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Abstract

Control Contraction Metrics (CCMs) can be described as a non-linear control technique based in
differential dynamics on the framework of differential geometry. This work presents preliminary
results on applying CCMs to the control of a Blended Wing Body (BWB) aircraft configuration,
in particular, regarding flight conditions involving high angle of attack and medium Reynolds
number regimes. These preliminary results show that in absence of conventional stability
equilibrium points, proper CCMs may allow effective control on aircraft dynamics given
adequate operational conditions. These conditions and configuration are expected to be present
in new concepts of Remotely Piloted Aircraft Systems (RPAS), extending their applications
from planetary exploration to support the development of new transportation concepts in
commercial airliners. Methods described, data, and results, are expected to be of application
for EXperimental Aircraft for European Leadership in Aviation (EXAELIA) project, a Horizon
Europe international effort to de-risk and develop new concepts of passenger aircraft to face
aerospace industry challenges by 2050.

This work has been funded by the European Union under GA No. 101191922. Views
and opinions expressed are however those of the author only and do not necessarily reflect those
of the European Union or the European Climate, Infrastructure and Environment Executive
Agency. Neither the European Union nor the granting authority can be held responsible for
them.
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1 Introduction
1.1 CCMs in aerospace

Contraction can be roughly described as a dynamic system
property capable of ensuring that under given circumstances,
a trajectory in the system’s state space contracts to another
trajectory [1]. CCMs are sometimes presented as a non-linear
control technique able to take advantage of this contraction
property. By finding a suitable matrix metric in the manifold
that contains the dynamic system, as long as the right condi-
tions are accomplished by the metric and the system, theory

is able to predict if trajectories contraction is possible.

Up to some extent, contraction shares characteristics with
Lyapunov theory, and because of that, some authors present
CCMs as a generalization of Lyapunov control techniques [2],
or even a generalization of Lyapunov results, using as base
for the claim the Linear Matrix Inequalities (LMI) sometimes
used to calculate the metric matrix [3]. While Lyapunov func-
tions are a very studied and developed topic in RPAS for both
observers, such as [4], and controllers, for instance [5], CCMs
seem like not so broadly applied in aerospace, maybe due the
novelty of the research field, or due the numerical nuances



present in the development of practical solutions so far. Said
nuances are mainly related to both obtaining the metric and
its geodesics in order to develop feasible control laws.

These control laws can be developed and used both in open
[6] and closed loop [7], including adaptations to adaptive con-
trol loops [8] accepting in this manner some levels of model
uncertainty in the control. There also exist generalizations
on the very same established theory on CCMs, extending
the metrics on the manifold used (typically Riemann-like),
to Finsler manifolds [3] [7], providing a more general frame-
work in which develop both loop controllers and analysis.

As already mentioned, while Lyapunov techniques are widely
applied in aerospace, CCMs may have not been extensively
applied to aircraft control up to date, mainly due to the chal-
lenges of computing what is needed to achieve control in real
time. The most interesting experimental work is maybe [9], in
which authors deal with quadrotor trajectory tracking and ob-
stacle avoidance by finding the metric needed offline, while
the control is generated online, achieving fast and respon-
sive maneuvers in indoor tests. Another remarkable result
can be found on [10], where an attitude tracking controller
for a fixed wing model is developed in simulation and used
on equilibrium points of the linearized flight mechanics equa-
tions. Also in the realm of simulations, diverse remarkable
results can be found related to CCMs theory development, for
instance, in the context of trajectory tracking in robotics com-
bining CCMs with machine learning [11], aerospace Con-
trol Contraction Metric (CCM) applications strongly based
on optimization [12], or even combining both optimization
and learning [13]. In [12] a robust controller for a powered
descent module is obtained based on fuel optimization. In
[13] a CCM is used to provide a fast way of learning and us-
ing control changes in a F-16 aircraft model, implementing
also a CCM based controller.

So far we have not found works that tackle the direct con-
trol of non-linear equations for a non conventional configu-
ration such as a BWB aircraft, using CCMs, relying on fast
numerical methods beyond, for instance, optimization or Sum
of Squares (SOS) programming. The contribution presented
here is not intended to expand CCMs theory, but to be applied
in the most practical manner, predicting contraction charac-
teristics for a very preliminary non-conventional aircraft con-
figuration. We also try to justify with simulated results on
preliminary models that the contraction appears in an attitude
tracker, allowing effective non-linear control in flight con-
ditions that are difficult to manage otherwise, or at least by
means of linear controllers.

