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Abstract
Large Language Models (LLMs) are entering safety-critical domains, yet their alignment with
expert judgement under risk remains uncertain. We compare decision patterns among professional
pilots (N=36), lay participants (N=36), and a local LLM (single-case, N=1) across six hypothetical
scenarios spanning operational hazards, an ethical dilemma, and two canonical Prospect Theory
framings. In loss/gain frames, humans and the LLM showed biases consistent with Prospect
Theory. However, in operational scenarios, pilots consistently chose the safest option—reflecting
recognition-primed pattern matching and safety culture—whereas the LLM selected risk-seeking,
utilitarian strategies. In the ethical dilemma, nearly all humans favored a duty-of-care decision
while the LLM maximized aggregate outcomes. These results indicate that surface-level mimicry
in abstract tasks does not translate to context-grounded, duty-constrained reasoning required in
aviation. We outline a multilayer alignment agenda (expert RLHF, constitutional duty constraints,
formalized taboos, domain red-teaming) to reduce misalignment before deployment in safety-
critical settings.
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1 Introduction
Integrating Artificial Intelligence (AI), especially Large Lan-
guage Models (LLMs), into safety-critical fields like avi-
ation presents both transformative opportunities and significant
challenges. Although LLMs can automate analysis and sup-
port decision-making, their ability to align with the nuanced,
context-driven reasoning of human experts remains uncertain.

This study addresses this gap by comparing decision-making
patterns among professional pilots, laypeople, and a local AI
agent across hypothetical scenarios ranging from abstract di-
lemmas to realistic emergencies. Drawing on Prospect Theory
and the Recognition-Primed Decision (RPD) model, we find
that while AI can mimic human biases in abstract problems, it
defaults to a risk-seeking, utilitarian logic that contrasts with
aviation’s safety-first, deontological principles.

Objectives: We (i) compare decision patterns and risk pref-

erences across groups in abstract and operational dilemmas;
(ii) analyse framing effects and expert intuition via Prospect
Theory and RPD; (iii) identify misalignment points between
AI logic and aviation safety principles; and (iv) propose design
and alignment strategies (expert feedback, constitutional duty
constraints, hard safety taboos, and continuous red-teaming).

Roadmap: Section 2 reviews Prospect Theory, the
Recognition-Primed Decision (RPD) model, and the use of
LLMs in safety-critical contexts. Section 3 details participants,
scenarios, the procedural workflow (prompting, training, and
LLM-as-a-Judge), and statistical methods; the ethics subsec-
tion closes Methods. Section 4 presents the results. Section 5
discusses expertise, ethics, implications, and practical util-
ity. Section 6 consolidates limitations, risks, and mitigations.
Subsection 6.3 outlines future work, and Section 7 concludes.
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2 Background and Related Work
2.1 Prospect Theory and Framing

Prospect Theory explains systematic deviations from expected
utility, including reference dependence (gains vs. losses), loss
aversion, diminishing sensitivity, and probability weighting.
In gain frames, people tend to be risk averse, whereas in loss
frames they tend to be risk seeking; these effects replicate
across domains and are sensitive to framing choices.[1, 2, 3, 4]

2.2 Expert Decision-Making (RPD) and Safety Culture

In high-risk, time-pressured environments such as cockpits,
experts rely on recognition-primed decision-making: they rap-
idly recognise familiar patterns, generate a plausible course
of action (often the first), and mentally simulate it rather
than comparing multiple alternatives analytically.[5, 6, 7, 8]
This sits within safety culture that encodes taboos around
unacceptable risks and emphasises error management and
resilience.[9, 10, 11, 12]

2.3 LLMs in Safety-Critical Domains / Dual-LLM

LLMs show strong pattern-matching on textual tasks but may
hallucinate facts and over-optimise abstract objectives mis-
aligned with domain norms. Dual-LLM pipelines (generator +
judge) can improve output quality but may share biases if train-
ing data overlap, underscoring the need for domain constraints
and human oversight.[13]

3 Methods
3.1 Participants and Groups

We analysed three decision-maker groups:

• Pilots (Experts): N = 36 professional pilots with flight
experience ranging from 500–1000h to 1001–3000h,
representing a benchmark for aviation decision-making
shaped by training, experience, and internalised safety
culture.[11, 12]

• Lay Participants (Novices): N = 36 participants with
no flight experience (verified by the “Do you fly aircraft?”
field), isolating domain-knowledge effects.

