, and constraints. Automating 

this step can yield cascading benefits throughout the safety 

analysis lifecycle, potentially accelerating the entire safety 

assurance process. This automation signifies a broader shift 

towards employing sophisticated NLP and Large Language 

Model (LLM) capabilities for the analysis of complex 

engineering documentation. Such an approach moves beyond 

traditional rule-based systems or simpler machine learning 

models, indicating a maturation of NLP to a point where it 

can be effectively applied to the extraction of safety-critical 

information from technical texts, albeit with necessary human 

oversight. 

3.1 Architecture of the SHACO-Llama Pipeline 

The SHACO-Llama pipeline is architecturally designed to 

ingest ConOps documents as input and subsequently output 

the initial set of STPA elements: losses, system-level hazards, 

and safety constraints. At the core of this pipeline lies a fine-

tuned Llama3.1-8B model, an LLM developed by Meta [12]. 

The selection of Llama3.1-8B was predicated on its favorable 

balance of high performance and computational efficiency for 

specialized tasks, coupled with its robust instruction-

following capabilities and open-source accessibility, which 

are crucial for research and development. The 8B parameter 

variant, specifically, offers a practical equilibrium between 

analytical power and the resources required for fine-tuning 

and deployment. 

ConOps documents, which serve as the primary input, are 

foundational artifacts in system development. These 

documents typically adhere to established standards, such as 

IEEE Std 1362-1998 [13] and IEEE/ISO/IEC 29148-2011 

[14], and provide detailed descriptions of system objectives, 

operational scenarios, and stakeholder needs from which 

safety elements must be inferred. The outputs generated by 

the pipeline (losses, system-level hazards, and safety 

constraints) are fundamental to the STPA methodology as 

comprehensively detailed by Leveson and Thomas [3]. The 

pipeline's operation can be characterized as an abstractive 

summarization task; it does not merely extract verbatim text 

but rather generates these STPA elements based on its 

contextual understanding of the input ConOps document. 

This capability is particularly significant because critical 

safety elements like losses and hazards are often implicitly 

described rather than explicitly stated in ConOps documents, 

requiring a level of inference akin to that performed by human 

safety analysts. The model’s proficiency in instruction-

following is vital, as the fine-tuning process essentially trains 

it to adhere to the complex "instruction" of transforming a 

narrative ConOps document into a structured set of STPA 

elements. 

3.2 Dataset Curation: The SHACO Corpus 

A pivotal component in the development of the SHACO-

Llama model was the creation of a specialized dataset, the 

STPA Hazard Analysis from ConOps (SHACO) corpus. This 

dataset was meticulously curated due to the absence of 

existing, suitable datasets for fine-tuning an LLM for the 

specific task of STPA element extraction from ConOps 

documents. The SHACO dataset comprises 134 ConOps 

documents, each meticulously paired with its corresponding 

STPA elements (losses, hazards, and safety constraints). 

A hybrid strategy was employed for the compilation of this 

dataset to ensure both authenticity and sufficient volume for 

model training: 

Authentic Documents: This subset includes 35 real-world 

ConOps documents, primarily from the aviation domain. 

These were sourced from publicly accessible repositories 

such as the Community Research and Development 

Information Service (CORDIS) [15] and the NASA 

Technical Reports Server (NTRS) [16]. The corresponding 

STPA elements for these authentic documents were generated 

by human experts, adhering to the guidelines presented in the 

STPA Handbook [3].  

 

 



AI-Generated Documents: To significantly augment the 

dataset, an additional 99 ConOps documents along with their 

associated STPA analyses were generated. This was achieved 

through sophisticated prompt engineering techniques applied 

to state-of-the-art LLMs, including ChatGPT and Claude 

Sonnet 3.5. This generative approach was necessitated by the 

inherent difficulty in sourcing a large volume of publicly 

available, authentic ConOps documents with corresponding 

STPA analyses, often due to proprietary or sensitive 

information. The generation process involved carefully 

designed prompts and a structured pipeline to ensure the 

structural integrity and content validity of the synthetic 

documents, demonstrating an emerging application of LLMs 

as tools for creating training data for other specialized AI 

models. 