The motivation for performing such work in a non-
conventional aircraft configuration relies in the need of look-
ing for new features and capabilities in RPAS both in Earth
and space applications.

1.2 New features mean new control needs

Non-conventional aircraft configurations aim to offer new
functionalities and desirable performance characteristics in
aerospace applications. In the case of BWB configurations,
drag reduction and therefore power consumption savings is
maybe the most atractive of said features. In the field of plan-

Figure 1: Left: NASA’s Ingenuity [14] is up to date the only
RPAS able to fly atmospheric missions on another planet.
Right: Different configurations have been proposed as plane-
tary exploration RPAS, for instance, Prandtl-m concept [15]

etary exploration this is of remarkable importance, since size
constraints and energy consumption reduction may determine
the mission capabilities of a RPAS [16]. So far, the unique
case of Ingenuity flights in Mars [14], justified a coaxial rotor
solution, while other projected autonomous vehicles opted for
conventional but especially also non-conventional configura-
tions such as BWB-like designs [17]. Since constraints and
decisions on design are determined by the mission, Earth and
out-of-Earth applications can justify very different designs.
In any case, looking for alternatives where these applications
share difficulties can certainly benefit both.

Reduction in energy consumption is a common goal both in
space exploration and airborne transport here at Earth. It is
a constant and yearned goal in passenger aircraft, specially
in the European scenario in which European Commision im-
pulses initiatives [18] to achieve efficency in future transport
aircraft. One of these initiatives is EXAELIA, an European
effort to de-risk uncertainties for aircraft future technologies
[19]. This work and its results are expected to be of applica-
tion in said project, EXAELIA, as a part of one of the INTA’s
contributions this international collaboration.

Figure 2: INTA’s three contributions to EXAELIA. The selec-
tion of a suitable flight test site for project next phases (left)
comes with the use of Sistema Portable Optico de Trayectog-
aria or Optical Portable Trajectography System (SPOT) (cen-
ter) for on-ground measurements of flight testing demonstra-
tors flights. Hazardous Flight Conditions (HF Cs) control laws
for said demonstrators is the third leg of INTA’s contribution.
Up today, several mock-ups have been printed at INTA (right)
to identify main stability issues on BWB configurations. Final
EXAELIA configuration is yet to be defined as a team effort
between several international partners.

Achieving drag reduction is a very attractive goal but it comes
with unavoidable trade-offs. While BWB configuration can
offer remarkable drag reduction figures [20], it also brings
on the table new difficulties in control related both to static



and dynamic stability [21]. Lateral-directional control is one
of the main challenges, since a BWB will have low drag
if vertical stabilizers are not present during flight. While
flying without vertical stabilizers is certainly possible, as for
instance B-2 Spirit aircraft proves, it also certainly compli-
cates control beyond the safe-proven, traditional solutions
present in conventional configurations such as the Tube and
Wing (TAW), specially if we are in the domain of civilian
passenger transport. In the domain of space exploration,
on the other hand, where passengers are not expected to be
on-board, achieving a completely safe, autonomous, and
deterministic control is paramount for the success of the
mission. Where a remote pilot can’t act in time due to delays
in communication, having a reliable and flexible control is
undeniable of the outmost importance.

Figure 3: OpenVSP has been used to test preliminary so-
lutions for non-conventional configurations. Kruger’s (up
left) BWB freely available at [22] has been modified by
Rodrigo Liépez at INTA to obtain aerodynamic information
about a typical BWB configuration. A flying wing based in
the Northrop N-9M design (up right) was also used to ob-
tain know-how on drag rudders and non-conventional aero-
dynamic data. These modifications were possible to the work
of Amalia Mucea, at Flight Mechanics Area at INTA.

Dynamics, uncertainties and the novelty of the application
invite to looking for new ways of problem solving. In the
case of BWB configurations regarding control, the way
proposed in this work is tackling the non-linear dynamics
of the system with minimal linearizations, in a manner that
ensure, up to the system capabilities, that an actual control is
possible. In order to do so, CCMs is proposed as tool.

2 CCMs
2.1 CCMs as a control technique

The explanation that follows in this section is a summary and
interpretation of results extracted mainly from [2] and [6]. It
is introduced here to stablish context for the work done.

