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Abstract

This study analyzes the influence of mental workload on physiology of 24 individuals with flight
deck experience during a remote control of an uncrewed aerial vehicle (UAV). The UAV operates
without line-of-sight communication, so any command given by the pilot has a two-second delay
due to the satellite link. To assist the pilot, two flight data display interfaces (HUDs) were
developed. During the simulation, physiological responses were monitored using electrodermal
activity (EDA) sensors, electrocardiograms (ECG) and eye tracking. Besides the physiological
data, the research also uses subjective workload assessments such as the NASA Task Load Index
(NASA-TLX), the Subjective Workload Dominance technique (SWORD), and the Instantaneous
Self-Assessment (ISA). Results indicated that designed HUDs influenced cognitive load and
flight accuracy leading to lower workload and performance improvement. These results highlight
the need for more adaptable interfaces. As a future perspective, the usage of adaptive operator
support systems is recommended, adjusting interfaces and automation levels according to the
user’s cognitive state, enabling a more efficient and safer interaction with advanced aviation

systems.
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1 Introduction

Aviation safety has evolved over the decades, together with
technological and operational advances in the sector. How-
ever, human error remains one of the causes of aviation acci-
dents, despite the global reduction in incident rates [1]. Pilots’
mental workload stands out among the factors contributing
to such errors as it can make decision-making and response
capacity both harder in critical situations [2, 3]. In this con-
text, understanding pilot physiology becomes essential, par-
ticularly in light of the growing challenges imposed by highly
automated modern flight decks.

With onboard automation, new cognitive demands are placed
on operators. Although automation has benefits such as re-
ducing repetitive tasks and increasing operational efficiency,
it can also bring cognitive overload, especially in high-
complexity or emergency scenarios in which the pilot must
take over control of the aircraft [4, 5]. The Human-Machine
Interface (HMI) in these situations requires attention to the
pilot’s cognitive state, in order to maintain their ability to re-
spond at critical moments.

In this scenario, monitoring pilot physiology becomes a
strategy to detect signs of mental overload in real time.
The use of physiological sensors such as Electrocardiogram
(ECG), Electrodermal Activity (EDA) and eye tracking has
proven effective in inferring the operators’ mental workload
[6, 7]. Integrating these into adaptive systems could be a sig-
nificant advancement in the design of future cockpits, making
them more agile and personalised responses to pilots’ cognit-
ive demands [8].

Based on this premise, the present study aimed to evaluate
methods and tools for understanding pilot physiology and
mental workload, in order to serve as input for future flight
deck designs. To this end, a controlled experiment involving
pilots, using physiological sensors and subjective workload
assessment scales such as NASA Task Load Index (NASA-
TLX) [9], Subjective Workload Dominance (SWORD) [10],
and Instantaneous Self-Assessment (ISA) was carried out.

The structure of this paper is as follows: Section 2 presents
the related work; Section 3 describes the materials and meth-
ods; Section 4 discusses the experimental results; and Section



5 provides conclusions and recommendations for future work.

2 Related Work

Research on pilot physiology has increasingly focused on
psychophysiological monitoring as a tool to assess mental
workload and enhance operational safety. Studies conducted
by Brazilian aerospace institutions such as the Department of
Science and Aerospace Technology (Departamento de Cién-
cia e Tecnologia Aeroespacial) (DCTA) and the Flight Test-
ing and Research Institute (Instituto de Pesquisa e Ensaios
em Voo) (IPEV) have explored the real-time monitoring of
military pilots using advanced physiological sensors, includ-
ing Electroencephalogram (EEG), Heart Rate (HR), and eye-
tracking devices [11]. These investigations aim to detect early
signs of cognitive overload or incapacitation, propose the de-
velopment of adaptive alert systems, and suggest refinements
in pilot selection and training processes to increase resilience
under high workload conditions.

Further studies have analysed the use of physiological and
subjective tools to assess workload in simulated and opera-
tional environments. For instance, investigations with ECG
and Galvanic Skin Response (GSR) sensors during day and
night missions using Night Vision Goggles (NVG) [12] found
minimal workload variation between conditions, but emphas-
ised the influence of pilot fatigue and rest routines. In Un-
crewed Aerial Vehicle (UAV) operation contexts [13], eye-
tracking combined with NASA-TLX and usability scales has
shown that more experienced operators exhibit lower cognit-
ive strain, with strong correlations between pupil dilation and
perceived workload. Similarly, research with fighter pilots
during IFR simulator tests demonstrated that Heart Rate Vari-
ability (HRV) is sensitive to task complexity, even when per-
formance scores remain constant.