The development of the SHACO dataset represents a 

significant undertaking, as the efficacy of fine-tuned LLMs is 

heavily contingent on the quality, relevance, and scale of the 

training data. This hybrid approach provided a pragmatic 

solution to the challenge of data scarcity in this specialized 

domain. 

3.3 Model Adaptation: Fine-tuning Llama3.1-8B 

The adaptation of the pre-trained Llama3.1-8B model for the 

specific task of generating STPA elements from ConOps 

documents was achieved through a supervised fine-tuning 

process. This methodology employed transfer learning, 

thereby building upon the extensive foundational knowledge 

already encoded within the Llama3.1-8B model while 

tailoring its capabilities to the nuances of STPA element 

extraction. The SHACO dataset was partitioned, with 80% of 

the data allocated for training the model and the remaining 

20% reserved for testing and evaluation. 

The fine-tuning workflow involved tokenizing the raw text 

from the SHACO dataset using the Llama3.1-8B model's 

native tokenizer, facilitated by the Hugging Face 

Transformers library [18]. The actual fine-tuning was 

orchestrated using the SFT Trainer module from the Hugging 

Face TRL (Transformer Reinforcement Learning) library. 

Given the substantial size of the Llama3.1-8B model, several 

advanced optimization techniques were crucial for enhancing 

training efficiency and managing computational resources: 

Unsloth Framework: This framework was integrated to 

achieve approximately 2.4 times faster training speeds and a 

58% reduction in memory utilization, making the fine-tuning 

process feasible on single-GPU infrastructures. 

QLORA (Quantized Low-Rank Adaptation): This 

Parameter-Efficient Fine-Tuning (PEFT) technique was 

employed to minimize the number of trainable parameters 

while preserving model performance. QLORA 

implementation involved 4-bit NormalFloat (NF4) 

quantization of the base model, double quantization to further 

compression constants, and paged optimizers to manage 

memory fluctuations during training. Small, trainable Low-

Rank Adaptation (LoRA) matrices (with rank r=16 and LoRA 

alpha of 16) were added to key weight matrices within the 

transformer architecture, specifically the query, key, value, 

output, and feed-forward network projection layers. The 

LoRA update is represented by h=Wx+ΔWx=Wx+BAx, 

where W are the frozen pre-trained weights and ΔW is 

factorized into low-rank matrices B∈Rd×r and A∈Rr×k. 

 

Figure 1: Overall pipeline for SHACO-Llama. 

 



The model was fine-tuned for 10 epochs, utilizing a 

maximum sequence length of 8,192 tokens to accommodate 

comprehensive ConOps documents. An AdamW 8-bit 

optimizer with a linear learning rate scheduler was used for 

the training process. The application of PEFT techniques like 

QLORA was instrumental in making the fine-tuning of such 

a large model tractable on consumer-grade hardware, thereby 

democratizing access to advanced LLM capabilities for 

specialized research domains. The overall process, from 

initial data acquisition to the final deployment for inference, 

is visually captured in Figure 1. 

See Section 5.1.1 for the SHACO-Llama evaluation 

methodology. 

4 The Second Pipeline: BEDS 

The first pipeline - just described in section 3 -  aims to extract 

hazards, losses and constraints from CONOps documents 

applying the summarization task. Like all uses of LLMs, this 

task can be error prone [10,11]. Thus, to ensure more quality 

to the extracted sentences, the second pipeline begins with a 

LLM specifically trained to classify hazards, losses and 

constraints.  In addition, the creation of this classifier allows 

users who already have pre-defined hazards, losses and 

constraints, can verify their adequation to the STPA process 

without having to use the first pipeline. This gives the 

possibility of individual use of each pipeline. 