We can have a dynamic system described by Equation 1.

x= f(x,u) 1)

The system defined in a n-dimensional real vector space can
be embedded into a manifold, in which we can define a metric
matrix M able to determine distances between elements. Due

to embeddedment, since elements can be considered as vec-
tors of state-space variables, the distance between two close
elements can be defined as:

d=8.M8! 2)

Where &, is the difference between these two close elements.
At the same time, by constraining system (1) to an affine-
control equation, it can be written as:

x = f(x,7) + Bu 3)

Where in Equation (3) B is a matrix that links u, the control
vector, with the vector of state variables x. Now, if [6]:

—aa—]‘t/[ —Z%xﬁi% +AM +MAT +2AM — pBBT <0
i g j oUj
“)
Being in Equation (4)...
af du;
A= S+ Ly 5)
J

Then we can say our system is contracting in the points of
the manifold that hold (4). Known terms in these expressions
are matrices A and B, while matrix M, term A, and scalar
function p have to be fixed or found. The result of this
expression is a symmetric matrix and therefore, a check on
negative definiteness can be made by ensuring the sign of its
eigenvalues are all negative.

Meaning of Equation (4) is not as complicated as the equation
itself: we only have to find a suitable metric that ensures
distances between points decrease as time goes by. The cause
for this reduction in distances, for this contraction, has to be
only due to the system dynamics and not to other artifacts.
We can be sure of that for all points of the manifold in which
M is a positive definite matrix (as all good metrics should),
and Equation (4) provides a negative definite result.

Once the metric has been found, the next step is to find the
geodesics 7y this metric generates. These geodesics will have
a strong connection with the control. They will provide the
inputs u# to make the initial trajectory to contract to the de-
sired trajectory by applying the controls [23] [24] given by
Equation (6):

1
Wyt =— / %pBTMyS(s)ds (6)
0

Where p, M, and B are known at this point, but shall be
parametrized in the parameter s. The values 7, are the first
derivatives of the geodesics, also in s. u is the control we
should apply, while u* is the control already present in the
system, which can be named as nominal control [23]. Of
course, control in this context will be understood as open



loop control.

In summary control steers the system, control depends on
geodesics, geodesics depend on metric. The proper metric
will not only define the geodesics, but also can ensure
that contraction exists (or at least the domain in which the
contraction exists).

Being this work more focused in offering an application than
discussing the theory, a lot of important details in notation
and rigor has been left behind. One of uttermost importance
is that these equations and results are only valid in manifold
regions free from discontinuities and singularities (smooth).
Another interesting matter is that notation is very influenced
by the method developed for finding solutions. Looking
for W = M~! instead of M is a good example of this, since
looking for W is one of the conditions needed to make convex
the numerical search for the metric [6]. Another factor is that
metric matrix has to be bounded and definite positive, and of
course, in order for the controller to exist, the Equation (6)
has to be path integrable.

2.2 Choosing CCMs

When the experts of the theory rely on numerical methods
[6], [2], [25] for finding CCMs, looking for non numerical
alternatives to do so is probably not a good idea. Searching
for them can however help to understand the problem and the
control proposed.

Equation (4) can be separated in:

oM oM oM
and
AM +MAT — pBBT <0 ®)

For Equation (8), a general solution can be found on [26].
Assuming M = MT | and if we are careful with notation, we
will have that it is possible to obtain a metric with Equation

9):

M= f%(AT)"'(prBT) —UUTA+VA+ (I (AT)TAT)Y

©)
Where (AT)T refers to the Moore-Penrose pseudinverse (a
generalization of inverse matrix) of the matrix A”. This
formulation is tempting, since allows to directly compute a
metric once the system is known; this is so with the added
interest of the degrees of freedom of matrices U,V and Y,
which despite having to comply with several conditions, are
more or less arbitrary and can help to shape matrix M into a
positive definite diagonal. Equation (7) can also be simplified
as long as we assume a metric non dependent on inputs and
time, but dependent on state space variables. If that is the
case, since we can calculate the metric thanks to Equation
(9), Equation (7) transforms into a serial of inequalities
that can work as compatibility conditions in the state space

variables for the metric to contract.

This can yield results for very simple control systems, but
unfortunately not in the case of this work. The reasons are
Equation (9) does not guarantee a positive definite metric
in general, and once the system is complicated enough,
equations and expressions grow in difficulty. Suddenly,
all the possible advantages of the application of analytical
solutions vanish with the need of using numerical methods to
solve non-linear algebraic equations that, in general, do not
present guarantees of convergence.

