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Abstract
Aircraft control systems and their interfaces have been subjects of significant research effort, yet
there are gaps in human-machine collaboration related to functionality requirement awareness in
the development process, and to command-and-control authority of the system being designed.
While their command, control and integration characteristics allow the expectation of near-future
autonomous mobility systems, the path in this direction has been difficult because of increased
exposure to hazards deriving from emerging system functionality and integration issues, and re-
duced situation awareness of system operators. This contribution establishes the context of a
systems architecture framework to reduce uncertainty about whether intended functionality will
match the operating context and its circumstances, and to support developing context-matching
systems architecture with balanced command-and-control in human-machine collaboration. The
context hereby established involves human-machine collaboration between acting engineer and
large language models as supportive agents, proceeding through the generation of system spe-
cifications, and then enabling human verification and authentication of design output considering
the purpose requirements for system functionality. The contribution provides a pilot example de-
claring design intent through prompt questions. This is processed into design synthesis directives
for a large language model, resulting in systems specification outputs from context towards re-
quirements. The example helps assessing the reasons why human-machine collaboration in the
design process and system design can support functional and situational awareness, information
efficiency and operating effectiveness.
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1 Introduction

The growing reliance on intelligent automation makes
human-machine collaboration a critical goal to succeeding
with systems deployment, by asserting complementary roles
of people and automated systems upon executing a task [1].
In this context, the following issues deserve attention: firstly,
that designed automation authority may be unsafe in time-
and range-critical operation circumstances; and, secondly,
that automation-enabled efficiencies could be too hard to
reach by pilots and crew during operation [2].

When their implications reach back to the design process,
design engineers find themselves accountable for solving the
problem, while the complexity and intricacy of multi-domain
integration across engineeering computing tools give rise to
uncertainty on whether designed automation will behave as
intended [3]. Then, the competences and architecture of next-
generation automation systems require innovative engineer-
ing design resources that take advantage of novel technology
[4] to enhance the design of aircraft automation systems onto
fostering flight safety and improving operational efficiency,
through effective collaboration with personnel.
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There is a growing interest on how large language models
(LLMs) could be useful and effective within systems engin-
eering and design. Their transformer1 working principle [5],
with basis on very large-scale neural networks, can process
natural language input and generate answers with person-
like competence [6]. However, the nature of their processing
activity and the quality of their output give rise to critique
on their use in general [7], as well as to significant questions
about whether they are fit to safety-critical engineering tasks
within aerospace mobility [8].

Notwithstanding these issues, the potential capabilities of
LLMs draw our interest on using them to navigate across
automated aircraft systems design. Here, the departure point
is the hypothesis that human-machine collaboration applies
to both the design and the operation of aircraft systems. We
set forward under the refining consideration that information
technology and automation are significantly involved, and
bear influence on the outcome of both design and operation
activities related to modern aircraft systems.

Hence, this paper presents the concept of operations for a sys-
tems design framework that processes design intent declara-
tions in a structured way and parses them to prompting a large
language model (LLM) for early-phase system design tasks.
This framework leverages prompt engineering2 [9] onto the
generation of structured system specifications. The staged
several-shot prompt pattern allows instructing the LLM tool
to enable the traceability and the connection of metrics that
influence aircraft automation effectiveness to succeed at an
air mobility task.

This approach uses an example case on the system design of
aircraft intended for search-and-rescue missions, with regard
to the specific case of flood disasters over riverside regions
that result from 100-year rainfall [10]. Personal awareness of
the author on this particular case - living in the region through
the time of occurrence - and references to the mission cat-
egory support the construction of a visual model, which works
as a reference to structuring systematic and traceable chain-
of-thought prompts. This approach is seen to reduce output
uncertainty, which enables proceeding towards support to the
synthesis of balanced human-machine collaboration.

The content is then organized as follows: this introduction
is succeeded by context and related work. The methodology
section presents the research approach with the architecture
framework and supporting processes/tools, and is succeeded
by the pilot example that illustrates the application of the
framework. The results section discusses and evaluates the
outcome from using the framework, succeeded by a broader
discussion about implications and limitations of the approach.
Lastly, the conclusion completes this paper with a summary
and directions for future research.

