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Abstract
Unmanned Aircraft Systems (UAS) research increasingly requires high-performance, multi-
agent simulation environments that integrate realistic dynamics with immersive visualization.
This paper introduces a distributed co-simulation framework that seamlessly combines the dy-
namic modeling capabilities of Hopsan with the advanced rendering and interaction tools of Un-
real Engine 5.3. Communication between the two platforms is achieved through a lightweight,
User Datagram Protocol (UDP) based plugin, which supports bi-directional real-time data ex-
change and is complemented by a USB Raw Input plugin to integrate human-in-the-loop joystick
control. The proposed framework was validated across progressively complex scenarios. First, a
single F-16 aircraft data model was imported from Hopsan, encompassing waypoint-guided dy-
namics, atmospheric effects, actuation, and geoid-based altitude calibration. Its state reinforced
by Hopsan was visualized in Unreal in real-time. Second, the platform was extended to support
two independent F-16 agents, each communicating via dedicated UDP ports, thereby demonstrat-
ing modular, scalable, multi-agent operation. Third, we introduced a Human Machine Interface
(HMI) scenario, where one aircraft was piloted manually via joystick input, while the second
autonomously followed the same waypoint sequence. This validated the framework’s capacity
to handle human interaction in a multi-agent context. Results evidence synchronized simulation
at real-time performance, accurate environmental interactions (terrain, wind, collision), and reli-
able human-in-the-loop control. The framework’s architecture promotes modularity, scalability,
and deployment flexibility across multiple machines. Future enhancements will explore tighter
coupling with Unreal’s environmental physics, adoption of fluid dynamics, and scaling to larger
agent ensembles. By integrating open-source dynamical modeling with high-fidelity graphical
simulation, this platform offers a robust foundation for UAS mission planning, operator training,
and AI-driven control validation.

Keywords: Multi-Agent Simulation, Co-Simulation Architecture, Unmanned Aircraft Systems
(UAS), High-Fidelity Visualization

1 Introduction

Unmanned Aerial Vehicles (UAVs) have become indispens-
able tools in both military and civilian domains. In the
civil sector, UAVs enable the execution of tasks that were
once difficult, hazardous, or economically unfeasible. Ap-
plications include infrastructure inspection (e.g., bridges and
power lines), agricultural monitoring for pest detection and
crop health, and rapid, cost-effective package delivery ser-
vices [1, 2, 3]. In the military context, UAVs were initially
employed during World War II to evaluate sub-scale aircraft

prototypes [4]. Today, they are extensively used for intelli-
gence, surveillance, reconnaissance (ISR), and combat oper-
ations, serving as a critical component in defense strategies
across the globe [5, 6, 7].

As the complexity of modern autonomous systems continues
to grow, particularly those involving Remotely Piloted Air-
craft Systems (RPAS) and multi-agent coordination, there is
an increasing need for simulation platforms that can accur-
ately represent physical dynamics while offering immersive,
interactive 3D environments [8, 9, 10, 11]. Traditional dy-
namic simulation tools like MATLAB/Simulink and Hopsan
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provide robust capabilities for dynamic modeling and control
system development. However, they often lack native support
for advanced visualization or seamless multi-agent interaction
within a shared virtual space. Conversely, game engines such
as Unity and Unreal Engine offer visually rich environments
and extensive interactivity but typically require significant ad-
aptation to support realistic dynamic simulations.

To address these limitations, this research explores software
capable of improving this kind of simulation and presents an
integrated simulation framework that combines the dynamic
modeling capabilities of Hopsan, a high-performance object-
oriented simulation platform utilizing transmission line mod-
eling (TLM), with advanced rendering and interaction tools
of Unreal Engine 5.3. This simulation architecture enables
scalable, real-time multi-agent simulations, allowing users to
study agent behaviors in complex environments with physical
interactions and sensory feedback. The system is also de-
signed to support human-machine interface (HMI) develop-
ment, real-time data communication, and sensor emulation,
making it a versatile platform for mission planning, operator
training, and AI-driven control validation.

2 Software Platforms
During the initial phase of this study, a broad set of software
tools was evaluated to address four essential criteria:

1. support for mathematical modeling of agents to ensure
accurate physical dynamics;

2. high-fidelity 3D visualization capable of representing in-
teractions among agents in a shared, interactive environ-
ment;

3. availability for academic use at no cost;

4. the ability to support real-time simulation performance;
and

5. User Datagram Protocol (UDP) communication imple-
mentation capability.

The evaluation encompassed several widely adopted plat-
forms, including FlightGear, AirSim, Unity 3D, Unreal En-
gine, Hopsan, and MATLAB/Simulink. Each tool was ana-
lyzed with respect to its capabilities, limitations, and overall
suitability for multi-agent co-simulation. Key considerations
included the level of modeling detail, scalability, ease of in-
tegration, and compatibility with external data interfaces.