We can extract interesting ideas from these expressions,
though. And that will be helpful for Section 3. We can learn,
for instance, that using a constant metric will not comply with
Equation (7), since A has to be a positive value. Therefore, for
constant metrics we have to take into account only Equation
(10):

AM +MAT — pBBT +2AM <0 (10)

Which clarifies an opposite relationship between A and
p. The parameter A is often called rate of convergence
and accounts for a superior limit in the convergence of the
system. In order for our system to converge with a rate given
by A, the scalar function p has to increase to make negative
definiteness possible. Rate of convergence system can be
understood better graphically in Figure 4.

Contraction rates comparison
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Figure 4: Comparison of contraction rates. Choosing a small
value of A, like A = 1, can make the system uncontrollable if
response time has to be obtained under a certain time limit.
A very high value of A, such as A = 100 may be physically
infeasible if system can’t react fast enough. It will depend
on the system, of course, but for physical rotational systems,
choosing 20 > A > 5 seems reasonable as a first approach in
contraction rate.

Using this meaning is of interest since it points out that a
very high value of A, although desirable to control the system
faster, will only actually work in a system capable of such
fast response. In general we won’t be able to increase rate of



convergence as much as we want because contraction won’t
be possible, so not all contracting metrics will hold with all
values of A.

Another important factor that appears in Equations (7) to
(10) is the scalar function p. It ensures the rate of contraction
chosen can be achieved. We can assure this by choosing a
higher value of p than A, at least in simple systems. Also,
since p is a scalar function, it can’t be used to equilibrate
the possible orders of magnitude differences in matrix B.
Looking for this equilibrium is a good idea in our case,
since we have preferred having all variables controllable
in comparable response times due to its coupling. Due the
nature of p this has to be done in the control expressions,
though.

Choosing a baseline metric with all of the above considered,
is straightforward: we can go with the identity matrix and see
what happens to condition (4). We also can use the system
described in Section 3, by Equations (15)-(17). They have
as variables the typical angular rates p,q,r in body aircraft
frame. In doing so, the system will describe a simplified rota-
tional dynamics of a solid rigid.
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Figure 5: Discretization of domain in Equation (4) with iden-
tity metric. Orange means contraction is not guaranteed. To
the left p = 11.24-10° with A = 10. To the right, the same A
with p = 11.5-10%.

Figure 5 is a 3D representation of state space variables
domain (angular rates p,q,r), in between +0.3 rad/s. Each
small cube inside the big one represents three values for
p,q,r. The big cube represents the rough discretization of the
domain of all possible variable values. The colors indicate
if Equation (4) results in a negative definite matrix (green),
mixed sign eigenvalues (orange), a completely positive
definite matrix (red), or non-real eigenvalues (blue). Last two
cases do not appear in this work. As expected, green is good:
contraction is possible for these ranges of values. The other
colors do not guarantee contraction, and therefore are zones
we should avoid.

In the case of the identity matrix as metric, once we have
fixed the desired A, we should only change p to make the
system contracting. That is, as long as our system allows the
rate of contraction we have selected.

Trying other metrics will lead to different results. For in-
stance, let’s say we consider the metric:

p? 0 0
My =10 7 0 (11)
0 0 P2

A metric matrix that measures distances by applying penalties
to them if angular rates are bigger than one. Clearly defined
positive, we can check how it behaves in the same domain
considered for identity metric.
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Figure 6: Discretization of domain for checking Equation (4)
on metric Myy- , Equation (11). Also for A =10, to the left,
the result of a poor contraction domain given by p = 400.
Due the derivative term, p = 400 can be smaller than in the
identity metric case to ensure contraction. To the right, a

complete contraction domain with p = 1200

Since it is not a constant matrix, the derivative term from
Equation (7) is certainly helping. In this case p can be
smaller, which could be interpreted that we can have contrac-
tion with less input control. This could serve our purposes if
the control is suitable.

Finally we can try a metric that imposes a different penalty on
values for p,q,r:

e 2P 0 0
Myp=| 0 e 0 (12)
0 0 e
0.3 0.3
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Figure 7: Discretization of domain for checking Equation (4)
on metric My, from Equation (12). Also for A = 10, to the
left, the result of a poor contraction domain given by p =
14-103. To the right, a complete contraction domain with
p =21-10%. It seems in this case the derivative term did not
help to achieve negative definiteness.

The exponential metric achieves contraction in the domain of
interest after incrementing p, above the p values used for the



quadratic metric. This means that in this case, M., may need
more input effort than quadratic matrix, but in any case con-
traction seems possible.