1Transformer is a neural network architecture that focuses attention rather
than recurrence and makes the principle that enables LLMs to interpret nat-
ural language content and generate conversation-like output.

2Prompt engineering is an emerging field of inquiry within information
systems research that promotes a systematic approach to study and develop
natural language interactions and instructions to elicit responses from LLMs.

2 Related work
The draw of LLMs to engineering communities reflects an
evolved capability to solve engineering tasks from natural
language processing (NLP) algorithms. While these could
not yield problem-solving abilities until recently, language
models evolved in attention capability through using the
transformer architecture [5] in models such as bidirectional
encoder representations from transformers (BERT) and the
series of generative pretrained transformer (GPT) models.
The exponential leaps in scale by the evolution of these lan-
guage models enabled new content generation from their
solving complex tasks - the so-called emergent ability. Yet the
main draw in their functionality comes as developing LLMs
such as GPT-3 could provide answers in conversation form
after training [11].

The use of LLMs in aircraft systems design has potential
to answer questions dearly held by industry in complexity-
tackling and time-to-market of design processes [12], which
other design automation approaches could not answer so far
because many system design tasks are ill-suited for design
optimization or KBE techniques alone. Because of concerns
manifested in the governance and use of artificial intelligence
(AI) in complex systems [13], as well as the use of LLMs in
engineering activities such as assurance cases [8], the need for
a closer look into human-machine collaboration [14] applies
both to operating machines and processes to their design and
development.

This section will look at the following viewpoints: the applic-
ation of LLMs to generate system models and specifications;
the application of LLMs to generate design task information
such as requirements and assurance cases; and the state of the
art in human-machine collaboration in design and operation
environments.

2.1 Use cases of LLMs for model synthesis

This exploration viewpoint reflects the engagement of tri-
als with LLMs in generating system specification models
with significant completeness and maturity. Examples in this
viewpoint look to use LLMs in interoperation with systems
modelling frameworks to generate specifications, directly or
through intermediate language parsing. Four of the examples
worked within the aerospace domain, whereas other examples
worked other complex trades such as autonomous vehicles
and healthcare operations, with different prompting patterns
and verification methods as shown in Table 1.

Tikayat Ray and colleagues use aircraft design requirements
from certification standards, which they parse with LLMs
and boilerplate text structures to requirement statements [15].
Ofsa and Topcu experiment with a structured few-shot prompt
is associated to reference mission information to generate a
list of mission stakeholders containing the description of their
roles [16]. Then, Balu and colleagues approach the assembly
of a resource-augmented generation (RAG)-framework in-
cluding a publicly-available dataset for an automated driving
perception system alongside instructions adopted from tech-
nical standards within the domain of vehicle automation [17].



Table 1: Comparative overview of LLM use cases for model synthesis.

Reference
Prompt pattern
& LLM type

Auxiliary
resources

Answer
results

Validation
& correction

Tikayat Ray
et al. [15]

BERT
over

source data

Reference
requirements

in documentation

Processed
requirements

on boilerplates

Requirement grammar
structure inspection
with demonstration

Ofsa &
Topcu [16]

Single
few-shot

to GPT-3.5

Reference
mission statement

with prompt

List of mission
stakeholders

with descriptions

Comparison of results across
several prompts under same
prompt-to-answer treatment

Balu
et al. [17]

Two
few-shot

to GPT-3.5

Reference
requirements from

RAG database

Processed
system design
requirements

Comparison of results
across some different
prompt-to-answer treatments

Cámara
et al. [18]

Single
one-shot

to GPT-3*

UML-model
references from
research team

Processed
UML models
specifications

Comparison of prompt trials
and review and correction
of resulting UML-models

García Alarcia
et al. [19]

Single
several-shot

to GPT-4

Mission statements
& OPM template

from research team

Processed
OPM mission
specification

Co-sine similarity verification
between resulting mission
models and reference model

Crabb &
Jones [20]

Single
one-shot

to GPT-3.5

Scenario briefing
promp reference

from research team

XMI requirement
and system models

to MBSE tool

Expert scoring review
across participant cohorts
and applicable corrections

DeHart
[21]