• AI Agent: A local LLM treated as a single-case study
(N = 1), using a generator–judge pipeline (Phi-3-Mini-
Instruct and Zephyr-7B-Beta). Conclusions specific to
this system illustrate broader alignment challenges in
critical domains.

3.2 Questionnaire and Scenarios (Q1–Q6)

Six key scenarios were posed:

• Q1 (Operational risk): Turning off the weather radar.

• Q2 (Ethical dilemma): Rescue trade-off (duty-of-care
vs. utilitarian maximisation).

• Q3 (Prospect Theory, loss frame): Certain deaths vs.
risky option.

• Q4 (Operational risk): Proceeding with a risk of serious
failure.

• Q5 (Operational risk): Maintaining route through a
storm with risk of structural damage.

• Q6 (Prospect Theory, gain frame): Certain saves vs.
risky option.

Operational scenarios probe expert safety culture and taboo
risks; PT scenarios isolate canonical framing effects; the eth-
ical scenario tests duty-based vs. utilitarian priorities.

3.3 Procedure and Workflow

3.3.1 Prompting (Generator)

The generator (Phi-3-Mini-Instruct) produced structured out-
puts (MCQ, Likert, short text). Prompts specified incident
context (single anonymised narrative), response formats, and
constraints (avoid speculation; admit uncertainty). We used
a low temperature (0.1) for consistency. Explicit instructions
reduced, but did not eliminate, hallucinations.

3.3.2 Training (Generator and Judge)

Both Phi-3-Mini-Instruct (generator) and Zephyr-7B-Beta
(judge) are Transformer-based models[14] fine-tuned locally
without the specific incident narrative to avoid leakage. Hyper-
parameters are in Table 1. Corpora combined Wikipedia and
aviation texts (sanitised for sensitivity), plus publicly available
NTSB reports to improve domain familiarity. Validation used
a calibration set for perplexity and macro-F1; early stopping
controlled overfitting.

Table 1: Hyperparameters Used During Fine Tuning

Phi-3-Mini-Instruct Zephyr-7B-Beta

Model Size 3B parameters 7B parameters
Batch Size 8 4
Learning Rate 2×10−5 1×10−5

Epochs 3 2

3.3.3 LLM-as-a-Judge and Pseudocode

The judge LLM independently rated generator answers for
confidence, completeness, and groundedness (0–1). To mit-
igate shared biases, we spot-checked 40 sampled items with
human experts.

Figure 1: Local LLM-based pipeline with a judge LLM for
partial self-evaluation.



Algorithm 1: Load Reports and Parse Questions
Input: reportsDir, questionsFile
Output: reports, questions

1 parser← DataParser();
2 reports← parser.loadReport(reportsDir);
3 questions← parser.parseQuestions(questionsFile);
4 return reports, questions;

This routine initialises the data layer and returns two canonical
objects consumed by the downstream pipeline.

• Inputs. reportsDir points to a directory with one or
more anonymised incident narratives (pre-converted to
text where necessary). questionsFile is a machine-
readable definition of the questionnaire covering Q1–Q6
(e.g., JSON/CSV), including item IDs, item types
(MCQ/Likert/open), and Safe vs. Risk mappings.

• Steps.