By comparing these three discretizations, it also seems possi-
ble to use any of them to control the pure rotational system.
Therefore, all of them shall be tested in section 4.1.

2.3 Finding geodesics and calculating the controls

Finding geodesics can be a whole different problem on its
own. Once the metric is known or chosen, a general analyti-
cal expression can be used to obtain the differential equations
which solution is precisely the geodesics, in particular:

xt 1 <9gjd 9giu 9gij) dx' dx/

=0 (13)

2 oxt  oxi  oxd ) ds ds

ds? 2
Where x stands for the state variables of the system, s the
parameter in which the geodesic is calculated on, and g;; are
the elements of the metric matrix.

The pursue of a diagonal matrix can be better understood by
looking at Equation (13): crossed terms equal to zero will
simplify the results deeply. A constant matrix also results
in a very simplified expression that determine the geodesic
as straight lines. For other metrics tested, the open source
software MAXIMA has been used in order to obtain ana-
Iytical expressions of the differential equations. Integration
to obtain the geodesics from these differential equations
has been done numerically with MATLAB software where
analytical expressions were not easily obtained.

Regarding control through Equation (6), it has been im-
plemented also in MATLAB by means of recalculating
the integral in intervals of 0.1 s. Final results for con-
trol can be checked on Section 4. Before that and in order
to continue, it is needed to finally present the dynamic system.

3 CCM on non-conventional aircraft configu-
ration

The objective is to find a control based on CCMs able to take a
BWB-like dynamic system safely from HFCs to a new flight
condition in which a standard linear-control can regain au-
thority. The reasons for this are:

* We can provide operating value ranges for the HFCs
controller. That means, if we know when the HFCs
controller can act, the nominal linear control will know
when and how to depend on it. Sharing this information
is critical to achieve a complete control coordination.

* Studying the controls needed to recover from HFCs can
offer important information to the process of preliminary
sizing for aircraft controls and systems. That is, since
these preliminary calculations are going to tell us what
are the torques needed to restore system dynamics, being
sure our surface controls can deliver will tell us if we are
in the right track.

K %
PO
SR

Figure 8: OpenVSP has also been used to model the prelimi-
nary BWB aircraft presented in this work. In absence of ver-
tical rudders, whole wing-tip rotation will be used in a sim-
plified model for rudder control. No engines, pods or other
control surfaces than elevons and ailerons are present. This
design will definitely change in the near future, but it is con-
sidered as representative of BWB main features.

By HFCs we are going to consider medium Reynolds number
regimes and high angles of attitude. How small is small and
how high is high can be open to interpretation so we are going
to consider:

* Small Reynolds numbers may affect in both the reduc-
tion of control effectiveness [27] and in reduced control
torques and forces due to small dynamic pressure. Our
Reynolds regime near the stall region in Earth applica-
tions will be over Re = 300,000 which can be considered
in the medium range, but will be modeled with a 10%
reduction in control effectiveness anyway. For a mission
in Mars the same flight conditions may appear around
Re = 50,000, which would require a higher effectiveness
reduction, as high as 40% in some cases [27].

* High angles of attack can produce stall, unexpected lat-
eral forces and velocities, and also a reduction in control
authority. We will use force and torque coefficients for a
flight condition around ¢ = 10°. For all the coefficients
approximated with OpenVSP VLM solver, therefore we
will be applying a effectiveness reduction of 10%.

These flight conditions can appear during different flight
phases such as landing, take-off and spin induced stall. The
objective of the control, as introduced earlier, will be to steer
the system to a situation in which a standard linear control can
operate safely the system (angular rates equal to zero or very
close to zero).

3.1 BWB system and model characteristics

We will focus only in rotational dynamics. That is, our simpli-
fied system will only deal with reducing angular rates to zero



or close to zero in a reasonable period of time. Therefore, we
can say:

T
W:*WXJW+7 (14)

Where J is the inertia tensor, w and w the angular rates and
accelerations in typical airframe body axis p, g, r, being also
T the torques. Equation has been programmed following for-
malism found in [28] which extends the equations as:

I'p= sz(Jx —Jy +Jz)pq - (JZ(JZ _Jy) +Jx21)qr+~]zl +Jxzn
(15)

qu:(JZ—Jx)rp—sz(pz—r2)+m (16)

Ui = —Joo(Jy — Iy + 1) qr+ (Je(Jy = Jy) +I2) pg 4 Jugl +Jen

a7
With I = J,J; — JZ, being I,m,n the torques in x,y,z body
axis (roll, pitch and yaw). Finally, p,q, r are the angular rates
that Equation (3.1), encapsulated in w.
Once presented the equations, we can plug some numbers into

the model.