Finally, real-flight studies [14] with light aircraft have indic-
ated that ocular metrics, especially saccadic rate, are more
reliable than cardiac indicators for distinguishing between
workload levels during different flight phases. These findings
reinforce the importance of integrating physiological monit-
oring into the cockpit environment. Collectively, the reviewed
works support the implementation of real-time, multimodal
monitoring systems as a foundation for safer and more adapt-
ive flight deck designs.

3 Materials and Methods

This study presents an experimental investigation of pi-
lot mental workload in simulated flight scenarios, aim-
ing to understand how different cockpit interface configura-
tions—particularly involving the use of a Heads-Up Display
(HUD)—affect cognitive load. Subjective and physiological
metrics were employed to enable a multidimensional assess-
ment of the participants’ mental effort. The research was con-
ducted at the Aeronautical Institute of Technology (Instituto
Tecnologico de Aerondutica) (ITA), within the Competence
Center of Manufacturing (Centro de Competéncia em Manu-
fatura) (CCM).

3.1 The Experiment

During a simulated flight between two cities, a critical fail-
ure required an emergency landing at an unmapped airfield.
In this scenario, the pilot was unable to remotely configure
the landing parameters and had to take manual control of
the aircraft. A two-second delay in satellite communication
— between the pilot’s command inputs and the aircraft’s re-
sponse — added further complexity to the task.

3.2 Participants

The experiment involved 24 volunteer participants with pro-
fessional flight deck experience who acted as pilots in simu-
lated flight scenarios. All participants were informed about
the objectives of the study and provided written informed
consent by signing the Informed Consent Form (ICF), in ac-
cordance with ethical principles for research involving human
subjects (Ethics Submission Registration Number: CAAE
77429824.7.0000.5503). Prior to the experimental sessions,
participants underwent initial training to become familiar
with the simulation environment and the equipment used.

3.3 Experimental scenarios

This experiment is part of a broader initiative called the
Air Domain Systems (ADS), structured according to a
design—test—analysis protocol. The evaluations were carried
out using the ADS Simulator (Figure 1 [15], a computational
platform developed to replicate aircraft behavior in a con-
trolled flight environment.

Figure 1: The ADS simulator computer setup

A real-time flight test was conducted in a Sim-
ulink®-FlightGear® environment, with the cockpit graphics
rendered via Unity®. Each session involved a visual ap-
proach to Sao José dos Campos airport, starting from cruise
altitude and incorporating a fixed 2s communication latency.
The only manipulated factor was the HUD configuration.
Flight durations averaged 6—7 minutes, and the sequence of
the three HUD conditions was assigned randomly for each
participant to prevent practice effects.

* No HUD (Control condition): Only the Primary Flight
Display was visible to the pilots, experiencing the same



2 seconds delay on all critical flight parameters, such as
heading, airspeed, altitude and pitch angle.

Figure 2: No HUD.

e HUD 1.0 (Numerical cues): In this first head-up dis-
play setup, the forward-looking view was augmented
with numeric readouts of bank angle and roll rate,
numeric readouts of pitch angle and pitch-rate and a
delay-compensated trajectory prediction, depicted as a
series of blue squares, computed by the onboard flight-
dynamics model.

Figure 3: HUD 1.0.

* HUD 2.0 (Graphical and mode-based display): Build-
ing on HUD 1.0, the enhanced version added a graph-
ical tapes for bank angle and roll rate, a graphical tapes
for pitch angle and pitch-rate, a predictive flight-path in-
dicator shown as a magenta “flight-path ball” (using the
same compensation algorithm), a chevron-style throttle
status indicator and two selectable modes—Cruise and
Landing—tailored to different flight phases.
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Figure 4: HUD 2.0.
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3.4 Equipments and instrumentation

The experimental platform was instrumented with both ob-
jective physiological sensors and subjective assessment tools.
Physiological data were acquired via the CAPTIV system
(TEA), which continuously recorded EDA, peripheral tem-
perature (TEMP) and an ECG. Concurrently, participants

wore Tobii Pro Glasses 2 for mobile eye tracking. This sys-
tem captured high-resolution measurements of pupil diameter
and fixation patterns across both cockpit instruments and the
external scene.