The findings from this evaluation guided the selection of the
simulation architecture and tools presented in this work. The
subsequent sections outline the software exploration process
and detail the implementation of the proposed integrated sim-
ulation framework that combines dynamic modeling and 3D
visualization in a distributed, real-time environment.

2.1 Mathematical Modeling Software

• Hopsan: Open-source multi-domain system simulation
tool. Hopsan uses built-in support for multi-core simu-
lation and is built around the transmission line modeling

(TLM) technique (or bi-directional delay lines). With
this method, models can be automatically partitioned by
introducing physically motivated time delays between
components. Each model part can then be solved in-
dependently during each time step. This improves sim-
ulation performance, numerical robustness, and model
scalability, makes the simulation very robust and fast,
and provides a natural mechanism for parallel simula-
tion. Hopsan is an object-oriented simulation platform
written in C++. There is a strong focus on multi-core
support and tool interoperability [12].

• MATLAB/Simulink: (with Aerospace Tool-
box/Blockset) is a licensed academic software suite
that combines MATLAB scripting and Simulink
block-diagram modeling to implement fixed-wing air-
craft flight dynamics. Users can visualize 3DoF/6DoF
motion via MATLAB plots or leverage external sim-
ulators: open source FlightGear through Simulink
interface blocks, or high-fidelity Unreal Engine using
Simulation 3D blocks. Geometry can be imported,
and cockpit-style instrumentation is available through
dedicated Simulink blocks. External visualization is
handled by FlightGear or Unreal, enabling realistic
scene rendering while the core dynamic modeling
remains within MATLAB/Simulink [13].

2.2 3D Visualization Software

• FlightGear: Open software that allows you to simulate
an aircraft in the first person with very realistic dynam-
ics. However, it is not possible to simulate several air-
craft in the same instance and access the views through
the same access window. An alternative is to use the
tool’s multiplayer; however, this requires a high compu-
tational effort and an infrastructure and network to dis-
tribute the process. The language of interaction is HTML
[14].

• AirSim: Open software that allows multi-agent simu-
lation of land vehicles and multi-rotors. As a software
standard, it is possible to simulate quadcopter-type UAV
and four-wheeled automobile models. Fixed-wing aero-
nautical models can also be implemented. It uses the
Unreal engine as a viewer. The languages are Python
and C++ [15].

• Unity 3D: Free software for academic research. It can
develop the dynamics of fixed-wing aircraft and sim-
ulate multi-agents simultaneously within the same in-
stance with access to different cameras on the agents.
It can also build realistic scenarios with the Cesium Ion
tool [16, 17]. The language is C♯ [18].

• Unreal: Free software for academic research, like Unity
3D. It can develop the dynamics of fixed-wing air-
craft and simulate multi-agents simultaneously within
the same instance, with access to different cameras on
the agents. It can also build realistic scenarios using
tools such as Cesium Ion [16, 17] and ESRI ArcGIS [19].
The language is C++ and Blueprint [20].



Following a detailed assessment of available software tools
against the defined simulation requirements, the implement-
ation strategy advanced to a co-simulation framework com-
bining Hopsan and Unreal Engine 5.3. Hopsan was selected
for its robust capabilities in simulating the flight dynamics of
fixed-wing aircraft using a transmission line modeling (TLM)
approach, while Unreal Engine was chosen for its capacity to
render high-fidelity, interactive 3D environments. Together,
these platforms enable the seamless integration of dynamic
modeling with immersive visualization.

Hopsan is a GPL-licensed, open-source, multi-domain simu-
lation tool designed for high-performance academic research
and development. It offers native support for parallel exe-
cution and multi-core simulation, making it well-suited for
real-time dynamics. Unreal Engine 5.3, also available free
of charge for academic use, provides advanced rendering,
physics interaction, and interface customization capabilities
through its Blueprint and C++ APIs. In the proposed architec-
ture, Hopsan is responsible for generating the physical states
of the simulated vehicle, while Unreal Engine interprets these
states to drive graphical updates and interaction within the
virtual environment. This division of responsibilities ensures
both computational efficiency and visual realism, establishing
a scalable platform for multi-agent simulation, HMI testing,
and scenario-based analysis.