Table 1: BWB data used for simulations

Variable Value Unit

Mass m 5.2 kg

Span b 1 m

Reference surface S 0.32 m?

Reference chord c 0.32 m
Aerod. ref. velocity (stall)  Vap 10.2 m/s

Max Lift before stall CL 2.5 )
Inertia comp. in X axis Jo  4.236-1072  kgm?
Inertia comp. in Y axis Jy  3.527-107%  kgm?
Inertia comp. in Z axis J.  4517-1072  kgm?
2

Inertia prod. in X,Z axis ~ J,,  6.993-107* kgm

o

For the inertia tensor components a constant mass distribu-
tion has been considered in OpenVSP. Previous versions of
this work offered different and greater values for all of the
characteristics of the model. A smaller version of the aircraft
has been finally chosen in order to ease the construction and
testing of a future test bed.

4 Results and discussion
4.1 Comparing the metrics

We will be considering top angular rates of +0.30 rad/s,
which are above 15°/s. For attitude rates, this is quite a
lot, and would require a desirable control response in under
a few seconds. It is arguable that such fast changes and
movements can produce more aerodynamic interferences
and extra difficulties in control. Furthermore, there will be
already initial forces and torques in the aircraft that should
add an extra in difficulty. This completeness in the model

will be tackled in future works. For the moment we are
interested in comparing the control response of our three
main metrics, in order to obtain preliminary know-how on
control capabilities.

For our constant identity metric matrix (baseline), the evo-
lution of rates is depicted in Figure 9, while torques applied
can be seen in Figure 10.
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Figure 9: Angular rates evolution for the identity matrix as
metric. Angular rates seem to reach stability under 2 seconds,
which is a very desirable response.
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Figure 10: Control torques applied for the identity matrix as
metric. A top torque of £0.015 Nm has been limited.

Identity matrix metric (and its control) gives an outstanding
result. It provides a fast and strong response, controlling al-
most at the same time the three axis of rotation.

It may seem a good idea to simplify the control system by us-
ing the simplest of all metrics available, specially if we com-
pare it with M), the metric with the squared angular rates
from Equation (11).

If we study the torques provided by the control of M, in
Figure 12, the reason for not controlling in time appears:
torques are not sustained enough, which ends up slowing the
response. This tendency is maintained over modification in p
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Figure 11: Angular rates evolution for the squared angular
rates matrix metric Mpq,, Equation (11). Angular rates are
controllable, but in an excesive quantity of time. While iden-
tity matrix could deliver in under 2 s, after almost 3 s, the
M,y is unable to fully comply.
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Figure 12: Control torques applied (down), for the squared
angular rates matrix metric My, Equation (11). A top torque
of £0.015 Nm has been limited.

values, so for the moment this metric has to be discarded for
control.

Finally, we can have a look at Figure 13: the exponential met-
ric M,,, response from Equation (12).

Response in Figure 13 and control torques in Figure 14 are
very similar to the identity metric, so we could choose the
identity constant matrix since integration of the geodesics in
the exponential metric adds complexity.

There is also not too much difference between the two options
when we deal with changes of sign in angular rates. It could
be of interest not to steer the system to zero angular rates,
but to actually looking for an opposed sign rate in order to
return the attitude to normal. In this case, as Figures 15 and
16 show, identity metric is slightly slower in g and may need
adjustments while M., seems just a little bit better. Butin any
case, this is not clearly determinant on which is better. More
comparisons are needed to determine M.y, robustness. For
future works a more detailed study in a more detailed system
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Figure 13: Angular rates evolution for the exponential angu-
lar rates matrix metric Mey,. Angular rates are controllable
in a very similar way to identity metric based control.
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Figure 14: Control torques applied, for the exponential angu-
lar rates matrix metric M,y,. A top torque of 0.015 Nm has
been limited.

may help to choose the best metric to be finally implemented.

4.2 A word on attitude control

So far we have compared the control response focusing only
in getting the system to desired angular rates. In doing this
simplified approach we have been able to compare different
metrics, but we haven’t tested a more representative problem
which is steering the aircraft’s attitude angles to desired (and
safe) values.

This can be a problem on its own, since controlling the at-
titude is adding a complexity step to the simple rotational
system tested so far. It can be made, however with a
backstepping-like approach: we can select as simulation in-
put the attitude angles, and by imposing a metric, obtaining
through CCMs technique the desired rates. These desired
rates can be controlled using as inner-loop the controller we
have discussed and tested during the past sections.