Four
one-shot
to GPT-4

SysML and Python
code models

from researcher

Simulation of model
coupled to system

requirements

Demonstration of effort
and complexity against
usual practice

Johns
et al. [22]

Three
several-shot
to GPT-4T

JSON-model
references from
research team

SysML list of
requirements and block

(bdd, ibd) models

Expert qualitative review
of resulting man-made and
generated system models

Von Heissen
et al. [23]

Two
several-shot

to n/d3

JSON-model
references from
research team

SysML-based
requirement, function,
logical specifications

Expert scoring review of
resulting system models
without correction

Makatura
et al. [24]

Two or more
several-shot

to GPT-4

FeatureScript and
OpenJSCAD models
from research team

Generated
three-dimensional
body geometries

Demonstration of effort
and complexity against
usual practice

Pradas-Gomez
et al. [25]

Two or more
several-shot

to GPT-4

UML model
and Python-KBE

templates

Generated
UML-architecture

and 3-D geometries

Expert qualitative review
of resulting UML and KBE
about model capability

Cámara and colleagues experiment with unstructured prompt-
ing to find out LLM capabilities, and proceeds to system-
atic prompting with support of reference unified modelling
language (UML) models to generate new ones [18]. Gar-
cía Alarcia and colleagues prompt the LLM to read mission
statement inputs along a generic object-process methodology
(OPM) model [26] template, and generate specific technical
requirements for a similar space mission [19].

Crabb and Jones experiment with the synthesis of a require-
ments list along a use case diagram for a health care system
to generate XML metadata interchange (XMI) models [20].
DeHart explores with processing a specific problem for use
in a MBSE environment to generate python language code
conveying a system component model, by using the structural
analysis of a beam as example [21]. Johns and colleagues
work with few-shot prompts to GPT-4 Turbo along with a
set of systems modelling language (SysML) model templates
for a rocket-propelled aircraft: a system hierarchy, a require-
ments list, and an internal block diagram [22]. Von Heissen
and colleagues make an application plugin that structures a
single multi-shot prompt with a few-shot user request field
and in-application model templates available for each system
specification - requirement, function and logical [23].

Makatura and colleagues explore different use cases for
LLMs related to designing part geometries and production
processes. This involves the testing and verification of prompt
patterns and the demonstration of design possibilities in mak-
ing geometry, configuring design parameters, design-for-
manufacturing, along with structural analysis [24]. Pradas-
Gomez and colleagues explore use cases for LLMs in the
design of complex systems, namely the generation of UML
system architecture models and the synthesis of knowledge-
based engineering (KBE)-based part geometry models. Their
approach uses systematic prompting technique adapted to
each case, for the prompts specify the expected elements of
the subsystem architecture and the part geometry models. The
coordination between professional engineers and LLM agents
requires attention [25].

2.2 Use cases of LLMs for design activities

This exploration viewpoint reflects the engagement of trials
with LLMs performing design activities such as requirements
engineering, safety assurance analyses, and geometry devel-
opment, looking to explore and test their suitability. This
viewpoint shows examples shown in Table 2, which look to
investigate the use LLMs on their potential to fulfilling a



Table 2: Comparative overview of LLM use cases for design activities.

Reference
Prompt pattern
& LLM type

Target task &
design domain

Auxiliary
resources

Answer results
& validation

Norheim
et al. [27]

No prompting
found in work

Requirements
engineering
in aerospace

Available
research datasets
on requirements

Framing and benchmarking
of requirement studies
for LLM use

Nouri et al.
[28, 29]

Multiple
several-shot to
custom GPT-4

Hazard analyses
and synthesis of

safety requirements

Document specifications
and design figures

from RAG database

Expert review indicates
LLM as good for preliminary
use, outputs need review

Geissler
et al. [30]

Multiple
several-shot
to GPT-3.5T

Failure scenario
estimation in

safety engineering

Reference models,
information and code
from RAG database

Comparison across different
prompt-to-answer treatments
deemed satisfactory by team

Odu
et al. [31]

Multiple
one-shot

to GPT-4o

Safety assurance
argument synthesis

in safety engineering

Processed GSN
patterns and software
engineering guides

Similarity of prompt outputs
indicates difficulties with
mixed-cardinality relationships