1. DataParser() constructs a parser with normalisa-
tion policies (encoding, whitespace, tokenisation,
redaction rules).

2. parser.loadReport(reportsDir) ingests and
cleans the narratives, applies basic quality checks
(e.g., deduplication, language/encoding normalisa-
tion), and returns a structured container (list or dict)
keyed by report ID.

3. parser.parseQuestions(questionsFile)
reads the questionnaire specification and builds a
typed schema for each item: id ∈ {Q1,. . . ,Q6},
type, options, safe/risk labels, and any
scoring rubrics.

• Outputs. reports is a cleaned corpus ready for prompt-
ing; questions is a validated catalogue of Q1–Q6 with
consistent IDs, types, and option semantics.

• Invariants and checks. Guarantees a one-to-one mapping
to {Q1,. . . ,Q6}; asserts the presence of Safe/Risk tags
where applicable; logs any malformed entries for audit;
preserves anonymisation.

Algorithm 2: LLM-Based Analysis Pipeline
Input: reportText, questions

1 handler← LocalModelHandler();
2 orchestrator← LLMOrchestrator(handler);
3 foreach question ∈ questions do
4 strategy← StrategyFactory.getStrategy(question,

reportText);
5 prompt← strategy.generatePrompt();
6 rawAnswer← handler.runGeneration(prompt);
7 parsedAnswer← strategy.parseResponse(rawAnswer);
8 evalPrompt← buildEvalPrompt(parsedAnswer, question,

reportText);
9 metrics← handler.runEvaluation(evalPrompt);

10 storeResult(question.id, parsedAnswer, metrics);

This loop orchestrates generation and judging for each ques-
tionnaire item, producing structured answers and quality met-
rics.

• Initialisation. LocalModelHandler() encapsulates the
local generator and judge models (I/O, seeds, temperat-
ure, safety constraints). LLMOrchestrator(handler)
coordinates per-item strategies and logging.

• Per-question cycle.

1. StrategyFactory.getStrategy(...) selects
a handling policy based on item type and context
(e.g., MCQ vs. Likert vs. open), including how to
inject reportText.

2. strategy.generatePrompt() assembles a
prompt with the required format, context window,
and guardrails (e.g., “avoid speculation; admit
insufficient information”), ensuring consistent
phrasing across Q1–Q6.

3. handler.runGeneration(prompt) queries the
generator (low temperature for stability) and returns
rawAnswer.

4. strategy.parseResponse(rawAnswer) norm-
alises the output into a canonical schema (e.g.,
MCQ option ID, Likert integer, free-text rationale),
enforcing validity (only allowed options, required
fields present).

5. buildEvalPrompt(parsedAnswer,...) cre-
ates a focused evaluation prompt for the judge,
providing the answer, the original question spec,
and salient snippets from reportText.

6. handler.runEvaluation(evalPrompt) ob-
tains judge scores (e.g., confidence, completeness,
groundedness in [0,1]) and any flags (contradictions,
missing evidence).

7. storeResult(question.id,...) persists the
structured answer and metrics with metadata
(timestamps, model versions, seeds) for auditability
and later statistical analysis.

• Reproducibility & safety. Deterministic seeds and fixed
templates improve reproducibility; validation catches out-
of-schema outputs; logs enable traceability; the design
allows swapping models/strategies without altering the
data contract.

Multimodal data (scope and challenges). Typical investig-
ations integrate multiple sources (CVR, FDR, meteorology).
Audio–text and data fusion can reduce hallucinations but face
privacy (CVR sensitivity), synchronisation (CVR/FDR tim-
ing), and access constraints (restricted raw data).[15] Refer-
encing flight parameters or weather can prevent unfounded
inferences (e.g., “engine fire” without corroborating data).



