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Abstract

This paper examines how local Large Language Models (LLMs) can partially automate the
Critical Decision Method (CDM) in aviation safety investigations. The CDM, while widely
respected for its ability to elucidate human factors and decision-making processes in rare or
complex scenarios, often requires labor-intensive qualitative coding. To address this challenge,
we developed a pipeline employing two specialised models: Phi-3-Mini-Instruct for generating
structured responses and Zephyr-7B-Beta as a “judge” to evaluate confidence, completeness, and
groundedness. A single anonymised incident served as our pilot case. Seventy-two participants
(36 aviation professionals and 36 novices) responded to a 53-item CDM-inspired questionnaire,
creating a human reference dataset. The pipeline’s performance was benchmarked against both
this human data and a classical NLP baseline (TF-IDF + SVM). Results revealed that the LLM
matched 78% of majority-human multiple-choice answers and achieved a mean absolute error
(MAE) of 0.38 on Likert-scale questions. Its open-ended responses, although moderately accurate,
occasionally exhibited factual hallucinations (e.g., referencing non-existent systems) and role
misattributions. Further stratification showed that the LLM outperformed novices but did not
match pilots’ domain expertise, underscoring the importance of operational familiarity for nuanced
decision analyses. Despite the single-incident scope limiting statistical generalisation, these
findings suggest that LLM-based tools can substantially expedite repetitive data processing and
facilitate consistent categorisation tasks that often consume investigators’ bandwidth. Future work
will expand to multiple incidents, integrate flight data recorder (FDR) and cockpit voice recorder
(CVR) information to reduce speculation, and refine both self-evaluation mechanisms and ethical
safeguards.

Keywords: Local Large Language Models, Critical Decision Method, Aviation Safety, Ethics
and Al, Automated Qualitative Analysis

1 Introduction underlying complex or rare aviation incidents [1, 2]. By eli-
citing timelines, cues, mental models, and decision rationales,

The Critical Decision Method (CDM) offers a structured ap- ~ CDM probes deeply into the why and how of crew beha-
proach for reconstructing the cognitive and contextual factors viour [2]. However, the vast volume of qualitative data in



large-scale safety contexts renders manual coding extremely
labour-intensive, often requiring expert analysts to collaborate
for hours or even days [1, 3].

Recent advances in Large Language Models (LLMs) open
the way for partial automation of this process [4, 5]. LLMs
are capable of summarising textual inputs, extracting factual
details, and generating structured prompts, thereby reducing
repetitive human effort. Nonetheless, in aviation a domain
governed by strict safety and ethical standards such models
risk hallucinating information, omitting critical nuances, or ad-
opting misleading interpretations in morally ambiguous scen-
arios [6, 7].

This work addresses a central challenge in aviation: scaling
safety investigations while maintaining high standards of accur-
acy and ethical compliance. Although traditional approaches
remain rigorous, they face significant limitations in terms of
scalability, reproducibility, and cognitive load on human ana-
lysts.

In this context, LLMs show promising capabilities for pro-
cessing unstructured narrative data such as incident reports at
scale [8, 9]. If validated across broader datasets, LLM-based
methods could:

* Accelerate root-cause analysis by freeing investigators
from repetitive tasks and enabling deeper causal infer-
ence;

* Enhance global collaboration by supporting consistent
classification, comparison, and prioritisation of safety
data across agencies and airlines;

» Strengthen oversight and just culture by offering struc-
tured and auditable first-pass analyses, which investigat-
ors can review and refine instead of relying on fragmented
or ad hoc references [10].

2 General Objective

The primary objective of this work is to demonstrate the feas-
ibility of deploying a locally hosted LLM-based pipeline to
accelerate narrative analysis grounded in the Critical Decision
Method (CDM). Specifically, the study aims to:

2.1 Specific Objectives

* Develop and evaluate a proof-of-concept system employ-
ing two distinct LLLMs one focused on generating struc-
tured responses, and another dedicated to metacognitive
evaluation;

» Compare the performance of LLMs against expert human
analysis and a classical NLP baseline (TF-IDF + Support
Vector Machines) [11];

* Explore how structured protocols (such as the CDM ques-
tionnaire) and partial self-evaluation mechanisms may
mitigate persistent issues such as hallucination and in-
complete coverage.

Although this article focuses on a single anonymised incid-
ent, it lays the foundation for integrating local LLMs into
formal aviation safety procedures. The potential impact is sub-
stantial from improving day-to-day investigative workflows
to reducing the risk of inconsistent or incomplete analyses in
high-stakes operational contexts [12].

3 Background

3.1 CDM in Aviation: Automation Attempts and Known
Limitations

Studies applying CDM to aviation incidents commonly high-
light the method’s utility in uncovering subtle human factors
(crew workload, situational awareness, risk perception) [2].
Nonetheless, as incident numbers increase, partial automation
is desirable to ensure consistency and reduce analyst burden.
Prior attempts at automation typically rely on shallow text
matching or repeated human validation, limiting both speed
and scalability [13].

3.2 LLMs and Investigative Interviews

LLM:s have been trialed in legal and forensic interview settings,
using large text corpora to facilitate thematic coding [3, 4, 5].
However, domain mismatches often lead to factual hallucina-
tions, and purely textual reasoning may miss contextual signals
that are pivotal for safety-related investigations [6, 7].

3.3 LLM Architectures for Cross-Model Evaluation

Some research explores the idea of a second LLM functioning
as a meta-evaluator or “judge,” but the danger of mutual biases
(i.e. the generator and the judge reinforcing each other’s mis-
takes) is real [14, 15]. There is minimal precedent applying
such a pipeline specifically to aviation incidents with rigor-
ous frameworks like CDM, leaving a niche for targeted, if
initially small-scale, validation.

