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Abstract

Pilot-induced oscillations (PIO) are a long-standing challenge in aircraft handling, characterized
by destabilizing oscillatory behaviour resulting from closed-loop interactions between the pi-
lot and the aircraft. Traditionally, PIO identification and quantification rely on the subjective
PIO Rating Scale (PIOR), used by pilots during handling qualities evaluations in aircraft testing
and certification. This paper presents a data-driven approach to objectively identify PIO using
flight data collected from a fixed-base simulator during a flight test campaign. The data were
labelled according to the PIOR scale, preprocessed using the Wavelet Transform, and used to
train a Convolutional Neural Network (CNN). This approach enables objective detection and
quantification of PIO while maintaining alignment with the pilot-assessed evaluative framework.
A k-fold cross-validation strategy yielded an average validation accuracy of 52.8%, with the
best-performing model achieving 63.1%. By applying the soft voting ensemble technique, the
validation accuracy increased to 84.6%. The overall accuracies are attributed to challenges in
classifying low-to-intermediate PIO ratings (PIOR 2 and 3). Despite this limitation, the proposed
model shows potential for further improvement and demonstrates promise as a complementary
tool in handling qualities evaluations, providing a quantitative counterpart to traditional pilot as-
sessments.

Keywords: Pilot-induced oscillations, Convolutional neural network, Wavelet Transform, Flight

simulators

1 Introduction

Pilot-Induced Oscillations (PIO) are a long-recognized chal-
lenge in aircraft handling qualities, where undesired and often
destabilizing oscillatory behaviour emerges from the closed-
loop interaction between the pilot and the aircraft. These os-
cillations typically arise from a mismatch between pilot con-
trol behaviour and aircraft response characteristics, particu-
larly under condition of high gain, time delay, and/or non-
linearities within the pilot-aircraft system.

According to a widely accepted framework established in in-
dustry and military research [1, 2], PIO is most fundament-
ally described as a "sustained or uncontrollable unintentional
oscillation resulting from the pilot’s efforts to control the air-

craft". According to Mitchell and Klyde [3], these oscillations
typically occur when the aircraft’s response angle is approx-
imately 180 degrees out of phase with the pilot’s input. Im-
portantly, a PIO can be convergent, constant-amplitude, or di-
vergent, and may involve just a few cycles or persist through-
out a task. Frequency alone does not define a PIO; events have
been recorded across a broad spectrum, from low-frequency
oscillations near the phugoid mode to higher-frequency phe-
nomena like pitch bobble or roll ratchet.

The severity of a P1O varies widely. Mild forms may be small
in amplitude and tolerable in some scenarios, while moder-
ate PIOs disrupt mission performance and often require pi-
lot compensation or corrective action. At the most extreme,
severe PIOs render the aircraft uncontrollable during the task,



demanding immediate system modifications and halting fur-
ther testing [3]. Crucially, PIO is most often symptomatic of
deeper issues in aircraft design, operational envelope exten-
sion, or control law implementation, and not a result of poor
piloting [4].
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Figure 1: The PIO rating scale (PIOR) [5].

Historically, PIOs have been identified by test pilots through
flight tests, simulator evaluations, and aircraft certification
procedures, primarily using the PIO Rating Scale (PIOR), as
shown in Figure 1. Although the PIOR provides valuable in-
sights, it depends heavily on subjective pilot assessments, in-
troducing variability influenced by factors such as pilot ex-
perience, familiarity with the scale, and individual perception
and interpretation of the oscillatory levels [S5, 6]. This has
led to the development of some objective, data-based iden-
tification methods, including the Real-time Oscillation Veri-
fier (ROVER) [7] and the Inceptor Peak Power Phase (IPPP)
[8] metrics. These techniques aim to detect the onset of PIO
by analysing control input and aircraft response data. How-

ever, aligning these tools with pilot assessments remains a key
challenge due to differing sensitivity and interpretive models.
These metrics are yet incomplete and do not provide inform-
ation about the PIO severity.

In recent years, machine learning has shown growing prom-
ise in handling quality research. For example, Xu et al. [9]
and Mori and Suzuki [10] have used fuzzy logic and neural
networks, respectively, to model pilot behaviour in closed-
loop tracking tasks. Specifically in PIO identification, Brus-
chi et al.[11] proposed a deep neural network trained on hand-
crafted features derived from flight data and aligned with ex-
isting PIO definitions, such as maximum phase difference
between pilot input and aircraft response, to classify events
according to the PIOR scale.

Convolutional Neural Networks (CNNs) have demonstrated
strong potential in analysing time-series data, particularly
when the data is converted into “image-like” format (scalo-
grams and spectrograms) using mathematical tools such as
the Wavelet Transform or the Short-Time Fourier Transform.
This approach has been successfully applied in various do-
mains, including speech emotion recognition [12] and ar-
rhythmia detection in electrocardiogram signals [13].

This paper presents a data-driven approach to PIO identific-
ation using flight data obtained from a flight simulator cam-
paign and labelled according to the PIO rating scale. In this
method, the flight data is transformed into scalograms via the
Wavelet Transform and then processed by a Convolutional
Neural Network, which outputs a classification aligned with
the PIO rating scale. A key advantage of this approach is
its ability to autonomously learn PIO-related features directly
from the scalograms, without requiring the inclusion of pre-
defined PIO definitions as part of the network input. The ul-
timate goal is to develop a tool that reduces dependence on
subjective pilot input while maintaining consistency with the
PIOR framework, thereby enhancing the accuracy and repeat-
ability of PIO assessments in both development and certifica-
tion contexts.