3.4 Statistical Analysis

The comparison of risky-choice proportions across groups was
carried out using Fisher’s exact tests, with Holm–Bonferroni
correction across the six scenarios. Effect sizes are reported as
Cramer’s V with 95% confidence intervals. Likert-scale com-
parisons used Mann–Whitney (or Kruskal–Wallis for k>2),
with effect size r and bootstrap confidence intervals (10,000
resamples). Given the AI agent is a single-case study (N=1),
we report its outcomes descriptively and avoid inferential stat-
istics on that unit.[16, 17, 18, 19, 20]

3.5 Ethical and Regulatory Considerations

This study did not require Institutional Review Board approval
because no sensitive or personally identifiable information was
collected or processed. All data were fully anonymised; parti-
cipation was voluntary with informed consent. All LLMs were
run locally with no cloud dependencies, and no PII is stored
in model weights. Although the pipeline shows time-saving
potential, the single-incident scope means outputs are advisory
only; certified investigators retain final authority. Deployment
at scale must comply with ICAO/EASA/FAA procedures.

4 Results

Figure 2 summarises the proportion of risky choices across
scenarios (Q1–Q6) by group.

Figure 2: Proportion of risky choices by group (Pilots: green;
Lay Participants: blue; AI: red) across Q1–Q6.

Pilots showed high consistency: marked risk aversion in oper-
ational scenarios (Q1, Q4, Q5) and framing-consistent beha-
viour in Prospect Theory scenarios (Q3 loss frame, Q6 gain
frame). Lay participants displayed intermediate patterns with
noticeable framing effects. The AI agent selected the risky
option in all three operational scenarios (Q1, Q4, Q5) and
followed canonical framing in Q3 (risk seeking) and Q6 (risk
aversion).

4.1 Scenario-by-Scenario Group Comparisons

Figure 3: Q1 (Weather radar): pilots overwhelmingly chose
the safe option; the AI selected the risky option.

Figure 4: Q2 (Ethical rescue): pilots and most lay participants
chose the safe option; the AI selected the risky alternative
(aggregate utility).

Figure 5: Q3 (Loss frame): strong risk-seeking across groups,
consistent with Prospect Theory.



Figure 6: Q4 (Serious failure risk): pilots chose the safe option;
the AI remained risk-seeking.

Figure 7: Q5 (Storm/structural risk): pilots avoided risk; the
AI was risk-seeking.

Figure 8: Q6 (Gain frame): all groups showed increased risk
aversion, with the AI fully risk-averse.

Summary Table. Table 2 reports the percentage of risk-
seeking choices for each group across Q1–Q6 (text and table
values are consistent).

Table 2: Risk-seeking rates (%) by group for Q1–Q6

Q1 Q2 Q3 Q4 Q5 Q6

Pilots 0 0 100 0 0 43
Lay Participants 22 18 65 31 47 47
AI Agent 100 100 100 100 100 0

Statistical Notes. Across operational scenarios (Q1, Q4,
Q5), pilot vs. non-pilot and pilot vs. AI risky-choice propor-
tions differed significantly by Fisher’s exact tests with Holm–
Bonferroni correction (all adjusted p < .005); effect sizes were
moderate-to-large (Cramer’s V). For the ethical dilemma (Q2),
pilots vs. AI also differed significantly after correction (adjus-
ted p < .01). Likert-scale contrasts (where applicable) yielded
consistent Mann–Whitney results (effect size r) with 95% boot-
strap CIs. The AI (N=1) is summarized descriptively without
inferential testing.

5 Discussion
5.1 Prospect Theory vs. Operational Scenarios

In Q3 (loss frame) and Q6 (gain frame), humans and the AI
exhibited canonical framing effects, consistent with Prospect
Theory.[1, 2, 3, 4] However, in operational scenarios (Q1, Q4,
Q5), pilots uniformly chose safe options, consistent with RPD-
style pattern recognition and safety taboos that categorically
proscribe certain hazards.[5, 6, 9, 10] Crew accounts in the real
incident motivating the study illustrate rapid recognition and
immediate safe action (“I saw the EGT spike... it’s real”; “de-
clared MAYDAY immediately”), consistent with recognition-
primed scripts rather than analytical trade-offs.[21]