3.4 Resource Configurations Considered

We consider four resource configurations that scaffold the
use of CDM with LLMs: (R1) Human (investigators, pilots,
human-factors psychologist; curation, checking and synthesis),
(R2) Procedural (CDM protocol, 53-item questionnaire, con-
sensus among raters), (R3) Technical (local LLMs: Phi-3 for
generation; Zephyr-7B as judge; TF-IDF+SVM as baseline),
and (R4) Data/Context (incident narrative, participant pro-
files, statistical metrics). This decomposition makes explicit
the dependencies and limits in each layer (e.g., hallucinations
in R3 mitigated by R1-R2).

3.5 Case, Participants and Questionnaire

Full incident excerpts are provided in Appendix 8, and the
53-item instrument appears in Appendix 8.

A 53-item questionnaire was refined and mapped to canon-
ical CDM elements: Incident context and participant profile,
timeline of critical events, cognitive processes and decision
factors and counterfactuals and ethical reflections. The pro-
cess started with 57 items, which were reviewed by two senior



safety investigators plus a human-factors psychologist, fol-
lowed by pilot testing. Ultimately, four items were removed
as redundant or ambiguous, achieving Cronbach’s alpha of
0.78-0.82 across the thematic blocks (risk perception, situ-
ational cues, etc.). Although broad, the questionnaire cannot
fully replicate the spontaneity of genuine CDM interviews,
where follow-up questions may emerge organically.

4 Methods

Contrary to an initial plan to sample multiple incidents with
varied severities and aircraft types, this pilot focuses on a
single anonymised incident sourced from a regional authority.
We acknowledge that a single case restricts the exploration
of different operational conditions, yet the event chosen is
sufficiently complex to illustrate how the pipeline might func-
tion in practice. Future efforts will be required to incorporate
multi-incident data for broader generalizability.

We recruited a total of 36 aviation professionals and 36
novices:

* Pilots: 36 individuals with over 500 flight hours each,
engaged in commercial or cargo operations;

* Novices: 36 volunteers lacking formal aviation training
(engineering graduate students).

Every participant reviewed the same single incident narrative
and completed the 53-item questionnaire, providing a refer-
ence dataset of human responses. Although the participant-
level sample is robust (72 individuals), the single incident’s
scope remains the largest methodological limitation.

4.1 Pipeline and Workflow

We operationalise the analysis in five steps: (E1) ingestion of
the incident narrative and questionnaire; (E2) generation by
Phi-3 (MCQ, Likert and open-ended); (E3) judging by Zephyr-
7B (confidence, completeness, groundedness in 0-1); (E4)
aggregation and storage of parsed outputs and scores; (E5)
statistical analysis against human references.

4.2 LLM Pipeline with Dual-Model Approach
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Figure 1: Proposed pipeline for local LLM-based CDM ana- 7
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lysis on a single incident, incorporating an LLM-as-a-Judge
for partial self-evaluation.

10

Phi-3-Mini-Instruct: A local LLM fine-tuned on general
English corpora (excluding the chosen incident), tasked with

generating structured responses (MCQ, Likert, or open-ended).
The prompt design aimed for concise outputs, and we used low
temperature (0.1) to enhance consistency. We also instructed
the model to remain cautious where the text was ambiguous,
but factual hallucinations still occurred.

Zephyr-7B-Beta (LLM-as-a-Judge): A second LLM that
independently rates the generative model’s answers for: Con-
fidence (0—1), Completeness (0—1) and Groundedness (0-1).
While this technique helps identify questionable answers, the
judge LLM itself may share latent biases with the generator.
We therefore performed a human spot-check on 40 randomly
chosen answers to partially verify Zephyr’s scoring, keeping
in mind that both LLMs might reinforce each other’s miscon-
ceptions.

4.3 Comparative Baselines

A group of five experienced safety investigators manually
coded the same single incident using a standard CDM frame-
work and consolidated their answers. This “gold standard” is
time-consuming taking over one hour per coder for the single
narrative and thus indicates how much effort might be saved.

For a more conventional text-classification baseline, we used
a TF-IDF-based approach with an SVM trained on a set of
labeled CDM-related categories (risk, situational cues, de-
cision rationale). Because this pipeline only outputs classifica-
tions and not structured question-by-question responses, we
measured “coverage” by how often the system produced rel-
evant tags for each question. The result was used to compare
speed and rudimentary correctness, acknowledging that the
tasks differ in granularity.

To clarify the main flow of data parsing and LLM-based ana-
lysis, we present two pseudocode blocks.

Algorithm 1: Load Reports and Parse Questions

Input: reportsDir, questionsFile

QOutput: reports, questions

parser < DataParser();

reports < parser.loadReport(reportsDir);
questions < parser.parseQuestions(questionsFile);
return reports, questions;

Algorithm 2: LLM-Based Analysis Pipeline

Input: reportText, questions

handler + LocalModelHandler();

orchestrator <— LLMOrchestrator(handler);

foreach question € questions do

strategy < StrategyFactory.getStrategy(question,
reportText);

prompt < strategy.generatePrompt();

rawAnswer < handler.runGeneration(prompt);

parsedAnswer < strategy.parseResponse(rawAnswer);

evalPrompt <— buildEvalPrompt(parsedAnswer, question,
reportText);

metrics < handler.runEvaluation(evalPrompt);

storeResult(question.id, parsedAnswer, metrics);

These two algorithms capture the end-to-end flow:



* Algorithm 1 initializes the data parser, loads the single
narrative file for the chosen incident, and parses the CDM
question set.