Immediately following each predefined flight segment, parti-
cipants used the ISA to record their perceived cognitive work-
load in real time. After completing each full scenario, they
filled out the NASA-TLX, which evaluates six dimensions of
workload—mental demand, physical demand, temporal de-
mand, performance, effort, and frustration—via a multidi-
mensional rating scale. Once all three scenarios were fin-
ished, pilots applied the SWORD method to perform pairwise
comparisons among the HUD conditions and establish a rank-
ing of relative subjective workload.

In addition to subjective assessments, objective performance
was evaluated throughout each flight based on the deviation
from the center of predefined target areas (green circles). Par-
ticipants performed better when their control inputs kept the
aircraft closer to the center.

3.5 Data Analysis
3.5.1 Objective physiological measurements

For the EDA signals, a low-pass filter with a cutoff frequency
of 5 Hz was initially applied to eliminate high-frequency com-
ponents and preserve the phasic component of the signal.
From the filtered signal, metrics such as the number of identi-
fied peaks—representing discrete physiological events—and
the sum of the amplitudes of these peaks—reflecting the over-
all intensity of the autonomic response—were extracted. For
both variables, the percentage difference relative to each par-
ticipant’s individual baseline was calculated.

In the case of the ECG, processing began with the identi-
fication of R-wave peaks in the pre-filtered signal. Based
on this detection, RR intervals—corresponding to the time
between successive heartbeats—were computed. These in-
tervals were then converted into NN intervals by removing
non-physiological outliers. From the valid NN intervals, the
following Heart Rate Variability (HRV) metrics were extrac-
ted: HR, the Standard Deviation of NN Intervals (SDNN), the
Root Mean Square of Successive Differences (RMSSD), and
the Low-frequency to High-frequency Ratio (LF/HF). As with
the EDA metrics, the percentage change from the individual
baseline was calculated for each of these parameters, allow-
ing for the assessment of relative variations in physiological
state across participants.

Regarding the processing of the data obtained through the eye
tracker, the values of the right and left pupil diameter were
extracted over time within the selected period. The average
pupil diameter was calculated by taking the arithmetic mean
of both eyes and subsequently averaging it over the defined
time window. The percentage difference relative to each par-
ticipant’s individual baseline was then computed for this av-
erage. Additionally, heat maps were generated to visually in-
dicate the areas of the screen that received the most visual at-
tention, and gaze plots were created to represent the temporal
sequence of fixation points, enabling the analysis of visual



exploration patterns during the task.

3.5.2 Subjective workload assessments

The NASA-TLX was administered at the end of each simula-
tion scenario and consisted of two main stages. In the first
stage, participants performed pairwise comparisons among
the six workload dimensions (mental demand, physical de-
mand, temporal demand, performance, effort, and frustra-
tion), indicating which aspects were more relevant to their
perceived cognitive effort. The number of times each dimen-
sion was selected during the comparisons determined its relat-
ive weight. In the second stage, participants rated each dimen-
sion on a scale from 1 to 10, reflecting the perceived intensity
of workload for that particular aspect. Using the weights and
the ratings, a weighted average was calculated to obtain the
final NASA-TLX score.

The ISA was applied continuously during the simulated
flights. Approximately every 30 seconds, a visual signal
prompted participants to report their current level of mental
workload using a scale from 1 (minimal) to 5 (maximum). All
responses recorded during each scenario were used to com-
pute an average score per participant and per scenario.

Figure 5: ISA section.

The SWORD method was administered at the end of all sim-
ulation trials to directly compare the different interface con-
figurations. Participants made pairwise comparisons between
the three interface conditions (No HUD, HUD 1.0, and HUD
2.0), assigning a value on a workload dominance scale for
each pair. This scale ranged from 1 (equal workload) to 9
(absolute dominance), according to each participant’s per-
ception. The assigned values were organized into a judg-
ment matrix, which was then column-normalized. The mean
of each row produced the principal eigenvector, representing
the relative weights of mental workload for each task. Sub-
sequently, the eigenvalue of the matrix was computed, and a
consistency check was performed to assess the logical coher-
ence of the comparisons.