A complete representativeness of the system, nevertheless,
would require to add complete aerodynamic and engine forces
and torques, initial conditions, and obtaining a complete tra-
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Figure 15: Angular rates evolution for the identity metric,
with 0.3 rad/s as initial conditions to —0.1 rad/s as final com-
manded rates.
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Figure 16: Angular rates evolution for the exponential met-
ric, with 0.3 rad/s as initial conditions to —0.1 rad/s as com-
manded rates. Exponential metric matrix Mey), rates evolu-
tion slightly outperforms identity because is able to take the q
closer to the final negative commanded value faster, but this
difference is not considered determinant.

jectory evolution. However, in order to demonstrate the possi-
bilities of the technique we have tested the identity and expo-
nential metric with the attitude angle system defined by [28]:

¢ = p+tan(0)(gsin(¢) +rcos(9)) (18)
6 = gcos(9) — rsin(¢) (19)
Y = (gsin(@) +rcos(¢))/cos(0) (20)

Results are encouraging since with this simple approach it is
possible to solve the backstepping problem with reasonable
results, as can be seen of Figures 17 and 18. The only price to
pay, is a small delay from one to two seconds in obtaining an
acceptable attitude response. Reasonable control results are
therefore obtained after 4 seconds. As it would be expected
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Figure 17: Attitude angles evolution, from a 0.3 rad/s initial
condition both in rates and angles, to commanded zero atti-
tude angles (and rates). A full zero is not reached with the
identity metric in both systems, but results are good enough
to ensure conventional control can regain authority.
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Figure 18: Control torques for the very same problem. In
order to achieve zero, change on all torque signs are needed.
Again, a saturation limit of £0.015 Nm is enforced.

by the results shown in Section 4.1, using the M, to the rate
control, will improve a little bit the results by achieving closer
to zero results in attitude angles. So, if instead using the iden-
tity metric as the metric for both rates and attitudes, we use
for the rates M,,, control is slightly better, as can be seen on
Figure 19.

In summary, the baseline metric provides enough control au-
thority for the system to return to a linear nominal control
situation. Results can be slightly improved by using M.,
for rate control. For future works, we believe that modifying
identity metric to a more real attitude dynamics model could
improve the results presented.

4.3 Comparing the torques

Other point of interest is comparing the maximum torques
and responses needed with the actual torques that represen-
tative control surfaces could provide. This comparison could
offer some insight in what is going to be needed for a generic
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Figure 19: Attitude angles evolution, from a 0.3 rad/s initial
condition both in rates and angles, to commanded zero atti-
tude angles. For rate control, My, has been used. A full zero
is not reached. Instead, all angles reach +0.5°.

BWB design. While not thorough, the analysis can be useful
at least to ensure the torque limits imposed of +0.015Nm are
reasonable.

For pitch torque an actuation in the elevator will be used. For
roll torque, ailerons will be applied. For yaw control, rota-
tional capable wing tips will be considered. The reality may
be more complicated than this simplification, since control al-
location strategies shall be used to ensure actuator torques are
consistent with torques needed, which is specially true if, as
expected, activating a main control surface for one axis has
dynamic coupling on others. Medium Reynolds and near to
stall regime have been modeled by reducing available torques
by a total of 20%. A summary of the figures considered can
be found on Table 2. The influence of the aircraft base coeffi-
cient values is not considered in this comparison.

In Figure 20, aileron torques availability is shown.
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Figure 20: Roll torque available, for a maximum actuation
of 30° in ailerons. The maximum roll torque applied of 0.015
Nm is achieved for a small range of B angles. Only control
surface contribution to torque is displayed.

Roll torque is maybe the smaller of the controls available.
This was not the case in initial iterations of this work, but
it is for aircraft configuration presented in Figure 8. In any
case is considered that up to f = +20?, maximum torque can
be achieved close to high attack angles. In Figure 21, pitch

torque contribution from the elevator is shown, again for three
different attack angles.

Elevator pitch torque for 69 =-30°
-0.012 T T T

— g0
20,0141 a=9
—a=12°
__-0.016 a = 15°
£
Z.0.018
[
3
T -0.02
s
£-0.022 AN
P= \
[s8
-0.0241 N\
A\
-0.026
.0.028 . | === . . .
50 40 -30 20 -10 0 10 20 30 40 50
8(°

)

Figure 21: Pitch torque available, for a maximum actuation
of —30° in elevator. The maximum pitch torque applied of
0.015 Nm is achieved for a range of B angles of B = +30°.
Only control surface contribution to torque is displayed.