* Algorithm 2 iterates over each question, invokes the
generation and evaluation models, and saves the parsed
answers plus automated evaluation metrics.

Ethical and Regulatory Considerations: Due to strict re-
quirements on data privacy and investigative integrity, all
LLMs were run locally, with no cloud dependencies. Par-
ticipants provided informed consent, and no personally identi-
fiable information (PII) was stored in model weights. Although
the pipeline shows time-saving potential, future expansions
must address how to comply with ICAO, EASA, or FAA pro-
cedures when investigating a larger and more varied set of
incidents. For now, the single-incident scope highlights that
LLM outputs remain advisory only, with final authority resting
on certified investigators.

Role of the classical NLP baseline. The TF-IDF+SVM
baseline is used strictly as a discrete text-classification refer-
ence to contextualise LLM performance on CDM-related cat-
egories (e.g., risk, cues, rationale). It does not produce Likert-
scale predictions or judge scores; therefore, it is included only
in MCQ association analyses (chi-square/Cramér’s V) and in
coverage/time summaries.

4.4 Prompt Engineering (Summary)

This section discusses prompt engineering strategies used to
guide the Phi-3-Mini-Instruct model in generating answers for
multiple-choice, Likert-scale, and open-ended items.

4.5 Basics of Prompt Engineering

Prompt engineering shapes how a language model responds
by specifying instructions, desired formats, and context. In the
aviation domain, it is essential to:

* Clearly define the incident context (though limited here
to one anonymised narrative);

* Specify the response format (MCQ, Likert, open-ended);

* Impose content constraints (e.g. cautioning against spec-
ulation).

Sample Prompt for Multiple-Choice Questions

"You are an aviation safety assistant.

Below is an incident narrative describing an
engine anomaly.

Please answer the following multiple-choice
question:

Question: ’In which flight phase did the
anomaly first occur?’
Possible Answers:

A) Taxi

B) Climb
C) Cruise
D) Descent

Provide only the letter of the correct choice.
If uncertain, choose the most likely option
based on the text."

Sample Prompt for Likert Scales

"You are an aviation safety assistant.
Read the incident narrative.

Rate on a scale of 1 (very low) to 5

(very high):

’How confident was the crew in the cockpit
alert systems?’

Output only a single integer (1, 2, 3, 4,
or 5)."

Good Practices and Lessons Learnt We found that more
explicit prompts reduce hallucinations, although they do not
eliminate them entirely. A relatively low temperature (0.1)
encourages concise and consistent responses. Future expan-
sions may require disclaimers instructing the model to admit
uncertainty if the text lacks details.

4.6 Ethical and Regulatory Considerations (Local Execu-
tion)

Aviation is highly regulated by bodies such as ICAO, EASA,
and FAA. Using language models for incident analyses re-
quires alignment with these regulations and ethical principles.
To prevent accidental data leakage, all models are locally hos-
ted. This practice aligns with EASA and other guidelines man-
dating controlled handling of incident data. Because only one
incident was used here, thorough anonymization was straight-
forward. Per [16], any safety recommendations emerging from
automated analyses must be traceable and reviewable by certi-
fied investigators. Accordingly, our system logs outputs with
metadata on the model version and parameters, ensuring future
audits remain possible. A model might recommend “continue
to destination” despite an unassessed anomaly. Thus, a human-
in-the-loop protocol is mandatory [6], particularly given how
a single textual narrative may omit key operational subtleties.
Aviation policies encourage partial explainability of any Al
tool used for safety. Although LLMs are often opaque, it is ad-
visable to expose at least a summary of which textual evidence
was used to derive a recommendation.

4.7 Model Training and Tuning

This section details how we fine-tuned two models: Phi-3-
Mini-Instruct (for generating answers) and Zephyr-7B-Beta
(for scoring them). We reiterate that neither model was trained
specifically on the text from the single chosen incident, in an
effort to prevent data leakage.



4.8 Model Architectures

Both models use Transformer-based architectures [17], pre-
trained on broad English corpora. Table 1 lists key hyperpara-
meters.

Table 1: Hyperparameters Used During Fine-Tuning

Phi-3-Mini-Instruct ~ Zephyr-7B-Beta

Model Size 3B parameters 7B parameters
Batch Size 8 4
Learning Rate 2x 1073 1x1073
Epochs 3 2

4.9 Training Corpora

Initially, both models were trained on combined Wikipedia
and technical aviation texts, stripped of sensitive data. We took
care to exclude the specific incident tested here. For Phi-3-
Mini-Instruct, we added short aviation incident instructions,
safety checklists, and publicly available NTSB reports, ensur-
ing domain familiarity without revealing data on our chosen
pilot case. We monitored validation metrics on a “calibration
set” drawn from older or publicly known incidents, check-
ing perplexity and macro-F1 for CDM-like questions. Early
stopping was used to reduce overfitting.

4.10 Evaluation Metrics

We measured how often the LLLM’s multiple-choice answers
matched the majority-human response on the single incident,
testing significance via chi-square and reporting Cramer’s V.
We computed mean absolute error vs. the average human rat-
ing, using a Wilcoxon signed-rank test for significance and
Cohen’s d as an effect size. Zephyr-7B-Beta provided 0-1
scores for completeness and groundedness, which we com-
pared against partial human expert checks.

4.11 Multimodal Integration: CVR, FDR and Meteoro-
logy

Although we only examined a single textual narrative in this
pilot, aviation incidents typically involve multiple data sources
(e.g. cockpit voice recordings, FDR data). Future expansions
may look toward merging these. Models that combine textual
and audio embeddings could help interpret CVR transcripts
[18], but privacy laws complicate CVR usage. Alternatively,
separate modules can handle audio waveforms or flight data,
later merging their embeddings. Either approach could help
cross-check hallucinations in purely textual narratives.