3 Framework Architecture
In the architecture used for this research, UDP socket librar-
ies were developed in each application, enabling data trans-
fer between the software entities involved. The part of the
software developed to simulate the 3D representations was
defined as the central point, since this part is responsible for
receiving data from the dynamics, checking if there was an it-
eration with any part of the scenario, and returning the result
of the iteration to the model. This part is also responsible for
iterating with other peripherals coupled to it, such as an HMI,
sensors, or simulated agents in other computational environ-
ments, shown in Figure 1.

Figure 1: Framework Diagram.

The mathematical model embedded in Hopsan is responsible
for calculating the dynamics of the vehicle or vehicles rep-
resented in the central 3D environment. Such dynamics can
be enriched with details as necessary for performance evalu-
ations during iterations in the 3D environment. For example,
evaluating the performance of a hydraulic damping system for
an iteration with a deformed surface or using fluid simulation
tools to evaluate the iteration of a backhoe during excavation

work [20].

The HMI, an optional part of the simulation framework, has
as its main aspect the inclusion of a human being in the envir-
onment for iterations and evaluations of human factors within
the simulation. This part can also be developed in the Unreal
5.3 environment and can use the same communication archi-
tecture as the main part.

As it is a multi-agent simulation environment, it is possible
to couple more vehicle models represented by agents in the
3D environment or even sensor models in the preexisting dy-
namics into the simulation. This enables physical and visual
interaction between them in the same virtual world.

The communication libraries developed will be demonstrated
below, addressing their utilities, menus, and the possibility of
modification for different applications.

4 Hopsan Library

The Hopsan UDP socket is composed of the library called
UnrealLib. This library is used to connect Hopsan to Un-
real software, based on the previous FlightGearLib [21]. The
UDP communication is employed for sending and receiving
data. The UnrealReceive and UnrealSend blocks handle the
operation of this library and the reconfiguration of commu-
nication parameters in the Hopsan environment, Figure 2.

Figure 2: Hopsan library blocks.

4.1 UnrealSend

To employ the transmission block, we configured the sender’s
network parameters including IP address, port, and update
frequency and applied a constant terrain altitude offset de-
rived from the WGS-84 geoid to align the vehicle’s altitude
within the global reference frame. By default, the data stream
comprises positioning, attitude, control surface, and anemo-
metric variables; however, the configuration allows modific-
ation of both the data types and their transmission sequence.
The block’s configurable properties are illustrated in Figure
3.



Figure 3: UnrealSend Properties.

It is possible to reconfigure the Send block, for this is neces-
sary to change the files and recompile:

To modify the Send block, it is necessary to adjust the source
files and recompile the UnrealLib module:

• . . . /Unreal_Lib/UnrealSend.hpp

• . . . /Unreal_Lib/UnrealSend.xml

This recompilation step allows the addition of custom data
fields or alteration of the default message payload. It is im-
perative to maintain the exact sequence and data types of the
structured variables, ensuring compatibility with the receiv-
ing software’s parsing schema.

4.2 UnrealReceive

To configure the Receive block, the receiver’s IP address and
port must be specified on the Unreal side, while the recep-
tion frequency is managed within Unreal itself. By default,
the block receives wind data, control surface commands, and
terrain altitude, as illustrated in Figure 4. Its behavior and the
sequence of received data can be adjusted via compile-time
configuration.

Figure 4: UnrealReceive Properties.

To reconfigure the Receive block, update the following source
files and recompile the UnrealLib module:

• . . . /Unreal_Lib/UnrealReceive.hpp

• . . . /Unreal_Lib/UnrealReceive.xml

These modifications enable you to add additional data fields
or alter the default bus message content. It is crucial that
the order and data types of the structure’s variables precisely
match those expected.

5 Unreal Plugin
A dedicated UDP communication plugin was integrated into
the Unreal Engine 5.3 simulation framework to enable real-
time data exchange with external dynamic simulation tools.
This plugin is based on an adapted version of the open-
source project UDPCommunication for Unreal Engine 4,
[22]. This library is designed specifically for use within
Unreal’s Blueprint visual scripting environment, allowing
seamless integration into user workflows without requiring
extensive C++ programming. It supports rapid prototyp-
ing and user-friendly configuration while maintaining low-
latency and high-throughput data communication. It forms
the core communication layer connecting the visualization
environment in Unreal with the physics engine running in
Hopsan.