3.5.3 Statistical Analysis

To compare the effect of the three HUD conditions on each
dependent variable, a blocked Analysis of Variance (ANOVA)
was used, considering each participant as a blocking factor to
control for individual variations. Prior to the test, the assump-
tions of normality of residuals and homogeneity of variances
were verified using the Shapiro-Wilk and Levene’s tests, re-
spectively.

For variables that did not meet the ANOVA assumptions
even after data transformation attempts (e.g., logarithmic), the
equivalent non-parametric test, the Friedman Test, was em-
ployed. In all cases, a significance level of a = 0.05 was
adopted. When a significant main effect of the treatment was
found, post-hoc tests such as Tukey’s HSD (for ANOVA) or
non-parametric multiple comparison tests were conducted to
identify specific pairwise differences.

Additionally, to investigate the intrinsic relationship between
the different workload and physiological metrics, a Spear-
man’s rank correlation matrix was calculated.

4 Results and discussions

The results presented in this chapter are derived from an ex-
perimental approach whose primary objective was to identify
which of the evaluated HUD interfaces imposes the lowest
mental workload on participants.

4.1 NASA-TLX

The NASA-TLX results are summarized in Figure 6 and
Table 1. In these visualizations, red represents the scenario
with the highest mental workload, yellow indicates an inter-
mediate level, and green corresponds to the lowest workload.
The "No HUD" scenario presented the highest average mental
workload, followed by "HUD 1.0", while "HUD 2.0" had the
lowest workload values. The data also indicate greater variab-
ility in participants’ responses for the "No HUD" condition,
suggesting divergent perceptions, whereas "HUD 2.0" results
were more consistent. Overall, the findings suggest that HUD
2.0 was the most cognitively efficient interface among the
three evaluated.

Boxplot - NASA_TLX

7 Condition
E BE NoHUD
L6 E9 HUD1.0

B3 HUD2.0

o S o
N S W
D o o
5 & &
Condition

Figure 6: NASA-TLX Results.



Condition | Average NASA-TLX Score

HUD 1.0 6.33
HUD 2.0 5.80

Table 1: Average NASA-TLX scores for each scenario.

To assess the effect of the HUD conditions on the NASA-
TLX score, a blocked ANOVA was conducted, with each par-
ticipant treated as a block. The assumptions for the test were
met. The analysis revealed a statistically significant effect of
the HUD condition (F(2,46) = 4.54, p = 0.016), as detailed
in Table 2.

A post-hoc Tukey’s HSD test was used for pairwise comparis-
ons. The results, shown in Table 3, indicate that the workload
in the No HUD condition was significantly higher than in the
HUD 2.0 condition (p ~ 0.05).

Table 2: Analysis of Variance (ANOVA) Results for the NASA-
TLX Variable.

sum_sq df F PR(GF)
Condition 879 2.0 454 0.016
ID 56.72 23.0 2.55 0.003

Residual 4452 46.0

Table 3: Pairwise comparison results (Tukey HSD) for the
NASA-TLX Variable.

groupl group2  p-adj reject
HUDI.0O HUD2.0 0.29 False
HUD1.0 NoHUD 0.62 False
HUD2.0 NoHUD 0.05 True

4.2 ISA

Figure 7 presents the ISA results using a boxplot. As in the
previous figure, the color scheme follows the same pattern:
red represents the scenario with the highest perceived mental
workload, yellow indicates an intermediate level, and green
corresponds to the lowest workload. The average scores for
each experimental condition are shown in Table 4. Since the
ISA scale ranges from 1 to 5 — with higher values indicat-
ing greater cognitive effort — the data reveal that the HUD
2.0 condition required the least mental workload from par-
ticipants. This was followed by HUD 1.0, which showed a
moderate level of workload, while the No HUD condition was
the most cognitively demanding. Despite these differences
in average scores, the distributions across the three scenarios
were relatively similar, suggesting that changes in HUD con-
figuration had only a limited effect on the subjective percep-
tion of mental workload during task execution.

Boxplot - ISA
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Figure 7: ISA Results.

Condition | Average ISA Score

HUD 1.0 2.79
HUD 2.0 2.57

Table 4: ISA Average.