4.12 Challenges

1. Privacy Protections: CVR data is highly sensitive, requir-
ing special handling. 2. Data Alignment: Timing mismatches
between CVR and FDR must be resolved. 3. Limited Real
Access: Many operators restrict the release of raw flight data.

By referencing flight parameters or meteorological data, an
LLM might avoid hallucinating about, say, an “engine fire” if

the flight data never indicated abnormal temperature or pres-
sure readings.

Despite promising initial results, recurring errors surfaced. For
the single incident, these errors included:

4.13 Types of Errors

1. Factual Hallucinations: Mentioning systems not present
on the aircraft involved.

2. Misattribution of Roles: Confusing captain versus first-
officer actions.

3. Over-Generalisations: Asserting that “all checklists
were completed” when the text implies only partial com-
pletion.

With only one narrative as input, the model may guess or
extrapolate details not stated. Even with aviation fine-tuning,
the LLM might not capture all idiosyncrasies for every aircraft.
A mention of “engine anomaly” might trigger an elaborate but
unfounded discussion of turbine blades.

* Refined Prompts: Reinforce instructions to declare un-
certainty if details are missing.

* Domain Cross-Checks: Potentially referencing known
aircraft specs to block impossible statements.

* Training with Negative Examples: Show that “the cor-
rect response” can be to say “insufficient info.”

» Targeted Expert Review: For critical issues (e.g. ap-
proach decisions), ensure domain experts cross-verify.

Within our single-event pilot, these issues highlight why LLMs
must complement, not replace, expert judgment especially
given the small scope. Larger multi-incident datasets could
reveal more error patterns, guiding better mitigations.

4.14 Metrics and Statistical Framing

We compare MCQ distributions using chi-square and report
Cramér’s V; for Likert items we compute MAE and use Wil-
coxon signed-rank tests, reporting Cohen’s d as effect size.
Judge scores (0—1) summarise confidence, completeness and
groundedness.

Although this paper employs chi-square and Wilcoxon tests for
categorical and Likert-scale comparisons, respectively, an ex-
panded arsenal of statistical techniques can further validate
results and ensure assumptions hold, especially once multiple
incidents are available.

In future larger-scale experiments, where multiple incidents
and varied responses are compiled, a Shapiro—Wilk test [19]
can determine whether distributional assumptions (e.g. nor-
mality in Likert ratings) hold. If normality is violated, non-
parametric methods (such as the Mann—Whitney U test or
Kruskal-Wallis [20]) might be more appropriate than paramet-
ric ANOVA.



To compare LLM, novice, and pilot groups across multiple
incidents or multiple metrics, one-way ANOVA [21] (or a
non-parametric equivalent like Kruskal-Wallis if normality
fails [20]) can quantify whether significant differences ex-
ist among these populations. Post hoc tests (e.g. Tukey’s
HSD [21]) would then locate specific group differences.

If participants are asked to analyze multiple reports, repeated-
measures ANOVA [22] or its non-parametric analogues [20]
can account for within-subject variability. This is particularly
relevant for verifying consistency in LLM outputs across vari-
ous incidents.

Beyond p-values, including effect sizes (Cohen’s f for AN-
OVA, n? or partial n?) and 95% confidence intervals [23]
would offer deeper insight into practical significance. Such re-
porting helps avoid overreliance on the binary “significant/not
significant” framing.

By integrating these additional statistical steps, future multi-
incident studies will provide a stronger, more generalizable
picture of LLM performance and the reliability of automated
CDM approaches in aviation.

5 Results

On figures and y-scales. Figure 2 reports Zephyr-7B-Beta
judge metrics on a 0—1 scale (confidence, completeness, groun-
dedness) for LLM outputs versus the aggregated human ref-
erence. In contrast, Figure 3 summarises group-level com-
parisons (LLM, novices, pilots) tied to (i) MCQ association
via chi-square/Cramér’s V and (ii) Likert differences via Wil-
coxon/Cohen’s d.

The classical NLP baseline (TF-IDF+SVM) is used as a dis-
crete classification reference; it does not output continuous
scores nor judge metrics, hence it appears only in MCQ com-
parisons (chi-square/Cramér’s V) and in coverage/time sum-
maries.

We report results for the single incident tested, comparing the
LLM pipeline’s performance against human reference data
and the classical NLP baseline. We used a chi-square test (x2)
for categorical items (MCQ) and a Wilcoxon signed-rank test
for Likert-scale responses, reporting effect sizes (Cramer’s
V for MCQ frequency tables and Cohen’s d for Likert data).
This limited approach to hypothesis testing is appropriate for
a single-incident design, but the results should be interpreted
as preliminary.

Overall, 78% of the LLM’s MCQ answers matched the
majority-human choice (x? test indicated p < 0.01, with
Cramer’s V = 0.37, suggesting a moderate effect). The mean
absolute error for 5-point Likert items was 0.38, which was
below the 0.60 threshold (p < 0.01 via Wilcoxon), and we
computed Cohen’s d ~ 0.52, also suggesting a moderate ef-
fect. Within the constraints of a single incident, these figures
show promising alignment.

For open-ended completeness, Zephyr-7B-Beta scored the
LLM’s responses at 0.73 vs. an average human reference rating
of 0.70; the difference was not statistically significant (p =
0.21, Wilcoxon). Although this suggests some parity, manual

error analysis revealed: Factual hallucinations (mentioning
systems not in the actual aircraft type), Role misattributions
(incorrectly assigning first-officer actions to the captain) and
Over-generalisations of flight-deck communications.