Sivakumar
et al. [32]

Single
several-shot

to GPT-4

Mission statements
& OPM template

from research team

GSN syntax and
semantic instructions

from engineering guides

Co-sine similarity verification
indicates semantic understanding
with assumptions and rationale errors

Qi &
et al. [33]

Multiple
several-shot

to GPT-4

Safety engineering of
automotive and energy

automated systems

Previous STPA studies
of automotive and

energy systems

Verification of added information
indicates system knowledge
and prompting as key aspects

Charalampidou
et al. [34]

Several
one-shot
to GPT-4

Safety engineering of
automated unmanned

aerial vehicle

References about the
system architecture

of the vehicle

Verification of generated scenarios
upon several-shot prompting
indicates tendency to exhaustion

design task, or about how LLMs could be set deliver work
products for engineering tasks to an expected degree of work
quality. Here, our focus is set on early design tasks with
focus on requirements and safety engineering, both aspects
of significant complexity that draw significant resources from
aerospace engineering teams.

Norheim and colleagues look to assess the use of LLMs on
requirements engineering tasks. Their approach frames the
use of language models on a requirements engineering pro-
cess regarding progression from informal statements to actual
system components [27]. Nouri and colleagues experiment
the use of LLMs to carry out a hazard analysis and risk as-
sessment (HARA) task to fulfil a functional safety require-
ment. The approach involves a first exploration phase with
testing prompt statements, and a second phase involved the
setup of a prompt pipeline for the LLM routine and generate
the work product on an automated automotive functionality
feature [28].

Geissler and colleagues experiment with processing a primary
prompt onto multiple several-shot prompts eliciting inform-
ation from a RAG database including the intended sys-
tem model, safety engineering documentation, and analyt-
ical function codes for critical path, fault propagation, single-
point failure finding, to process an answer [30]. Odu and col-
leagues approach the use of LLMs work form the extraction
of safety case patterns from literature regarding the cases of
airborne collision avoidance, and other submarine, medicine
and software systems to generate safety cases [31]. Sivaku-
mar and colleagues explore the possibilities with safety cases
by starting from a prompt pipeline to GPT-4 with rule-setting
questions followed by safety-case generation requests to elicit
the safety case output [32].

Qi and colleagues approach an automated emergency brake
system [35] as basis for using LLMs with systems-theoretic
process analysis (STPA) [36] on different query approaches
regarding the communication direction and the prompt recur-
rence, first to model the control structure and then to identify
the unsafe control actions. The prompt experiment was per-
formed in one-way single-shot, one-way multi-shot, and two-
way multi-shot including stepwise review [33]. Charalamp-
idou and colleagues consider the STPA method on a fully
automated unmanned aerial vehicle (UAV) with a phased
query approach prompting LLMs along general guidelines of
the method, from defining the system to obtaining safety spe-
cifications against unsafe control actions thereby identified.
The method involves placing reference documents about the
system specification, and text-based explanations about the
system and its actions [34]. To tackle the cognitive effort,
Geissler and colleagues [30] suggest delegating questions to
an LLM agent from a single prompt, while Qi and colleagues
[33] find a staged prompting strategy yields better results.

2.3 Holistic human-machine collaboration

The arrival of artificial intelligence (AI) to mainstream tech-
nical systems and especially to complex systems such as in
aerospace calls the attention to the capabilities of this techno-
logy in support to automation, to the extent that it can enable
autonomy in some applications [37]. When AI emerges as a
major influence to the development of systems that can oper-
ate in an increasingly independent manner, Human-AI team-
ing addresses the need to ensure coordination and collabor-
ation between people and machines [38]. When used well,
AI components have potential to provide enhanced cognition
(more information bandwidth) and complex intelligence to
people and teams (better reasoning and decision support).



Nevertheless, AI-based systems have shown behaviour that
calls for increased oversight and the need to enable the design
of collaborative human-machine systems. The systems ap-
proach is evolving from a ’control loop’ to a ’collaborative
loop’ where personnel and agents can work together in joint
cognitive systems [39]. This also involves the need for a more
dialogic and flexible approach to systems supporting human-
machine collaboration, in systems design as well as in the
designed system that will operate [40]. This collaboration is
needs planning, structuring and oversight to preserve human
authority over critical decisions, while leveraging computa-
tional capabilities of efficiency and scalability.