The effect of the HUD conditions on the ISA score was eval-
uated using a blocked ANOVA, as its assumptions were met.
A significant main effect was found (F(2,46) = 3.41,p =
0.041), suggesting an overall difference among the conditions
5. However, the post-hoc Tukey’s HSD test did not have
sufficient statistical power to identify significant differences
between any specific pair of conditions (see Table 6). This
discrepancy may occur when the p-value from the ANOVA is
close to the significance threshold or when there is high vari-
ability in the data, which limits the statistical power of the
post-hoc test.

Table 5: ANOVA Results for the ISA Variable.

sum_sq df F PRGF)
Condition 1.21 2.00 341 0.04
ID 31.34 23.00 7.68 0.00
Residual 8.16 46.00

Table 6: Pairwise comparison results (Tukey HSD) for the
variable ISA.

groupl group2  p-adj reject
HUD1.0 HUD2.0 0.56 False
HUDI1.0O NoHUD 0.90 False
HUD2.0 NoHUD 0.34 False




43 SWORD

The analysis of the data from the SWORD questionnaire was
conducted based on the percentage evaluation of the scenarios
identified by participants as those requiring the least and the
highest mental workload, as illustrated in Figures 8 and 9,
respectively.

HUD that required the least workload

No HUD

HUD1

Figure 8: HUD that required the least mental workload.

HUD that required the greatest workload
HUD 2

HUD 1

Figure 9: HUD that required the greatest mental workload.

Figure 8 shows that the majority of participants (79.2%) in-
dicated the HUD 2.0 scenario as the least cognitively demand-
ing. In contrast, only 8.3% of participants perceived the No
HUD scenario in the same way, suggesting that it was gener-
ally considered more mentally taxing.

Figure 9 reveals that the No HUD scenario was perceived as
the most mentally demanding by 58.3% of participants, fol-
lowed by HUD 1.0 with 33.3%, while only 8.3% attributed
the highest workload to HUD 2.0.

The data for the SWORD scores violated the assumptions for
parametric testing. Therefore, the non-parametric equivalent,
the Friedman Test, was used to compare the three HUD con-
ditions. The test revealed a highly significant difference in
perceived workload among the scenarios (x2(2) = 17.70, p <
0.001).

4.4 Performance

The radius of the green circles was fixed at 20 meters, and
the average distances were calculated based on displacements

along the x and y axes for each experimental scenario, re-
flecting how closely participants maintained their trajectory
relative to the center of the target areas during the flight.

The average distances to the center obtained for each condi-
tion are presented in Table 7, while Figure 10 displays the
data using a boxplot. As in the previous figures, the colors
follow the same pattern for representing mental workload.

Condition

Distance Average

HUD 1.0 5.18
HUD 2.0 5.03

Table 7: Average distance from the center for each scenario.

Boxplot - Performance
9 L ]

BE NoHUD
B3 HUD1.0

‘ Condition
EJ HUD2.0

4 ‘

00 N q®
Ne Q Q
ep ég Q9
Condition

Figure 10: Performance.

The results show that the HUD 2.0 scenario yielded the best
average performance, that is, the smallest deviations from the
center, followed by HUD 1.0. The No HUD condition ex-
hibited the largest deviations, reflecting the lowest accuracy
among the three.

Despite the average in the HUD 2.0 scenario meaning a
lighter workload, greater data dispersion was observed, in-
dicating increased variability in performance among parti-
cipants. This pattern suggests that while the HUD 2.0 inter-
face contributed positively to most individuals’ performance,
some participants experienced specific difficulties during the
task, which may be attributed to individual differences in ad-
apting to the interface.

The raw performance data (distance from the center) did not
meet the assumptions for a standard ANOVA. A logarithmic
transformation was successfully applied to the data to satisfy
these assumptions. Subsequently, a blocked ANOVA was per-
formed on the transformed data. The analysis found no stat-
istically significant effect of the HUD conditions on flight per-
formance (F(2,46) = 0.83,p = 0.44).