The single-narrative design limited us to examples within this
one context, but these errors underscore the importance of
domain checks.

5.1 LLM-as-a-Judge Scores and Spot-Check Validation

10 Average LLM-as-a-Judge Scores (Zephyr-7B-Beta) with Std Dev
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Figure 2: Judge scores (Zephyr-7B-Beta; 0-1) for confidence,
completeness and groundedness, comparing LLM outputs with
the average human reference for the single incident.

Figure 2 shows Zephyr’s scoring distribution. The second
LLM tended to rate completeness a bit higher for the generative
model than the human coders did. However, it flagged multiple
items with lower groundedness (0.62 vs. 0.72 for humans). Our
spot-check of 40 answers found 78% alignment with Zephyr’s
confidence/completeness labels, but we remain mindful of
potential shared biases due to partial training overlaps.

5.2 Comparison to Classical NLP and Manual Coding

Table 2 below summarizes key performance metrics. The
classical NLP pipeline (TF-IDF + SVM) had 76.2% cover-
age on relevant question categories, performing well on dis-
crete classification but struggling with nuanced open-ended or
Likert-scale tasks. Manual coding remained the richest and
slightly more consistent approach (k = 0.65 among coders),
though requiring upwards of one hour for a single event. The
LLM-based method produced near-complete responses (98.7%
coverage) in well under one minute.

Table 2: Performance Overview on Single-Incident Analysis

Manual Classical NLP LLM
Coverage 100% 76.2% 98.7%
Time 1-2 hours =~ 10seconds ~ 1 minute
Fleiss’ x 0.65 0.50 0.62

Although manual coding is still the gold standard in terms
of interpretive depth, the LLM pipeline demonstrated that



it could at least approximate a mid-range level of analyst
consistency for this single case, thereby reducing repetitive
tasks and expediting coverage.

5.3 Stratified Evaluator Performance: Comparison of
LLM, Novices, and Pilots

We recruited a total of 72 volunteers to respond to the same
anonymised aviation incident: 36 pilots (all with over 500
flight hours) and 36 novices (participants with no formal avi-
ation training). Their answers, together with the outputs from
the LLM, were compared in terms of accuracy, completeness,
and consistency with the reference framework derived from
expert investigators. The main findings can be summarised as
follows:

Overall Agreement (Multiple-Choice Questions)

* LLM: The model achieved approximately 78% align-
ment with the human “majority consensus,” largely driven
by the pilot group. A chi-square test indicated statist-
ical significance (p < 0.01) with a moderate effect size
(Cramer’s V = 0.37).

* Pilots: Performed at the highest level, generally exceed-
ing 85% concordance with the investigator-synthesised
consensus. This group served as the “gold standard” for
the study.

* Novices: Scored around 65-70% agreement on MCQ
items, lagging behind both the LLM and the pilot cohort.

Likert-Scale Items (1-5)

e LLM: Its mean absolute error (MAE) in relation to the
collective human ratings was approximately 0.38 (on a 1-
5 scale), which was statistically significant (p < 0.01, Wil-
coxon). The effect size was moderate (Cohen’s d ~ 0.52).
Although the LLM mirrored pilot trends on certain ques-
tions (e.g. confidence in on-board alerts), it occasionally
struggled with more nuanced judgements.

* Pilots: Demonstrated strong internal consistency and
close alignment with the reference ratings derived from in-
vestigator analysis. Their domain expertise clearly guided
more calibrated responses.

* Novices: Showed greater variability and tended to use
more extreme scale endpoints (1 or 5), implying a less
refined sense of incremental risk assessments.

Open-Ended Answers and Qualitative Explanations

* LLM: Generated more detailed and structured responses
than the novice group, but it occasionally introduced “hal-
lucinated” aircraft systems or misattributed roles within
the flight deck. This revealed a gap in domain-specific ac-
curacy, especially when contextual nuance was required.

* Pilots: Provided the most precise depictions of proced-
ural steps, particularly when describing checklists or
flight-deck priorities in response to engine anomalies.
Their first-hand operational experience was evident.

* Novices: Often left open-ended items incomplete or in-
troduced confusion regarding technical protocols, high-
lighting a lack of immersion in aviation contexts.

Overall Observations

* Pilots remain the top performers, reflecting the import-
ance of real-world flying experience in interpreting com-
plex operational scenarios.

* The LLM ranks between experts and novices, capturing
key facts and showing robust performance in multiple-
choice and scaled items. However, it lacks the profes-
sional intuition that allowed pilots to manage ambiguities
effectively.

* Novices generally placed third in accuracy and complete-
ness, reinforcing how specialised domain knowledge sig-
nificantly improves incident analysis.

Figure 3 compares the LLM’s performance with these two
strata.

Comparison Across Evaluator Types

Novices Pilots

Group

Accuracy (MCQ) ~ WmM MAE (Likert) W justification Quality

Figure 3: Comparison of LLM, novices, and pilots across key
performance metrics for the single incident.

In summary, the model’s stratified performance indicates that
while the LLM cannot substitute for expert investigators or
qualified pilots, it can complement their analysis by hand-
ling a considerable portion of routine tasks. This potential
time-saving advantage becomes especially salient when large
volumes of narrative data require systematic processing.

6 Discussion

Our pattern of results aligns with broad pre-training (R3) and
careful human curation (R1): the LLM approaches humans
on MCQ/Likert but falters when contextual nuance is not ex-
plicit in the data (R4). This suggests that data and training
choices (domain-continued pre-training; negative examples
for “insufficient information”) are as decisive as architecture.