Systems design has seen the implementation of AI techniques
well before operations, by the means of design automation
techniques, which can help the design process by handling
complexity, exploring alternatives, and maintaining consist-
ency across specifications [41, 42]. However, while design
automation research succeeds in its application to market,
there is difficulty to replicate more complex and complic-
ated propositions with accumulated knowledge, especially in
technological systems with sociotechnical components [43]
where mathematical and logical methods see limitations on
their suitability to operation and system design tasks.

While the implementation of neural networks (NNs) can
provide better adaptability, optimization-focused design auto-
mation methods still remain restricted to specific, niche
design problems [44]. Other use of NNs regard the focus on
geometry design optimization through reinforcement learn-
ing, where a reward function guides the algorithm to optim-
ize specific geometric aspects [45]. However, cross-domain
design modelling and problem-solving support (actor > activ-
ity > requirement > function > component) has been eluding
researchers and engineers looking to use such models.

The draw of LLMs to engineers stems from their improved
capability over other NLP algorithms to solve complex tasks:
whereas the BERT had 330M parameters, GPT-2 model had
1.5B parameters, and the next-generation GPT-3 was de-
veloped to 175B parameters. These factors enabled evolving
LLM capabilities towards generating new content upon the
solution of complex tasks - the so-called emergent ability.
Yet the main draw in their functionality comes as developing
LLMs such as GPT-3 could provide answers in conversation
form after training [11]. The effective use of LLMs requires
coordination between professional engineers and computing
agents for their successful [25].

Here, Human-autonomy teaming (HAT) involves the sharing
of activities among personnel and autonomous agents in in-
terdependent work, and comprises key research areas such
as the definition of agent characteristics, the human-machine
team composition, and means and protocols of communica-
tion [46]. Effective HAT requires means of maintaining situ-
ation awareness (SA) for personnel and the AI cobots that
share the task, encompassing task assignment, actor and agent
roles, and teamwork SA [38]. A cognitive perspective on
Human-Autonomy command emphasizes the need for flex-
ibility and versatility about executing the intended activities,
such as when managing various assignments at hand [47].

3 Methodology
This section outlines the development approach employed for
the proposed systems architecture framework and provides
a contextual view on the how the framework is developing
and on the selection of an example case to demonstrate it
in first hand [10]. This framework is ongoing development
through beginning with a manual approach and proceeding
to automate the generative process to the use of large lan-
guage models (LLMs). To frame the demonstration approach
in this paper, this section firstly presents the framework ele-
ments with support of visual tools, model-parsing applica-
tions and large language models (LLMs); then, it describes
the chain-of-thought prompting approach around a modular
strategy and the policy definition that enables it; by last, the
text describes how prompting is structured across phases and
system aspect blocks.

3.1 Research development method

The research approach is an exploratory study about the cap-
ability of LLM models to enable human-machine collabora-
tion by the design process in working towards better human-
machine collaboration in operation. The stepped approach
started with a literature review to help form the picture about
the state of development of LLMs and their use in engineer-
ing and design. Then, it evolved to the second step with un-
structured prompting with LLM models such as GPT-4, GPT-
4o, and GPT-4.1 about generic system development cases in
a narrow system scope.

The third step of the approach is the structured prompting
about the generic search-and-rescue mission through manual
typing over the chatbox where a partial scope of the design
assignment is tried with testing the intended conversation
functionalities. a fourth step involved the development of
the CXL-Markdown prompt parser, for enabling the inten-
ded visual approach; then, the last step is the use of the full
prompting functionality to the LLM tools on the intended
mission case, which then takes the form of a case study.

This paper is going to focus the display of the results from
this last step, while the perceptions from the previous steps
may be useful for discussing the general use of the LLMs.