45 EDA

For the analysis of the data obtained through the EDA sensor,
three parameters related to the phasic component of each par-
ticipant’s signal were considered: the number of peaks detec-
ted (Num_peaks), the sum of signal values (Sum_data), and
the sum of the amplitudes of these peaks (Sum_amp). Sub-
sequently, the percentage difference of each parameter relat-
ive to the individual baseline of each participant was calcu-
lated, as described in Equation 1, with the aim of standardiz-
ing physiological responses and enabling comparisons across
experimental conditions.

Scenario Average — Baseline Average

) x 100%
M
To facilitate the interpretation of results, boxplots were con-

structed (Figures 11 to 13), following the same color scheme
used in the other analyses.

P tage Diff =
ereentage Litierence < Baseline Average
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Figure 11: Number of peaks with outliers.

During the analysis, some outliers were observed. This may
be attributed to the high sensitivity of the EDA to emotional
and cognitive fluctuations, which makes this type of signal
particularly susceptible to uncontrolled variations in the ex-
perimental environment. Factors such as skin hydration level,
relative humidity, and ambient temperature can significantly
affect the skin’s electrical conductance and, consequently, the
EDA signal. Furthermore, the sensor was positioned on the
fingers, a region prone to involuntary movements or postural
adjustments throughout the task, which may introduce noise
into the signal or momentarily distort the measurements.

The average percentage difference from each parameter’s
baseline is presented in Table 8.
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Figure 12: Sum of signal value with outliers.
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Figure 13: Sum of the amplitudes of these peaks.

Sum_amp | Sum_data

Condition | Num_peaks
No HUD
HUD 1.0

HUD 2.0

Table 8: EDA — Average percentage difference from baseline
for each parameter (%).

The data for all electrodermal activity (EDA) metrics
(Num_peaks, Sum_amp, and Sum_data) severely violated
the assumptions for parametric testing. The non-parametric
Friedman Test was therefore used for each metric to compare
the HUD conditions. The analysis did not find a statistically
significant effect for any of the EDA metrics (Num_peaks:



p =0.45; Sum_amp: p = 0.88; Sum_data: p = 0.88).

4.6 ECG

For the analysis of the data obtained from the ECG signal,
the same methodological approach used in the EDA analysis
was adopted. Initially, the percentage differences of various
cardiac parameters relative to each participant’s baseline were
calculated, with the aim of normalizing the physiological re-
sponses.

The boxplots were constructed for each parameter (Figures
14 to 17) in order to facilitate the visualization of data distri-
bution across the experimental scenarios. The color scheme
used was the same as in the other analyses, ensuring visual
and interpretative consistency.
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Figure 14: Heart Rate.
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Figure 15: Standard Deviation of NN Periods.
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Figure 16: Root Mean Square of Successive Differences.
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Figure 17: Ratio of Low Frequency and High Frequency.

Condition | HR

SDNN

RMSSD | LF/HF

No HUD -25.19 38.75
HUD 1.0 | 831 | -16.60 | -23.32 23.15
HUD 2.0 | 7.85 | -12.27 | -22.01 31.14

Table 9: ECG — Average percentage difference from baseline.

As shown in Table 9, it can be observed that, with the excep-
tion of the LF/HF parameter, the other physiological indic-
ators showed that the scenario with the lowest mental work-
load was HUD 2.0, while the No HUD condition exhibited
the highest variation values and was therefore associated with
the highest perceived mental workload.



The ECG revealed no statistically significant physiological
response to the different HUD conditions. A blocked AN-
OVA was applied to HR and SDNN, as they met paramet-
ric assumptions, but found no significant effects (F(2,46) =
0.50,p = 0.61 for HR; F(2,46) = 1.71, p = 0.19 for SDNN).
Similarly, for the RMSSD and LF/HF ratio metrics, which vi-
olated these assumptions, the non-parametric Friedman Test
also found no significant differences (y>(2) = 1.75,p = 0.42
for RMSSD; x?(2) = 0.58, p = 0.75 for the LF/HF ratio).

4.7 Eye Tracker

The pupil diameters of the participants’ right and left eyes
were recorded over time. Based on these data, the average pu-
pil diameter was calculated, and the percentage variation rel-
ative to the baseline condition was subsequently determined.
As a result, Figure 18 was obtained, and the corresponding
averages are presented in Table 10.

Boxplot - PupilDiameter
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Figure 18: Pupil Diameter
Condition | Average Pupil Diameter (%)

HUD 1.0 5.84
HUD 2.0 5.35

Table 10: Pupil Diameter- Average percentage difference
from baseline.