In this study, we have analysed only one incident, which
severely restricts the generalisation of our findings. While our



initial aim was a feasibility or “proof-of-concept” pilot, we
recognise that:

* Event sampling: A single case does not capture the
operational diversity of different aircraft types, weather
conditions, flight phases, or organisational cultures.

» Limited extrapolation: Model performance and agree-
ment metrics especially when anchored to a single scen-
ario cannot straightforwardly extend to other contexts.

* Complexity rationale: Although the chosen incident
was considered “sufficiently complex” to demonstrate our
approach, we lack a comparative baseline of additional
incidents with varying severity or scope.

6.1 Methodological Depth: Classical CDM vs. Structured
Questionnaire

The traditional Critical Decision Method (CDM) relies on semi-
structured interviews, where the interviewer can add follow-up
“probes” based on the interviewee’s answers, reconstructing the
situational and cognitive context in a highly iterative manner.
Our approach, in contrast:

* Uses a fixed 53-item questionnaire: This provides cer-
tain advantages in terms of standardisation, yet does not
replicate the organic adaptiveness of classical CDM.

» Lacks real-time follow-ups: No new questions emerge
on the fly based on partial responses or newly discovered
insights.

6.2 Future Improvements

To approximate CDM’s flexibility more closely:

1. Adaptive questionnaires: Implement dynamic prompts
or branching logic, whereby LLM-generated (or human-
provided) answers prompt new items.

2. Iterative feedback: Introduce a supervisory model or
human domain expert to intervene when responses signal
contradiction or ambiguity.

We emphasise that our current study is CDM-inspired, employ-
ing similar thematic elements (timeline, cues, decision factors)
but lacking the fluid interactivity typical of fully fledged CDM
interviews.

6.3 Consolidation and Analysis of Human Responses

A key step in evaluating LLM outputs was the way we merged
and interpreted the responses of 72 participants (36 aviation
professionals and 36 novices). Concretely:

1. Individual data collection: Each participant read the
same incident report and completed the same 53 ques-
tionnaire items.

2. Response types: The items included multiple-choice
(MCQ), Likert scales (1-5), and free-text (open-ended).

3. Forming a “reference answer”:

(a) For categorical (MCQ) items, we used the majority
(modal) choice among participants.

(b) For Likert items, we took the average or median
across all 72 participants for each question.

(c) For open-ended items, five experienced safety in-
vestigators reviewed the participant responses and
synthesised them into a single gold-standard sum-
mary.

4. Resolving discrepancies: When the five investigators
disagreed on the open-ended synthesis, they held con-
sensus discussions, recording their final alignment and
noting any discarded minority positions.

Methodological Implications. This consolidation offers a
single “reference” answer set but discards part of the richness
and variability among individuals. In subsequent research,
we plan to use inter-rater reliability measures (e.g. Fleiss’ k)
among the five senior investigators and maintain the broader
participant pool as a secondary dataset, thus preserving more
granularity in the analysis.

6.4 Statistical Rationale for Single-Scenario Analysis

Applying inferential statistics (e.g. chi-square, Wilcoxon,
Fleiss’ k) and effect sizes to only one incident inevitably
raises concerns regarding the strength and generality of such
findings. We reiterate that:

» Exploratory objective: Our main aim was to illustrate
the feasibility of the pipeline in a pilot context, rather than
claim robust statistical proof.

* Demonstrative usage of metrics: The p-values and ef-
fect sizes are shown as prototypes of how one might
analyse data in a broader multi-incident study.

» Limitations: With only one scenario, the interpretability
of measures like Cramer’s V & 0.37 or Cohen’s d = 0.52
is severely constrained.

6.5 Broader-Scale Perspective

When we scale to multiple incidents and multiple respondent
groups:

1. We can employ ANOVA or Kruskal-Wallis tests to com-
pare LLM performance across diverse sets of incidents.

2. We can apply reliability statistics (e.g. Fleiss’ k, Krip-
pendorff’s ¢) in a multi-incident design, ensuring that
agreement scores do not hinge on a single case.

3. We can incorporate confidence intervals (e.g. 95% CI) on
performance metrics, lending clarity to the uncertainties
inherent in each measure.

Until then, these statistical figures must be interpreted with
caution given the single-incident scope.



6.6 Independence Between Generator and Judge Models

In our pipeline, Phi-3-Mini-Instruct generates answers (MCQ,
Likert, open-ended), while Zephyr-7B-Beta serves as a “LLM-
as-a-Judge” to rate confidence, completeness, and grounded-
ness. However, this design poses a risk of shared bias if:

* Both models overlapped in their pretraining corpora, in-
heriting similar misrepresentations.

» They were partially fine-tuned on similar domain data,
narrowing the gap between generator and evaluator.

6.7 Mitigations

1. Distinct Model Families: Use models trained on
markedly different data to avoid identical error patterns.

2. Multiple Judge Models: Employ an ensemble of inde-
pendent evaluators and compare their verdicts.

3. Human Spot-Checks: For each batch of generated re-
sponses, domain experts manually review a subset, calib-
rating or challenging the judge model’s scores.

Such measures reduce self-reinforcement and facilitate more
transparent automated evaluation.

6.8 Future Work

To overcome the constraints of this pilot, we aim to:

* Scale to Multiple Incidents: We intend to analyze 50+ di-
verse incidents, including different aircraft classes, flight
phases, and severities, and incorporate effect-size report-
ing on a broader dataset.

* Multi-Modal Data: Integrate cockpit voice recordings
and flight data logs to reduce reliance on textual specula-
tion.

* Stronger Ethical Protocols: Explore building an “eth-
ical check” submodule or ensemble model that queries
domain experts about morally nuanced scenarios.

* Hybrid Evaluation: Combine multiple LLM judges
with partial domain-expert arbitration, mitigating self-
reinforcement biases.