Elevator contribution is a little bit higher and is present in an
extended range of 3 angles. However the longitudinal control
authority needed in both flying wings and BWB [21], recom-
mend to have a greater elevator size and power to take aircraft
base values into account. In future evolutions of this work,
higher pitch control authority shall be obtained, specially to
deal with situations in which aircraft base aerodynamic con-
figuration does not help in achieving control.

Finally in Figure 22 yaw torque achieved by the wing tip rud-
der is considered.
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Figure 22: Yaw torque available, for a maximum actuation of
30 in wing tip rudder. The maximum yaw torque applied of
0.015 Nm is achieved for practically the whole range of an-
gles B considered. Only control surface contribution is dis-
played.

In previous versions of this work, yaw control was the lowest
of the torques available due the decision of using drag-rudders
as directional controls. Typically in preliminary design for
transport aircraft, vertical stabilizers can be sized by using the
asymmetric power condition [29]. This tends to size tails with
a surface maybe too great, but shows that a considerable sta-
bilizer surface shall exist in order to gain lateral-directional
control authority in all situations. This opposes a little bit
the objective of offering low drag in BWB configurations and
therefore, has to be treated carefully. Because of this, full ro-
tational wing tip rudders have been considered in the BWB



configuration instead of vertical or drag rudders, achieving a
high yaw control authority for practically the whole range of
sideslip angles. The trade-off is the size and complexity of
such actuators, altogether with the influence on other degrees
of freedom beyond yaw, which shall be studied in detail in
future works.

In summary what Figures 20, 21, and 22 point out is mainly
the need for taking into account torque saturation in control
strategies. It is also important to note that while design so
far accounts for these maximum torques, aircraft base aero-
dynamic and engine torques, will certainly affect control au-
thority making easier to regain control from some initial con-
ditions and harder in others. For future works a more com-
plete simulation is required to identify these situations, also
accounting for actual flight conditions influence (such as o
and f angles) in control response. This preliminary work has
served to correct the weak yaw control response and ensure
a bare minimum torque authority is possible to achieve suc-
cessful control with CCM control strategy.

Table 2: Maximum torques comparison in flight condition
a=9% B =0and p,q,r <0.3rad/s

Variable Value Unit

Roll torque needed L +0.015 Nm
Available (6, = —30°) L up to +0.018 Nm
Pitch torque needed Myax +0.015 Nm
Available (6, = —30°) M 0.022 to —0.027 Nm
Yaw torque needed Niax +0.015 Nm

Available (6, = 30°) N about +0.05 Nm

Another important matter is maybe the capability of the con-
trol surfaces in offering actual control in time. Time constants
and actuator dynamics haven’t been simulated in this simpli-
fied approach. While for small RPAS actuator response could
be fast enough, this velocity in actuation shall be certainly
taken into account in larger aircraft, as EXAELIA project cer-
tainly will demand.

5 Conclusions and future works

The development of CCM methods on non-conventional air-
craft configurations was introduced. Firstly, an overview of
the theory involved was described, followed by some practi-
cal insights regarding the election of a suitable CCM. After
this, several remarks on a purely rotational system as model
are also introduced. The main result in this part is maybe the
importance of accounting for realistic system response and
control, and their implication on the parameters involved in
the CCM controller.

Several values for torques needed are also assessed providing
a preliminary baseline for sizing actuators and control sur-
faces. This and other conclusions will be provided to EX-
AELIA project, as part of the HFCs control laws design task.
Regarding future works it is imperative to check these results
in the more general context of the complete Flight Dynamics
of the aircraft, specially if a real physical model is tested in

real flight conditions or at least in controlled real conditions.
Also, attitude control can be fully dealt with updating Equa-
tions (18), (19), and (20) to a quaternion approach, taking
profit of the non-linear capability that CCMs use can provide,
at least as long as control authority is provided. It would be
also of interest to simulate complete critical maneuvers such
as take-off, landing and spin induced stall, putting special care
in the matter of absence of vertical stabilizers to recover from
these flight conditions. The closed loop matter is yet to be
addressed too, since the approach presented can be consid-
ered so far only a tracking solution. Following this line, it is
also of interest to study the introduction of adaptive solutions
and measures to deal with uncertainties both in the model and
control.
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