A blocked ANOVA was conducted to evaluate the effect of
the HUD conditions on the average pupil diameter, as the data
met the necessary assumptions. The analysis indicated a stat-
istically significant main effect (F(2,46) = 4.85,p = 0.012),
suggesting that the interfaces had an overall impact on pupil
size. However, the subsequent post-hoc Tukey’s HSD test did
not find significant differences between any specific pair of
conditions.

4.8 Statistical Analysis
4.8.1 Spearman Correlation

With the database collected in the experiment, it was possible
to perform a statistical analysis. The one chosen for this ex-

periment was Spearman’s. This method was chosen for its
robustness in assessing monotonic relationships, which are
not necessarily linear, making it suitable for the nature of the
psychophysiological and subjective data. The resulting cor-
relation matrix, presenting the correlation coefficients (p) for
each pair of variables, is shown in Figure 19.

Based on the data presented, a moderate positive correlation
was observed between the subjective workload scale NASA-
TLX and the SWORD metric (p = 0.45), indicating that as
perceived workload increases, so does the subjective dom-
inance score. This reinforces the consistency of the self-
reported responses.

As expected, variables of the same physiological nature
showed strong correlations with each other. The heart rate
variability metrics, SDNN and RMSSD, exhibited a strong
positive correlation (p = 0.64), reflecting their common ori-
gin in the analysis of RR intervals. Similarly, the different
parameters of electrodermal activity (EDA) were highly cor-
related with one another.

A moderate positive correlation was found between Heart
Rate (HR) and Pupil Diameter (p = 0.50). This association
suggests a co-activation of the sympathetic nervous system
in response to cognitive effort, where both indicators tend to
increase simultaneously.

On the other hand, the negative correlation between NASA-
TLX and the physiological parameters EDA (SumAmp, p
= -0.33) suggests that higher levels of perceived workload
are associated with lower cumulative electrodermal activity.
This likely reflects the complexity of the psychophysiological
response. This can be attributed to different physiological
factors - like the tendency for responses to decrease with fa-
miliarity, adaptation to the task, and differences in how each
participant’s body handles pressure — to technical limitations
in signal acquisition, such as poor sensor contact or environ-
mental interference.

Overall, the highest correlation coefficients were observed
between variables of the same nature (subjective—subjective,
physiological-physiological). This finding supports the hypo-
thesis that the response to cognitive workload is multidimen-
sional, and that integrated approaches are more appropriate
for its quantification.

5 Conclusion

The design of the HUD significantly impacts the perceived
cognitive workload of pilots, with the HUD 2.0 proving to be
the most effective in reducing workload during the simulated
task. This conclusion is supported by statistically signific-
ant results from NASA-TLX and SWORD, where HUD 2.0
is ranked as the least demanding interface; furthermore, it is
corroborated by the pupillometry.

However, the reduction in perceived workload did not trans-
late into a statistically significant improvement in flight per-
formance, suggesting that under the tested conditions, the be-
nefits of the HUDs were related more to operator comfort and
perceived effort than to task execution accuracy. Moreover,
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Figure 19: Spearman Correlation

a majority of the physiological sensors, including those for
electrocardiography (ECG) and electrodermal activity (EDA),
were not sensitive to detect significant differences between
the interface conditions. This divergence underscores that
different measurements capture different aspects of the hu-
man state, and a reduction in cognitive load does not mean a
change across all physiological or performance metrics.

These findings have important implications for HMI design,
reinforcing that graphical, context-aware interfaces can alle-
viate pilot strain. The study also serves as a caution, demon-
strating that a multi-modal approach is essential for a compre-
hensive understanding of operator state. Future work should
investigate these interfaces under conditions of higher task
difficulty to determine if the benefits in perceived workload
eventually translate to tangible performance gains. Addition-
ally, the counterintuitive negative correlation found between
subjective workload and electrodermal activity warrants fur-
ther investigation to understand the complex psychophysiolo-
gical dynamics at play. Ultimately, this research contributes
to the development of safer and more human-centered avi-
ation systems by providing a nuanced view of the interplay
between interface design and pilot cognitive load.

References

[1] Boeing. Statistical summary of commercial jet airplane
accidents, 2024. Boeing’s Technical Report.