Therefore, a second pipeline, named BEDS (BERT Error 

Detection for STPA) was developed. BEDS is a tool to help 

identifying possible writing errors in sentences generated 

from the analysis and to offer suggestions to correct these 

errors. The pipeline uses a combination of classification 

models, in a way each sentence goes through a path of a 

specific combination of models according to its first 

classification into the three classes (hazard, loss and 

constraint). 

The primary objective of the BEDS pipeline is to reduce the 

time and effort required to verify the first step of the STPA 

analysis and allow the analysts to allocate their time to more 

time-consuming activities in other steps. As a verification 

step for the STPA analysis, BEDS was developed to work in 

conjunction with the output obtained by SHACO-Llama. 

However, as previously mentioned, BEDS has a modular 

implementation that allows independent use to check for 

analysis inconsistencies from any source.   

4.1 Architecture of the BEDS Pipeline 

As the name suggests, BEDS uses fine-tuned BERT [15] 

models at its core. BERT was chosen for its wide application 

in the scientific community for NLP tasks, and due to its 

ability to adapt the models to downstream tasks. In this case, 

the task used was classification. 

The BEDS pipeline is designed to ingest the sentences related 

to the initial set of STPA elements as input and subsequently 

output a report of the validity of the inserted elements. BEDS 

verifies the validity of input sentences based on the STPA 

Handbook [3].  

This four-step pipeline consists of: (1) identification of the 

sentence's classification as losses, hazards, or constraints; (2) 

verification of the sentence's validity in accordance with the 

STPA Handbook guidelines; (3) identification of possible 

faults; and (4) provision of alternative writing suggestions for 

the sentence. The resultant report comprises the analyzed 

sentence, an indicator of its validity relative to the STPA 

guidelines, potential faults with associated probabilities for 

non-valid sentences, and a list of suggested revisions along 

with their similarity to the original sentence. Figure 2 

illustrates the workflow of the BEDS pipeline. 

In the STPA Handbook [3], several key instructions are 

provided for correctly defining analysis elements. Regarding 

losses, it is essential to consider stakeholders and their valued 

objects, with each object translated into a loss statement. For 

hazards, the system boundaries under analysis must be 

identified, and a hazard statement should describe a system 

state that, in conjunction with adverse environmental 

conditions, results in a loss. Vague descriptions such as 

"component failure" and "unsafe state" should be avoided. 

Finally, constraints are defined as conditions that must be 

satisfied to prevent hazards, typically by inverting the hazard 

condition in the statement.  

In this pipeline, the capacity of the model to correctly classify 

valid and non-valid sentences is crucial, for this classification 

determines if the sentences are adequate or if the sentences 

need further analysis. 

4.2 Dataset curation: STPA Step 1 Sentences 

Also affected by the scarcity of STPA-related data, BEDS 

needed a suitable dataset to train the models for their intended 

purposes. The STPA Step 1 Sentences dataset is made up of 

sentences from various domains that are used as the main data 

for training.  

This dataset was created by extracting fragments of STPA 

analyses found in presentations at the MIT STAMP 

Workshops (https://psas.scripts.mit.edu/home/stamp-

workshops/). This dataset contains nine columns, of which 

the first is the prediction data (the extracted sentence), three 

are target labels for classification (each for the first three 

pipeline steps), and the last five are metadata to improve 

traceability. The first target label is the class of the sentence, 

which can be one of the three STPA elements. The second 

target label is the validity of the sentence according to the 

STPA Handbook, which can be valid or non-valid. The last 

target label, given only to the invalid sentences, is the main 

fault observed in the sentence that differs from what is 

recommended by the handbook. The remaining columns are 

the metadata related to the sentence, such as domain, year, 

title, URL, and number of the presentation. 