These expansions will help refine the pipeline so it can handle
a wide range of scenarios with robust reliability and regulatory
acceptance.

6.9 Multi-Incident Plans

To strengthen external validity and increase inference power,
our upcoming efforts will:

1. Incorporate multiple incidents (potentially 10 to 50 or
more), covering a broad range of aircraft, phases of flight,
and severities.

2. Examine geographical diversity (incidents from mul-
tiple airlines or regions), testing whether the LLM can
adapt to distinct operational cultures.

3. Employ temporal stratification (incidents from differ-
ent time periods), verifying how evolving standard op-
erating procedures or regulatory updates may affect per-
formance.

Such expansions would permit more robust statistical ana-
lyses using appropriate non-parametric tests and effect-size
measures, thereby facilitating more reliable conclusions.

7 Ethics & Utility
7.1 Practical Utility and Innovations

Even at this nascent, single-incident stage, our framework
exhibits promising practical benefits and innovations in the
realm of Al-assisted aviation safety, specifically:

1. Time-saving in routine tasks: Traditional CDM or in-
cident coding can consume hours per report. Our local
LLM can produce structured questionnaire responses in
minutes, allowing investigators to prioritise deeper inter-
pretive tasks.

2. Consistency in repetitive elements: Safety agencies
often deal with recurring categories (e.g. flight phase,
weather). The LLM standardises these extractions, offer-
ing uniform coverage across multiple reports.

3. Preliminary hypothesis checking: Investigators can
confront the LLM’s “first pass” analysis with their own
assessments, flagging areas of discrepancy for further
scrutiny.

4. Proof-of-concept for hybrid CDM processes: Although
not a fully interactive interview, a structured LLM-based
protocol can lay the groundwork for future adaptive or
conversational CDM methods.

5. Potential for multi-modal integration: Subsequent de-
velopments may ingest partial FDR, CVR, or mainten-
ance logs to corroborate textual narratives, minimising
speculation.

7.2 Positioning in the State of the Art

* Domain-specific LLM: There are few published ex-
amples of a locally hosted, aviation-focused language
model specifically tailored for safety narratives.

* Dual-model evaluation: Employing a dedicated “judge
LLM” (albeit with some shared biases) exemplifies an
emerging trend in Al for integrated self-critique or auto-
mated cross-checking of generated outputs.

* Ethics-focused pipeline: We explicitly acknowledge
data confidentiality, alignment with just culture principles,
and the need for robust oversight. This contrasts with
purely extraction-oriented Al methods that do not con-
sider regulatory or moral constraints.



In summary, while preliminary and dependent on multi-
incident validation, our approach stands as an innovative pro-
totype that extends the frontier of how large language models
may assist but not supplant human experts in safety-critical
aviation inquiries.

7.3 Ethical Posture and Scope

This study processed one anonymised incident under informed
consent, storing no personally identifiable information (PII) in
model weights. All models were executed locally to reduce
data-exposure risk and to enable reproducibility and auditabil-
ity. The pipeline is designed as an advisory aid for investigat-
ors, not a decision-maker.

7.4 Reviewer-Facing Risks and Limitations

Typical risks when applying LLMs to safety investigations
include:

» Hallucination and “BS generation”: plausible yet false
content that can misdirect analysis or appear unduly con-
fident.

* Misplaced blame and bias: inadvertent attributions that
conflict with just culture principles and may discourage
reporting.

* Context leakage and over-generalisation: filling gaps
with domain stereotypes rather than incident evidence.

» Cognitive overload: long model outputs that increase
reviewer burden and mask salient cues.

7.5 Safeguards and Operating Practices

We adopt layered mitigations aligned with aviation safety prin-
ciples:

1. Local execution and access control: all inference and
judging runs locally; inputs/outputs are logged with
model versions and parameters for audit.

2. Mandatory human-in-the-loop: certified investigators
review, challenge and amend outputs; model content does
not substitute operational judgement.

3. Traceable justifications: outputs are stored alongside
key textual evidence and prompts to support subsequent
review and regulatory audit.

4. Cross-checks with operational data: when available,
FDR/CVR/maintenance data are used to corroborate or
refute textual claims before any recommendation.

5. Conservative prompting: templates instruct models to
declare uncertainty and abstain when evidence is insuffi-
cient.

7.6 Regulatory Alignment (High-Level)

Consistent with international guidelines (e.g., ICAO An-
nex 13; regional authorities such as EASA and FAA), safety
recommendations must be traceable, reviewable and ulti-
mately owned by human investigators. Our logging and
local-execution approach supports auditability; the just cul-
ture stance is preserved by avoiding punitive framings and by
requiring human verification before dissemination.

7.7 Utility in Practice

Within the single-incident scope, the pipeline adds value by:

» Standardising repetitive elements (e.g., flight phase,
key cues) to aid consistency across reports;

* Accelerating first-pass synthesis so investigators focus
on high-judgement issues;

* Surfacing disagreements between model and human
references for targeted review.

These benefits are contingent on the safeguards above and
expand with richer, multi-incident datasets.

7.8 Limitations and Future Ethical Work

Further work will include: (i) ensemble or heterogeneous
judge models to reduce shared bias with the generator; (ii)
structured abstention pathways for low-evidence queries; (iii)
tighter integration of operational data to curb speculation; and
(iv) periodic bias assessments with domain experts to monitor
drift.

8 Conclusion

This paper presents a single-incident pilot study demonstrating
how a locally hosted LLM pipeline can partially automate
CDM-based aviation event analysis. The pipeline delivers
near-complete coverage quickly, aligning moderately well with
human-coded reference data. Nonetheless, in a safety-critical
field like aviation, such Al outputs must be seen as advisory,
subject to expert review.