[2] T. Adams, R. Johnson, and S. Lee. Cognitive workload
in aviation: Impacts and measurement methods. Journal
of Aviation Psychology, 12(1):15-29, 2019.

[3] D. Williams and M. Patel. Human error and mental over-
load in flight operations. Aerospace Human Factors Re-
view, 8(3):44-56, 2022.

-0.00

[4] A. Miller and K. Thompson. Automation and cognit-
ive load in modern flight decks. Journal of Aerospace
Systems, 10(2):101-110, 2020.

[5] C. Lee and J. Kwon. Pilot interaction with automated
systems: A cognitive load perspective. International
Journal of Aviation Psychology, 15(1):25-40, 2023.

[6] J. B. Brookings, G. F. Wilson, and C. R. Swain. Psy-
chophysiological responses to changes in workload dur-
ing simulated air traffic control. Biological Psychology,
42(3):361-377, 1996.

[7] A.F. Kramer. Physiological metrics of mental workload:
A review of recent progress. Multiple-task performance,
pages 279-328, 1991.

[8] N. Pongsakornsathien et al. Eye tracking in aerospace:
Technologies and human-machine interaction. In Pro-
ceedings of the Human Factors and Ergonomics Society
Annual Meeting, volume 63, pages 101-105, 2019.

[9] Sandra G. Hart and Lowell E. Staveland. Develop-
ment of nasa-tlx (task load index): Results of empirical
and theoretical research. In Advances in Psychology,
volume 52, pages 139-183. Elsevier, 1988.

[10] Michael A Vidullch, G Frederic Ward, and James
Schueren. Using the subjective workload dominance
(sword) technique for projective workload assessment.
Human factors, 33(6):677-691, 1991.

[11] JR.S. Scarpari, M.W. Ribeiro, C.S. Deolindo, et al.
Quantitative assessment of pilot-endured workloads
during helicopter flying emergencies: an analysis of
physiological parameters during an autorotation. Sci-
entific Reports, 11:17734, 2021.

[12] M. H. O. C. da Silva, T. E Macédo,
C. de Carvalho Lourengo, I. de Souza Rehder,
A. A. da Costa Marchiori, M. P. Cesare, R. G. Cortes,
M. M. Cardoso Junior, and E. Villani. Mental workload
assessment in military pilots using flight simulators
and physiological sensors. In Human Mental Work-
load: Models and Applications. H-WORKLOAD 2021,
volume 1493 of Communications in Computer and
Information Science, pages 99-115, Virtual, Online,
2021. 5th International Symposium on Human Mental
Workload, Models and Applications (H-WORKLOAD
2021), Springer, Cham.

[13] A.C.Russo, A. Sarmento, I. S. Rehder, M. M. Cardoso-
Junior, and E. Villani. Assessing mental workload and
interface usability in military pilots: An advanced eye-
tracking methodology. In Proceedings of the 34th Con-
gress of the International Council of the Aeronautical
Sciences (ICAS), Florence, Italy, 2024. ICAS. Presen-
ted at ICAS 2024.

[14] Silvia Scannella, Carlo Chiorri, and Mickaél Causse.
Assessment of ocular and physiological metrics to dis-
criminate flight phases in real light aircraft. Interna-



[15]

tional Journal of Aerospace Psychology, 28(1-2):1-14,
2018.

Andrew Gomes Pereira Sarmento, Thiago Rosado
de Paula, Abner Souza de Oliveira, Edmar Thomaz
da Silva, Jodo Possamai, Henrique Costa Marques,
Moacyr Machado Cardoso Junior, and Emilia Villani.
A human-machine interface analysis for teleoperation
of uav overtime delay. In Proceedings of the Inter-
national Council of the Aeronautical Sciences (ICAS).
ICAS, 2022.



	Introduction
	Related Work
	Materials and Methods
	The Experiment
	Participants
	Experimental scenarios
	Equipments and instrumentation
	Data Analysis
	Objective physiological measurements
	Subjective workload assessments
	Statistical Analysis


	Results and discussions
	NASA-TLX
	ISA
	SWORD
	Performance
	EDA
	ECG
	Eye Tracker
	Statistical Analysis
	Spearman Correlation


	Conclusion