5.2 Ethical Tensions (Duty of Care vs. Utilitarianism)

In Q2, pilots and most lay participants chose to preserve lives
under their protection (duty-of-care), whereas the AI selec-
ted a utilitarian maximisation. This aligns with consequen-
tialist reasoning patterns observed in LLMs,[22, 23, 24, 25]
but conflicts with professional deontological imperatives in
aviation and rescue.[26, 27, 28] The divergence exemplifies
value misalignment: the AI optimises expected outcomes
while neglecting role-based duties and the ethics of acts vs.
omissions.[29, 30, 31, 32]

5.3 Implications for Alignment

The generator–judge setup improves surface quality but risks
shared biases if models share pretraining/fine-tuning distri-
butions. Mitigations include using distinct model families,
multiple independent judges, and human spot checks. More
fundamentally, misalignment arises from (i) training data un-
derrepresenting taboo risk patterns, (ii) context-intake that
treats hazards as abstract probabilities rather than unacceptable
categories, and (iii) prompting lacking explicit duty constraints.
These require domain-specific alignment that encodes safety
culture and duties, not only general helpfulness.



5.4 Practical Utility and Innovations

Even at this single-incident stage, the framework offers: (1)
time-saving on routine coding; (2) consistency across recurring
categories; (3) preliminary hypothesis checks by contrasting
LLM “first pass” with investigator judgement; (4) a path to-
ward adaptive or conversational PT processes; and (5) potential
for multimodal integration (CVR/FDR/maintenance logs) to
minimise speculation.

Linking model failures to training, context intake, and
prompting. Finally, we explicitly trace the observed diver-
gences to three loci: (i) training data, which underrepresent
taboo-risk patterns and role-based duties encoded in aviation
culture; (ii) context intake, which frames hazards as graded
probabilities rather than categorical no-go conditions; and
(iii) prompting, which omits explicit duty constraints and
acceptable-risk thresholds. Together, these factors explain why
the model reproduces canonical framing effects in abstract
problems yet fails under operational, duty-bound scenarios.
Our mitigations—expert-guided RLHF, constitutional duty
constraints, hard safety taboos, and domain red-teaming—are
designed to act on these loci (see Section 6).

6 Limitations, Risks and Mitigations
6.1 Risks of LLM Hallucination / Misalignment (and

Study Limitations)

Observed error types: (1) factual hallucinations (systems not
on the aircraft), (2) misattribution of roles (captain vs. first of-
ficer), (3) over-generalisations (e.g., “all checklists completed”
where only partial completion was implied). With a single
narrative, the model may extrapolate missing details; aircraft-
specific idiosyncrasies are easily missed.
Study scope limitations: single incident; fixed 6-item ques-
tionnaire (no adaptive follow-ups); limited external validity
across aircraft, weather, phases, and organisational cultures.
These instrument and sampling limits constrain generalisation.

6.2 Mitigations (linking to training, context-intake, and
prompting)

RLHF with experts (RLHF-E). Encode RPD-style heuristics
and safety culture using pilot/engineer feedback, scoring com-
pliance with taboo patterns rather than generic helpfulness.[33,
34, 5, 35]

Constitutional AI with duty constraints. Incorporate explicit
rule sets (FAA Pilot’s Handbook of Aeronautical Knowledge,
QRH, regulations) to constrain actions that violate duties re-
gardless of abstract utility; include role-based duties and “acts
vs. omissions” ethics.[36, 37, 38, 39]

Hard constraints and formal verification. Translate
non-negotiable safety taboos (e.g., “never intentionally de-
grade critical flight systems”) into verifiable specifications
(e.g., temporal/deontic logic) enforced architecturally or via
wrappers.[40, 41, 42, 43]

Domain-specific red-teaming. Continuous adversarial testing
by aviation experts (not only AI researchers) to surface failure

modes absent from training, with an iterate-and-fix loop.[25,
44, 45]

Prompting and context-intake adjustments. Reinforce in-
structions to declare uncertainty; integrate cross-checks against
known aircraft specs and constraints; train with negative ex-
amples where “insufficient info” is correct.