5.1 UDPSender Module

The UDPSender module is responsible for transmitting sim-
ulation data from the Unreal environment to the external soft-
ware Hopsan. It consists of two primary components, shown
in Figure 5:

• StartUDPSender: Initializes the UDP socket and defines
the local socket name, target IP address, and port used
for transmission.

• UDPDataSender: Handles the structured transmission
of data such as vehicle state, environmental conditions,
and control inputs. The structure and order of transmit-
ted variables must be consistent with the format expected
by the receiving system.

Figure 5: UDPSender main blocks.

To modify the contents or structure of the transmitted data,
users must manually edit and recompile the following files:

• . . . /Plugins/UDPCommunication/Source/. . .



• . . . /UDPCommunication/Classes/UDPData_Sender.h

This enables the addition of new data fields or customization
of the default message payload. However, care must be taken
to maintain structural compatibility with the receiving applic-
ation.

5.2 UDPReceiver Module

The UDPReceiver module receives data from external sim-
ulation tools, Hopsan, and injects it into the Unreal Engine
simulation environment. It comprises the following compon-
ents, shown in Figure 6:

• StartUDPReceiver: Sets up the listening UDP socket,
specifying the local socket name and listening port. The
receiver uses the machine’s own IP address as the default
source address.

• UDPDataReceiver: Parses the incoming UDP pack-
ets into structured variables representing environmental
conditions, actuator commands, or other simulation
parameters.

Figure 6: UDPReceiver main blocks.

Like the sender module, the receiver can be reconfigured by
modifying and recompiling the source code in:

• . . . /Plugins/UDPCommunication/Source/. . .

• . . . /UDPCommunication/Classes/UDPData_Receiver.h

Maintaining consistency in the variable structure and type
definitions between sender and receiver is essential to ensure
correct data interpretation and avoid runtime errors.

6 Joystick Input in Unreal Environment
The joystick interface is configured via Unreal Engine’s Raw
Input plugin, which enables direct USB HID access to axis

and button data. Devices are identified using their Vendor
ID (VID) and Product ID (PID) hexadecimal values obtained
from the operating system’s device manager and registered in
the Raw Input settings, shown in Figure 7.

Figure 7: Raw input configuration.

Once recognized, each axis and button can be individually
mapped, defining array indices and binding them to unreal ac-
tion or axis events, with optional inversion and offset adjust-
ments, Figure 8. This setup supports diverse USB joysticks
natively.

Figure 8: Control Mapping example.

7 3D Agent on Unreal Environment
To deploy a 3D agent in the Unreal environment, it is neces-
sary to import a rigged 3D model with articulated components
and define reference points, commonly referred to as joints
or bones, on each movable part. These structural elements
enable the rotation or translation of individual parts relative
to other components or the global origin, facilitating accur-
ate articulation within the simulation. For demonstration pur-
poses, an F-16 aircraft model was integrated into the frame-
work, complete with correctly mapped joints to control its
movable surfaces, Figure 9. This skeletal setup follows Un-
real Engine’s standard process of importing skeletal meshes



(via FBX) with hierarchical bones for component animation
and articulation. Moreover, this approach aligns with estab-
lished practices in skeletal animation, where mesh deforma-
tion is governed by a connected hierarchy of joints and bones.

Figure 9: F-16 Bones in Unreal environment.

8 Results
The results of this study are organized into four distinct sec-
tions. The first section describes the distributed, multi-agent
simulation architecture itself. The second section presents a
validation scenario using a single F-16 aircraft to demonstrate
the basic functionality of the framework. The third section
extends this to a formation flight simulation involving two F-
16s. Finally, the fourth section features a human-machine in-
teraction scenario in which one aircraft is controlled via a joy-
stick, and the second aircraft autonomously follows the same
sequence of predefined waypoints.

8.1 Framework

The initial outcome of this work was the successful realization
of the co-simulation architecture, combining two software en-
vironments to execute a unified simulation. Figure 10 illus-
trates this setup, displaying the Hopsan interface on the left
and the Unreal Engine interface on the right. Although both
applications were operated on the same physical machine for
this demonstration, the framework supports distributed execu-
tion over a network, enabling the simulation to be partitioned
across multiple computers.

Figure 10: Framework program windows.

8.2 Single F-16 aircraft

Upon completion of the framework implementation, an F-16
aircraft model originally included in Hopsan was used as an

initial validation case. This model incorporates waypoint-
based guidance, an atmospheric model, propulsion system dy-
namics, actuators, and geoid-referenced altitude positioning.
During the validation test, only Hopsan data was streamed
to Unreal Engine, including attitude, navigation state, control
surface deflections, and landing gear position. This integra-
tion and its visualization are depicted in Figure 11.