3.2 Resulting framework composition

The framework has three major components: the first one
is the use of a visual approach to define the scope of in-
quiry and the prompting pattern. This visual approach can
be implemented through an in-house application or through
an external model provider. In its current form, the visual
approach works through the use of CmapTools [48], whose
user interface shown in Figure 1 provides and environment
for the construction of knowledge models in so-called concept
maps. For this demonstration, CmapTools enables defining
a visual diagram reflecting a prompt intent, and its export
onto a CXL-format derived from extensible markup language
(XML). This file carries the information regarding the concept
nodes, the linkphrases and the connections between them,
which will be read onto LLM prompts.



Figure 1: The CmapTools interface.

Figure 2: The CXL-Markdown prompt sequence result

Figure 3: The ChatGPT chatbox

The second major component is a model-parsing Python
routine that opens the CXL-file and reads the XML-code out
of it, so that to convert the information in concept blocks, link-
phrases and their comments into a topic sequence and then to
the Markdown language for the purpose of making the prompt
chain. This application reads the entire CXL-model through
with following its nodes and links, and parses it onto a mul-
tiple several-shot prompt chain. Being directly derived from
the visual model, the resulting prompt chain shown in Figure
2 will inherently carry the system design formulation phases
as sets of characteristics; these characteristics are divided into
few several-shot prompt chunks that make specific aspects of
the intended system by the press of a button.

At this development level, the third component is the chat-
box application for the LLM, hereby shown in Figure 3.
Here, three ChatGPT models shall be used for comparison:
ChatGPT-4o [49], ChatGPT-o4-mini [50] and ChatGPT-4.1.
These models are selected for their specific characteristics:
GPT-4o is the general-purpose model intended for most tasks,
GPT-o4-mini is a reasoning-optimized model with higher
throughput, which is useful for technical problem-solving,
and GPT-4.1 is the most capable of them, so far. Prelimin-
ary tests before these runs have shown that different LLM-
models, can yield different answer patterns with different
tones and emphases depending on the selected model.

The LLM-algorithm is operated through the authors’ own
ChatGPT user account, whose access enables reaching the
GPT-chatbox where prompt patterns will be set. While
some context information can permeate between conversa-
tions, specific instruction is given so that the system ’forgets’
other conversations. By receiving the prompt chunks set onto
the chatbox, the algorithm makes a conversation record; the
conversation is continued with a sequence of prompt chunks
whose answers will be accumulated through the conversation.
As the GPT-chatbox enables scrolling about and through the
conversation, the GPT-chatbox also works as answer review
interface for the ongoing system development conversation.

3.3 Planning the conversation

This part is derived from the following research steps: firstly
an unstructured prompt phase with asking questions about
generic examples, where a chain-of-thought pattern is used
with several prompt requests; then a structured prompt
phase with manual input into the chatbox, and lastly the
visual prompt planning approach. The conversation is firstly
planned in regard to setting a conversation policy with defin-
ing the role of the LLM and the rules of engagement for the
conversation, where each prompt will be always additive.

The conversation policy section has two concepts around
which all rules of engagement are defined: first comes the
’Instructions’ concept with a visual shown in Figure 4 and
then the ’About the conversations’ concept. The instructions
part defines the role and the assignment of the LLM agent,
including answer composition, answer referencing to enable
traceability and update policy. The second part sets the con-
versation up in terms of direct prompts and derived prompts,
their sequence and their relationships to the intended inquiry.



Figure 4: The first part of the policy, in visual form.

Figure 5: Excerpt of the policy in markdown.

Here, direct prompts work specific aspects at certain stage of
system development, and derived prompts define specific re-
lationships between these aspects. It also defines the opening
for opportunities to generate system design content, and two
sessions after completing the intended system aspects: an ask-
me-back session for augmentation possibilities and an update
session for the correction of inaccuracies. Each following sec-
tion has two sets of questions: the first on the aspects for dir-
ect prompting, and the second on generating the relationship
between the directly-prompted ones.

As from the ’About the conversations’ concept in the previ-
ous section, the algorithm receives the prompts as defined in
Figure 5 on which it shall perform an ask-me back session
and set a waiting state for review and update requests. This
process will repeat for all other sections until completing the
scope of system specification inquiry in this demonstration.