 



 

 

The resulting dataset contains 1,084 rows of varied classes 

and domains. 50 of those, however, were manually written 

(through paraphrase) and added to compensate for some class 

imbalance found in the dataset. As the dataset is an integral 

part of the pipeline development, the validity column was 

verified by specialists with three to four years of experience 

in STPA analysis. This contribution was necessary to ensure 

the valid sentences in this dataset correctly follow the STPA 

guidelines, and that the models can reliably classify the 

sentences. 

4.3 Model Adaptation: Fine-tuning BERT 

The BEDS pipeline uses specifically the “bert-base-uncased” 

model [17] throughout its classifiers. The fine-tuning process 

included converting categorical labels to numerical values, 

creating dataset subsets for each pipeline step, and encoding 

text with BERT’s tokenizer. The training was facilitated by 

the Hugging Face Transformers library [18]. 

The classification models were evaluated using a 5-fold 

cross-validation technique, stratified on the class column. 

This allows the partitioning of 80% for training and 20% for 

testing for each iteration, where the testing data is not seen 

anywhere during training. As the final value for each step’s 

performance, the mean between the results from the five 

iterations was used. 

For the final step of BEDS, a sentence-transformer similarity 

model [19] using "all-mpnet-base-v2" is employed to suggest 

a sentence similar to the original. The sentence similarity 

model was trained using the 

"ContrastiveTensionLossInBatchNegatives" loss function.  

5 Analysis and Results 

In this section we present the results of preliminary 

evaluations of the two pipelines developed for the automation 

of the first step of STPA. 

5.1 SHACO-Lhama Pipeline Evaluation 

This subsection presents the evaluation results for the 

SHACO-Llama pipeline, which was developed to automate 

the initial step of the STPA by extracting losses, system-level 

hazards, and safety constraints directly from Concept of 

Operations (ConOps) documents. 

5.1.1 Evaluation Methodology 

The performance of the SHACO-Llama model was primarily 

assessed using the BERT-Score metric [20]. BERT-Score 

was selected over traditional metrics like BLEU or ROUGE 

because it evaluates semantic similarity rather than exact 

lexical matching, a critical distinction for LLM-generated 

STPA elements where conveying precise meaning matters 

more than reproducing identical tokens or phrases. The 

evaluation focused on three components of BERT-Score: 

Precision (semantic relevance of generated output to the 

reference), Recall (semantic representation of reference text 

in the output), and the F1-Score (the harmonic mean of 

Precision and Recall). 

5.1.2 Quantitative Performance 

The SHACO-Llama model, based on a fine-tuned Llama3.1-

8B architecture, was evaluated on a reserved 20% test portion 

of the SHACO dataset. The quantitative performance, as 

measured by BERT-Score, is summarized in Table 1. 

 

 

 

 

Figure 2: BEDS Pipeline Architecture 



Table 1: BERT-Score results for SHACO-Llama. 

Precision Recall F1-Score 

0.7937 (~79%) 0.8109 (~81%) 0.8022 (~80%) 

5.1.3 Discussion of Results 

The F1-score of approximately 80% for SHACO-Llama 

indicates a substantial potential for such models to serve as 

assistive tools for safety analysts, potentially reducing the 

time and manual effort for the initial STPA steps. However, 

the F1-score also underscores that full automation without 

human oversight and verification is not yet advisable, 

particularly in safety-critical domains. While the BERT-

Scores suggest good semantic alignment with expert-defined 

STPA elements, qualitative reviews by experienced STPA 

analysts revealed that some model-generated hazard 

formulations occasionally deviated from the strict principles 

outlined in the STPA handbook [3], highlighting the 

continued need for expert validation. The model development 

and evaluation faced constraints that likely influenced 

performance. The primary limitation was hardware resources, 

with training conducted on a single NVIDIA A100 GPU with 

40 GB of VRAM. More extensive computational power could 

have enabled the exploration of larger models or more 

exhaustive hyperparameter tuning. Secondly, data 

availability posed challenges. While the SHACO dataset was 

curated for this research, a larger and more diverse set of 

authentic, expert-annotated ConOps and STPA analyses 

would be ideal for enhancing model generalization. The 

current reliance on a significant portion of AI-generated 

ConOps, though a pragmatic approach, might introduce 

certain biases. Given these constraints, an F1-score of about 

80% indicates potential for enhancement with better 

resources and data. 