6.3 Future Work

To overcome the constraints of this pilot, we aim to:

• Scale to Multiple Incidents: We intend to analyze 50+ di-
verse incidents, including different aircraft classes, flight
phases, and severities, and incorporate effect size report-
ing on a broader dataset.

• Multi Modal Data: Integrate cockpit voice recordings
and flight data logs to reduce reliance on textual specula-
tion.

• Stronger Ethical Protocols: Explore building an “eth-
ical check” submodule or ensemble model that queries
domain experts about morally nuanced scenarios.

• Hybrid Evaluation: Combine multiple LLM judges with
partial domain expert arbitration, mitigating self rein-
forcement biases.

These expansions will help refine the pipeline so it can handle
a wide range of scenarios with robust reliability and regulatory
acceptance.

6.4 Multi Incident Plans

To strengthen external validity and increase inference power,
our upcoming efforts will:

1. Incorporate multiple incidents (potentially 10 to 50 or
more), covering a broad range of aircraft, phases of flight,
and severities.

2. Examine geographical diversity (incidents from mul-
tiple airlines or regions), testing whether the LLM can
adapt to distinct operational cultures.

3. Employ temporal stratification (incidents from differ-
ent time periods), verifying how evolving standard op-
erating procedures or regulatory updates may affect per-
formance.

Such expansions would permit more robust statistical analyses
using appropriate non parametric tests and effect size measures,
thereby facilitating more reliable conclusions.

7 Conclusion
This study demonstrates that, although AI can mimic human
biases in abstract risk scenarios, its alignment collapses in real-
world operational contexts. Expert pilots consistently rejected
risky options, guided by deeply internalised safety culture and



rapid pattern recognition, whereas the AI defaulted to risk-
seeking, utilitarian logic. In ethical dilemmas, AI’s maxim-
ising approach clashed with the deontological duty of care pri-
oritised by humans. The main barrier to safe AI integration in
critical domains is not computational capacity, but the absence
of tacit cultural and ethical knowledge. Effective alignment
will require codifying domain-specific values and continuous
expert oversight. While the multi-layered alignment strategies
proposed here are promising, further research covering more
diverse incidents, AI models, and expert groups is essential
before AI can be safely entrusted with safety-critical decisions
in aviation or similar fields.

A Questionnaire and Coding Map (Q1–Q6)
Q1 (Operational). Turning off weather radar. Safe = keep
radar on / avoid degrading situational awareness; Risk = turn
off radar.
Q2 (Ethical). Rescue trade-off. Safe = return with 20 already
rescued; Risk = attempt to save 30 more with 50% chance of
losing all.
Q3 (PT Loss). Certain deaths vs. risky option. Safe = accept
certain loss; Risk = gamble to reduce losses.
Q4 (Operational). Proceed with serious failure risk. Safe =
do not proceed / mitigate; Risk = proceed.
Q5 (Operational). Maintain route through storm (structural
risk). Safe = avoid storm; Risk = continue through storm.
Q6 (PT Gain). Certain saves vs. risky option. Safe = accept
certain saves; Risk = gamble for higher saves.

B Generator Prompt and Judge Template
(Summary)

Generator (Phi-3-Mini-Instruct). Include: incident context;
response format (MCQ/Likert/open); constraints (avoid specu-
lation, admit uncertainty); temperature=0.1.
Judge (Zephyr-7B-Beta). Score confidence, completeness,
groundedness (0–1); require justification snippets; flag contra-
dictions or missing evidence.

C Aggregated Data (Anonymized)
Per venue policy, aggregate tables and code to reproduce fig-
ures can be provided to reviewers upon request. All personally
identifiable information is removed.
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