Importantly, our conclusions remain tentative due to the narrow
scope of just one anonymised incident. The next steps analyz-
ing a larger range of incidents, adopting ensemble-based or
human-in-the-loop checks, and strengthening domain-specific
validations are essential for achieving the rigor demanded by
regulators and airlines. Over the long term, however, we fore-
see that LLMs, properly governed and audited, can serve as
time-saving, consistency-enhancing adjuncts to critical safety
inquiries never as unilateral decision-makers.
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Appendix A: Aviation Incident Report - Pilot and
Flight Engineer

Commander

We took off at 12:00, with clear skies. We were fly-
ing at maximum permitted speed because the flight
was already delayed from the ground. I wanted to
reduce cruise time as much as possible. The air-
craft was fully up to date with maintenance no out-
standing issues. I had complete confidence in the
equipment. It was supposed to be a straightforward
leg.

But around 37 minutes into level flight, everything
changed within seconds. The master warning lit up,
the right engine fire alert appeared on the EICAS,
and a metallic smell began to fill the cockpit. I saw
the EGT spike, oil pressure dropping rapidly, and
vibration through the rudder pedals. My immediate
thought was: “It’s real. This is going to demand
everything from us.”

I took control immediately, declared MAYDAY
without waiting for ATC clearance, and ordered ex-
ecution of the QRH. There was no hesitation. In-
ternally, I felt the weight of the decision we were
at high speed, which only increased the risk with
a compromised engine. When the flight engineer
confirmed that Bottle A had extinguished the fire, I
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felt a brief sense of relief. But the vibration didn’t
stop.

I made the call to proceed to Bravo. It was 350
kilometres ahead, and we knew it had a long runway,
ILS, and proper emergency services. The idea of
returning to Alpha seemed riskier the flight time was
longer, and I didn’t want to prolong the operation
with an engine potentially suffering internal damage.

During descent, we received the news of partial loss
of hydraulic system B. That was the most critical
moment. Smoke was still present in the cockpit,
strong vibration, degraded systems. I thought: “The
margin is narrowing. We need absolute precision
now.” I established the approach checklist with flap
15, increased V.. Every callout was spoken aloud
as if doing so protected us from error.

On final, I held a steady pitch, focused. Touched
down firmly. I knew the spoilers wouldn’t deploy,
so I went straight to manual braking and left thrust
reverser. When the aircraft stopped on the taxiway, I
looked at the passengers. Everyone was silent. SSEI
took seven minutes. That’s when it hit me: we’d
made it.

Flight Engineer

The fire alert appeared, and my first reaction was
to check whether it was a sensor fault. But within
five seconds of watching the EGT and oil readings,
I knew: it was real. I cut the fuel, pulled the FIRE
HANDLE, and discharged Bottle A. I counted the
seconds in my head until the warning went out it
was quick. But the vibration remained, and that kept
me fully on alert.

It felt like something inside that engine was still mov-
ing the wrong way. I kept monitoring. Suddenly,
hydraulic system B began to drop. It was at 3,000
psi, then fell to 1,100. I knew this meant spoilers,
landing gear, and brakes were partially comprom-
ised. I informed the captain: “System B degraded.
A is active and functional.”

The smell of smoke started circulating. I set the
ventilation to maximum, shut off recirculation, and
partially opened the outflow valve. That procedure
isn’t in the exact checklist, but I've seen it work
before. And it did the smoke cleared.

During the approach, I remained focused on keeping
everything stable. I checked landing weight and
confirmed we were below MLW. Still, I knew it
was a borderline scenario: one engine shut down,
hydraulic B degraded, ventilation system in alternate
mode. But we kept everything under control. Every
click I made on the panel felt like it carried the
weight of a vital command.

Appendix B: Final 53-Item CDM-Aligned Ques-
tionnaire

Below is the 53-item questionnaire employed in this single-
incident pilot, carefully mapped to CDM elements (context,
timeline, cognitive factors, and counterfactuals). Though com-
prehensive, we emphasize that genuine CDM interviews can
be more flexible and iterative.

1. Phase 1: Context and Respondent Profile (9 items)

(a) “What was your specific role (captain, first officer,
flight engineer, etc.) at the time of the incident?”

(b) “How many total flight hours had you accumulated
prior to this event?”

(c) “Briefly describe the general conditions (flight route,
weather, crew composition) leading up to the incid-
ent.”

(d) ... [6 further items covering additional context and
background]

2. Phase 2: Timeline and Critical Points (12 items)

(a) “In which flight phase did the first anomaly occur
(e.g. taxi, climb, cruise, approach)?” [MCQ]

(b) “When you first noticed signs of abnormality, how
severe did you initially rate the situation (Likert
1-5)?”

(c) ... [10 additional items probing chronological detec-
tion, escalation points, and crew handovers]

3. Phase 3: Cognitive and Decision Factors (20 items)

(a) “On a scale from 1 (very low) to 5 (very high), how
confident were you in the cockpit alert systems at
the time?”

(b) “List up to three cues or indicators that most influ-
enced your immediate response actions.”

(c) ... [18 further items examining mental models, situ-
ational awareness, risk trade-offs, and perceived
constraints]

4. Phase 4: Counterfactuals and Final Reflection (12
items)

(a) “If this anomaly had persisted another 30 minutes,
how might your priorities or sequence of decisions
have changed?”

(b) “Reflect on any organisational or procedural direct-
ives that significantly shaped your choices under
time pressure.”

(¢) ... [10 further items prompting ethical consider-
ations, hypothetical scenario variations, and key
lessons learned]
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