Figure 11: F-16 Hopsan example with UnrealSend.

Hopsan’s F-16 implementation, which leverages its TLM-
based architecture, has been extensively validated and is rep-
resentative of complex flight dynamics simulation.

The simulation results rendered in Unreal Engine are shown
in Figure 12. In this scenario, the landing gear is visibly ex-
tended because the corresponding deployment command was
inactive within the Hopsan model. Consequently, the default
gear position parameter was propagated throughout the simu-
lation, resulting in the landing gear remaining fully lowered.

Figure 12: Flight of an F-16 in an Unreal environment.

This simulation was stored as a reference example demon-
strating unidirectional data publishing from Hopsan to Un-
real Engine. In this configuration, the Unreal environment
passively consumes the data stream without transmitting any
return signals or commands back to Hopsan. Simulation res-
ults, such as the position and altitude profiles from the F-16
interception mission shown in Figure 13, can also be plotted.



Figure 13: F-16 trajectory and altitude.

8.3 Two F-16s

Following the validation of single-agent data publishing, the
framework was extended to a multi-agent configuration. Us-
ing the same F-16 model, each aircraft instance was assigned
a dedicated UDP transmit and receive port within the Unreal
environment, enabling independent bi-directional communic-
ation. This port-based architecture simplifies both message
routing and potential future deployment across multiple ma-
chines. In the simulated scenario, all Unreal input variables,
such as control commands and sensor data, were driven by
Hopsan outputs, while manual control of one aircraft’s land-
ing gear was maintained, as illustrated in Figure14.

Figure 14: Flight of two F-16 in an Unreal environment.

This setup demonstrates flexible multi-agent coordination and
modular network-based partitioning, enhancing scalability
and maintainability in distributed simulation architectures.

8.4 Human in the loop

The final simulation scenario involves two aircraft operating
within the same environment: one is piloted by an external
agent via an HMI, while the other autonomously follows the
same waypoints used in earlier experiments.

To incorporate a human operator into the simulation loop, an
external input mode was introduced by integrating a USB joy-
stick into the Unreal environment via the Raw Input plugin
(see Section 6). A Logitech Extreme 3D Pro joystick was

employed for this purpose, as depicted in Figure15. The
joystick’s Vendor ID (VID) and Product ID (PID) were re-
gistered to enable device recognition, with axis and button
mappings configured within Unreal’s input settings to corres-
pond to flight control commands.

Figure 15: Joystick used in the simulation.

The joystick-generated data are received within Hopsan
through the UnrealReceive block, Figure 16, which also in-
tegrates simulated sensor measurements such as altitude. In
the simulation layout shown in Figure 14, the altitude reading
is visualized as a blue elevation indicator beneath the aircraft,
confirming the successful reception and integration of both
control and sensor information into the Hopsan environment.

Figure 16: F-16 Hopsan example with UnrealSend and Un-
realReceive.

9 Conclusion
This study successfully developed and validated a distrib-
uted multi-agent simulation framework that seamlessly integ-
rates the dynamic modeling capabilities of Hopsan with the



high-fidelity visualization of Unreal Engine 5.3. The frame-
work supports real-time bidirectional communication via a
lightweight UDP-based plugin and accommodates human-
in-the-loop interaction through USB Raw Input devices.
Through sequential validation scenarios ranging from single-
aircraft deployment to formation flight, and finally a joystick-
controlled human-agent interaction, our results demonstrate
the scalability, modularity, and performance of the platform
suited to diverse research needs.

Key achievements include:

• Demonstration of synchronized multi-agent operation
with independent UDP ports per agent.

• Effective handling of environmental physics (terrain,
wind) and collision interactions.

• A flexible system architecture enabling possible distribu-
tion across multiple computers and support for scalable
human-in-the-loop experiments.

Future work will focus on tighter coupling between Hopsan
and Unreal Engine, especially using the built-in Unreal envir-
onment and fluid-dynamics capabilities, along with scalabil-
ity studies involving larger agent ensembles. These directions
align with established practices in distributed simulation to
optimize parallel performance and agent synchronization.

This work lays a strong foundation for advanced UAS sim-
ulation, operator training, and AI-based mission planning,
providing an open-source and extensible platform for ongo-
ing development in distributed multi-agent environments.
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