The ask-me-back and the update opening reflect the steps
planned for human-machine collaboration. While the al-
gorithm is set to give suggestions about opportunities it fig-
ures about, the last step is the human-requested update. The
conversation policy definition is necessary to make sure the
LLM will do the marking and chunking of conversation
blocks and will distinguish between different conversation
sections, and will also take note of revision number for each
conversation block that is defined.

4 Pilot example
As mentioned in the introduction, the approach shall engage
the development of a system architecture for the search-and-
rescue mission type, with considering the specific case of vic-
tim recovery from flooding by riverside communities after a
100-year rainfall [10]. In reality, this episode was character-
ized by 420 mm of rain between the 29th of April and the 5th
of May, 2024, in the centre region of the southern state of Rio
Grande do Sul in Brazil, and recurred from rainfall intensity
only witnessed back in 1941. The consequences of the rain-
fall are in display by Figure 6, by the city of Cruzeiro do Sul
at a distance of 140 km from Porto Alegre that is the state
capital. The flood made 57 fatalities by the first five days, and
a total 187 fatalities in total [52].

The prompt chain evolution will be presented in regard to
its context and requirement definitions, as the conversation
policy is described in 3.3. Each section is generated after a
specific prompt of its own, which is chunked off from the
whole chain with support of the CXL-to-markdown model
parser. With the prompts chunked, they are copied and parsed
onto the GPT chatbox window.

4.1 Context and requirement definitions

With Figure 7 showing the full visual model prior to prompt
conversion, it displays the conversation policy by the ele-
ments in the uppr half, whereas the elements corresponding to
the general context definition and the requirement definition
are situated by the bottom of the figure. The context definition
is the front-end for prompting about the search-and-rescue
(SAR) mission, and has its aspects requested in general form.



Figure 6: Flooding in Cruzeiro do Sul, RS after the 100-year rainfall [51].

As the exercise involves no RAG to getting external data, the
case selection involved reasonable information from the pub-
lic domain.

While the first pipeline of context definition works for ’prim-
ing’ the LLM to communicate about general aspects of
search-and-rescue missions, the requirement definition that
comes in second works differently. Because the prompts were
chunked by the means of the algorithm, it was possible to
set a preamble prompt to the algorithm in regard to the re-
quirement definition stage, requesting information about the
tragedy. The requirement definition prompt chain is started
with a preamble prompt shown in Figure 8 requesting the
LLM to be aware of the flood case and consider it for the
questions ahead regarding requirement definition.

Figure 7: The full visual route before conversion.

Figure 8: Incorporation of reference into conversation.

After the preamble prompt, a manual request is set so the
model confirms it understood the data and includes the data
on-record as a new conversation block as shown in Figure 9.
Then the prompts are followed on as usual, with the same in-
formation, and allowing the LLM to use the data as its context
of its reasoning and inquiry. The inquiry involves the identi-
fication of mission aspects that need to be taken into account
in search-and-rescue effort aiming at the recovery of victims
in riverside areas, considering flooding rivers with high kin-
etic energy.



Figure 9: Incorporation of reference into conversation.

4.2 Air mobility and aircraft considerations

While the prompt chain considers the mission design in first
place, here the model makes references to expectations from
air mobility in such a case. By the end, a manual request is
set about references to ’air mobility’ and ’aircraft’, and the
algorithm returns a summary answer that contains the refer-
ences it made to the assumptions, requirements and means of
implementation it mentioned throughout the conversation. In
each of the three versions tested - GPT-4o, GPT-04mini and
GPT-4.1 - the script recalled the references it made to air mo-
bility and aircraft throughout all conversation blocks.

Each of the scripts has a particular way of reporting. GPT-
4.1 as shown in Figure 10 focuses the verbal description of
use cases, payloads and typical operation patterns, aircraft
crew and personnel - it pointed out at cross-training between
UAVs and helicopters, then the capabilities that stand out and
the expectations of stakeholders, observations about human-
machine teaming and their monitoring needs by last.

GPT-4o follows a similar pattern to that from GPT-4.1, with
focus on general aspects, key parties and aircraft roles; then
it proceeds to the references by the requirement definition
phase, and defines general roles and capabilities of aircraft
with identifying the air force as main stakeholder, and by last
it identifies a mobility cluster - possibly the local airbase at
Santa Maria - along matching UAVs to use cases of their ad-
vantage.