5.2 BEDS Pipeline Evaluation 

This subsection presents the evaluation results for the BEDS 

pipeline, which was developed to help verify the losses, 

system-level hazards, and system-level constraints from the 

initial step of the STPA. 

5.2.1 Evaluation Methodology 

The models trained in this pipeline were evaluated using 

traditional classification metrics. As a classification task, 

Accuracy is widely used to measure the general performance 

of the models. Meanwhile, F1-Score (the harmonic mean of 

Precision and Recall) is a robust alternative metric to better 

evaluate models in cases where the data used has a class 

imbalance. Closer results between the Accuracy and F1-

Score mean a stable overall performance, while a gap in the 

metrics can show a difficulty of the model to generalize an 

imbalanced dataset. 

5.2.2 Quantitative Performance 

The BEDS pipeline is divided into three classification steps 

built on BERT models. The quantitative performance, 

calculated as the mean from 5-fold cross-validation, is 

summarized in Table 2. 

Table 2: Classification results for BEDS. 

Step Accuracy (σ) F1-Score (σ) 

1 - Identify the class 95.20% 95.08%  

2 - Determine the validity 88.61% (±7.24) 86.27% (±7.68) 

3 - Classify possible faults 83.44% (±9.11) 73.16% (±16.44) 

 

The pipeline organizes the input data through filters (the first 

filter is the sentence class, and the second filter is the validity 

of the sentence) so each sentence can be processed by a 

dedicated classifier. The BEDS first step consists of a single 

classifier, which achieved 95.20% of accuracy and 95.08% of 

F1-Score. The second step consists of three classifiers, one 

for each class (losses, hazards, and constraints) which 

achieved 90.37% (loss), 79.00% (hazard) and 96.47% 

(constraint) of accuracy, and 89.08% (loss), 75.78% (hazard), 

and 93.95% (constraint) of F1-Score, respectively. Similarly, 

the BEDS third step consists of three classifiers which 

achieved 74.50% (loss), 79.59% (hazard), and 96.25% 

(constraint) of accuracy, and 66.35% (loss), 57.32% (hazard), 

95.83% (constraint) of F1-Score, respectively. The overall 

performance of each step, calculated as the mean between its 

classifiers, is summarized in Table 2. 

BEDS showed decreasing values of the metrics as the 

pipeline advanced. It was also possible to observe an increase 

in the standard deviations over the three steps.  As previously 

mentioned, for each successive step in the pipeline the input 

sentences are filtered and inserted into a dedicated classifier. 

This mechanism is also implemented during training, so each 

model can learn through a specific group of data. This causes 

a scarcity of data to be used both during training and testing, 

which may indirectly affect the results in later steps. 

5.2.3 Discussion of Results 

BEDS showed decreasing values of the metrics as the 

pipeline advanced. To give precise predictions, BEDS 

organizes the input data through filters (such as the class or 

validity of the sentence) so each sentence can be processed 

by a dedicated classifier. This mechanism is also 

implemented during training, so each model can learn 

through a specific group of data. This causes a scarcity of data 

to be used both during training and testing, which may 

indirectly affect the results in later steps. 

Another phenomenon observed is the disparity among the 

results of the last classification step and the other two 

classification steps. Although the third step keeps a similar 

accuracy to the previous two steps, its F1-Score has a lower 

value. It is possible to interpret this problem as the classifier 

voting for the majority class in most of the sentences (hence 

the high accuracy), but it is not as efficient in detecting and 

classifying sentences in minority classes (resulting in an 

increased number of false positives and negatives, 

consequently decreasing the F1-Score). The small amount of 



data mentioned previously, combined with a possible class 

imbalance found in the third step, could be the cause of the 

lower results. 