Then, GPT-o4mini mentions categories of use cases, support-
ive technologies, and roles and responsibilities by parties; it
proceeds to identifying aircraft and devices for air domain
activities; it lists parties’ expectations and then useable types
of aircraft. The o4mini model has also identified references to
ai mobility and aircraft in relationships, where early-defined
capabilities appear in significant number. At the end, it iden-
tifies aircraft types and dscribes the most promising roles for
their use.

Figure 10: Aircraft reference summary by GPT-4.1.



5 Discussion and future work

This paper has approached the context of collaborative
human-machine systems architecture design with a visual ap-
proach for planning prompts to large language models (LLM)
to engage in systems engineering until systems architecture.
This paper has reviewed the uses of LLMs in the design pro-
cess so far, and then presented the fundamental components to
the framework: a visual modelling application, a model pars-
ing application and a prompt throughput device, here being,
respectively, the CmapTools applicaiton, a XML-Markdown
parser application and the GPT-chatbox from an accessible
user account.

While some other works in literature also consider the pars-
ing of models, this approach is about making a visual path to
prompting for the purpose of buildling foundational conversa-
tions, that served in this example to collect relevant references
about use cases and intended capabilities of aircraft and can
serve to generate more elaborate system models as with the
time investment. Such a prompt route enables a visual ap-
proach to prompting because of reading a visual graph onto a
markdown text that can be used for prompting. Using three
parallel conversations with three different models brings some
insight about how to develop the use of LLMs as design as-
sistants.

The first aspect of human-machine collaboration is the estab-
lishment of a conversation policy. This conversation is ad-
ditive, and does not involve erasing prior references. Nev-
ertheless, models with shorter context windows may suffer
if the conversation proceeds at once. Therefore, splitting
prompts and distributing the generative language processing
onto shorter conversations is the way to develop, which en-
lightens our methodology choices in proceeding with devel-
opment. This paper has been done with awareness about the
possible failure modes by LLM models, and it is for that
reason that the conversation policy looks to establish trace-
able and revisable conversation blocks.

The path to ensuring acceptable reliability of LLMs as design
assistants has two ways: one, by LLM developers, who can
expand benchmarks such as context window and maximum
token size to enable a higher throughput capacity. Both GPT-
4o and GPT-o4mini choked in few moments of their conver-
sations due to the quantity of text they were accessing within
the conversation. This choking revealed itself by GPT-o4mini
ignoring a part of a prompt requested at it and then accepting
a repeated prompt request with no issue- yet processing it in a
separate process window rather than in the mein conversation
interface.

The other way is about the distribution of prompting work-
load. When the prompts may get too complex, the use of
language processing framework techniques such as retrieval-
augmented generation (RAG), and prompt distribution to
agents relieves the context window of LLM processors and
improves the rational use of tokens, meaning that a more ad-
vanced way of processing information becomes accessible.
At the same time, less computer resources and less energy
could be spent if reducing the strain on LLMs.

Much of the prompting accuracy comes from... prompting,
which means prompt engineering is another area to look at
closely. The quest for trustworthy and reliable automation be-
gins at our fingers, both in the design process context as well
as in the operation context. There is now a foundation from
which depat and to pursue these improvements to build upon.
While GPT-models can trace and make individual conversa-
tion models, it shall be an external application to include an
undersigning module or a user-bound SHA-code to authentic-
ate the professional partner of the LLM model, meaning that
there is someone who reviewed the LLM model and is ready
to stand by it.

6 Conclusion
This paper has presented the demonstration of a human-
machine collaboration for system architecting, looking to en-
hance functional awareness by engineers, and to find im-
provements in balanced control authority. The establishment
of information about its mission assignment with basis on in-
formation about a real case brings use cases, capacity ranges,
specific capabilities and parties expectations to form early
design requirements about the design of one or more novel
aircraft towards the mission case thereby identified.

The balance of command and control and the increased
awareness to functionality come together with developing the
prompt pattern, both in terms of distribution and allocation of
processing resources and with focus on the relevant inform-
ation to aircraft innovation processes where design engineers
and operator representatives may face together.
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