5.2.4 Identified Limitations 

Similarly to the SHACO-Llama pipeline, BEDS suffers from 

the small amount of data available in its dataset, both for 

training and testing the models. Data is a vital part of the 

research, as it enables the pipeline to learn from more 

examples and better generalize the classification predictions. 

Another problem, specific to BEDS, is that it does not take 

into account the context of the sentence, nor the specialized 

human knowledge expected to interpret each sentence. 

Similarly, it does not take into account domain specificities 

such as certain practices or conventions known within an 

industry or company. Consequently, BEDS analyses each 

sentence in an isolated context and predicts only based on 

what it has learned through its training phase. Considering 

these limitations, BEDS also has potential for future 

improvement. 

6 Conclusion 

This work presented two AI-driven pipelines designed to 

automate and enhance the initial steps of System-Theoretic 

Process Analysis (STPA) in the aviation domain. The 

SHACO-Llama pipeline employs a fine-tuned Llama3.1-8B 

model to extract safety-relevant elements—losses, hazards, 

and constraints—from ConOps documents, achieving 

promising results in terms of precision, recall, and F1-score. 

Complementarily, the BEDS pipeline supports verification 

and correction of the extracted elements using fine-tuned 

BERT models, demonstrating high classification accuracy 

across various stages. 

The preliminary results highlight the potential of these 

pipelines to significantly reduce the time, cost, and expertise 

required in early-stage STPA analysis while maintaining high 

levels of accuracy and interpretability. Nonetheless, certain 

limitations, such as reliance on synthetic training data and the 

need for domain-specific contextual understanding, 

underscore the importance of human oversight in safety-

critical applications. 

The first pipeline, SHACO-Llama, represents a significant 

innovation by leveraging a fine-tuned Llama3.1-8B language 

model to automatically extract critical STPA elements—

losses, hazards, and safety constraints—directly from 

Concept of Operations (ConOps) documents. This 

contribution marks a notable advancement in applying large 

language models (LLMs) to interpret complex technical 

documentation and support safety analysis at scale, offering 

both high semantic fidelity and improved analyst 

productivity. 

The second pipeline, BEDS (BERT Error Detection for 

STPA), complements SHACO-Llama by introducing an 

intelligent verification layer. It classifies the extracted 

elements, checks their validity against STPA guidelines, 

detects specific writing faults, and suggests corrected 

formulations. This pipeline not only improves the reliability 

and trustworthiness of automated STPA outputs but also 

reduces the cognitive load on human analysts by flagging 

inconsistencies and offering refined alternatives. 

Together, these pipelines demonstrate a synergistic 

contribution: SHACO-Llama accelerates the extraction 

process, while BEDS ensures the quality and correctness of 

the outputs. Preliminary evaluation results indicate strong 

performance, with SHACO-Llama achieving an F1-score of 

~80% and BEDS reaching up to 95% accuracy in 

classification tasks. 

While challenges remain—particularly in data availability, 

contextual understanding, and full automation—the 

presented pipelines offer a foundational framework for 

integrating AI into safety-critical engineering workflows.  

Future work will focus on expanding the dataset with 

additional real-world examples, refining the models' 

capabilities with larger architectures and improved training 

methodologies, and integrating both pipelines into a cohesive 

tool chain. Ultimately, this research contributes to the 

advancement of semi-automated safety analysis methods and 

lays the groundwork for broader adoption of AI in the field of 

aviation system safety. Moreover, the authors intend to: (i) 

increase the datasets used in order to improve the metrics 

obtained in both, pipeline 1 and pipeline 2; (ii) create sanity 

check modules in pipeline 1 in order to verify that there are 

no requirements documents (ConOps) with missing or invalid 

parts according to the STPA process; (iii) test document 

summarization and sentence classification approaches using 

LLMs directly and compare them to the fine-tuned models 
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