2 Data acquisition

To achieve the proposed objectives, flight data must be made
available for use by the neural network algorithm respons-
ible for identifying pilot-induced oscillations and quantifying
their severity. To this end, a flight simulation campaign was
designed to collect sufficient data, generating a dataset to sup-
port the neural network training and validation processes, as
detailed in the work of Bruschi et al.[11].

Although flight simulator data lacks high fidelity in repres-
enting real flight conditions, this approach offers significant
operational advantages. Notably, it enables the generation of
large volumes of data at a lower cost. Another key benefit
of simulations is the ability to easily modify flight conditions
and aircraft stability characteristics. The use of flight sim-
ulators has become a standard practice in research on PIO
and other handling qualities issues, attracting considerable in-
terest from the aerospace industry [14, 15, 6].
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2.1 Aircraft model

The first step in developing the simulation environment for
the campaign was to define the aircraft model. For this work,
a linear longitudinal model of a FAR 25 commercial aircraft
in cruise condition at 40,000 feet and Mach 0.8 was selected.
The model, as described by Etkin and Reid [16], is presented
in state-space form and is defined by Egs. 1 to 4.

In this formulation, A, B, x, and &, represent the system dy-
namics matrix, input matrix, state vector, and control input
vector, respectively. The state vector comprises the longit-
udinal velocity perturbation (Au), vertical velocity (w), pitch
rate (q), and pitch angle perturbation (A8). The input vector
consists solely of the elevator deflection. The elements of the
A and B matrices correspond to the dimensional stability and
control derivatives, respectively. The values of these derivat-
ives, not presented in this article, are also provided by Etkin
and Reid [16].

The M,;, derivative (pitching moment with respect to w) was
varied arbitrarily to generate six different model configura-
tions, as summarized in Table 1:

Table 1: Values of the My, derivative.

Model configuration ~ My, Value  Unit

1 (baseline) —1.12-10* N-m
2 —5.78-10° N-m
3 1.73-10° N-m
4 6.19-10* N-m
5 1.22:10°> N-m
6 1.74-10°>  N-m

These different model configurations were introduced to pi-
lots within the simulation environment to create scenarios
where the aircraft could more readily enter a PIO condition
due to pilot input. From the perspective of dataset genera-
tion, it is essential that the collected samples represent a wide

range of PIO intensities. Varying the model’s PIO proneness
is one effective way to achieve this diversity. Accordingly,
model configuration 1 is the least prone to PIO, while model
configuration 6 exhibits the highest susceptibility.

The decision to vary this specific derivative, rather than any
other, is based on its effect on the short-period mode: it alters
the damping ratio without significantly affecting the natural
frequency, as illustrated in Figure 2. Consequently, by modi-
fying this derivative across configurations 1 to 6, the model
progressively approaches dynamic instability in longitudinal
motion. As a result, the pilot must apply stabilizing control
inputs to counteract the increasing tendency toward instabil-
ity. If the pilot is unsuccessful, a pilot-induced oscillation
(PIO) may develop. It is also worth noting that the opposite
can occur: a pilot may inadvertently destabilize a configur-
ation that is not inherently prone to PIO, depending on how
their piloting behaviour is tuned during a demanding control
task [17].
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Figure 2: Dynamic parameters related to the short-period
mode as function of M.

2.2 The simulation environment

The second step in the data acquisition procedure was to es-
tablish a simulation environment that allowed a pilot to inter-
act with the aircraft model described in the previous section.



To this end, a fixed-base flight simulator was developed, con-
sisting of a display screen showing an artificial horizon and
a joystick serving as the interface between the pilot and the
model, as illustrated in Figure 3.

-10 Aircraft
pitch angle

Figure 3: Simulation environment setup, featuring the artifi-
cial horizon display (top), joystick control interface (middle),
and a pilot performing the simulation task (bottom) [11].

During the flight simulation, a target pitch angle is displayed
to the pilot as a moving red line on the artificial horizon
screen. The pilot must track this reference by applying appro-
priate stick deflections. This functionality is provided by the
SynTask software, developed at the University of Sao Paulo
and registered under the number BR512022002377-6 [18].
The development of SynTask is detailed in [19]. Implemented
in MATLAB®, the software allows for modifications to both
the pitch tracking task type and the aircraft dynamics with
minimal changes to the code.

The joystick used in the simulation environment is a Thrust-
master HOTAS Warthog, positioned in a central configura-
tion for right-hand operation. The pilot provides command
inputs, denoted as 1, through the joystick. These inputs are

then converted into elevator deflections (&), which serve as
the input to the aircraft model. This conversion is performed
by a second-order model representing the elevator actuation
system, as defined in Eq. 5.

de —?
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In this actuator model, @, denotes the actuator’s natural fre-
quency, set to 8 rad/s, and {, represents the actuator’s damp-
ing ratio, with a value of 0.707.

2.3 Experimental procedure

The final step in the data acquisition procedure was to con-
duct the simulated flight tests using the aircraft model and the
simulation environment described earlier. Figure 4 presents a
block diagram summarizing a single flight simulator run.
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Figure 4: Experiment architecture [11].

For this flight simulator campaign, ten pilots with extens-
ive experience and formal training in flight testing within the
Brazilian aeronautical industry, as well as familiarity with the
PIO rating scale, were invited to participate. The test proced-
ures were approved by the Research Ethics Committee under
process number CAAE 54,768,421.7.0000.5504.

Two different pitch angle tracking tasks were employed,
based on flight test procedures for PIO commonly used in
the industry [20]. The first procedure, known as the discrete
synthetic task, involves a series of ramp and step commands
that pilots are required to track using flight controls. To pre-
vent pilot adaptation and ensure unpredictability, four vari-
ations of this task were created and randomly presented to
the pilots. The second task, referred to as the pitch capture
task, consists of smaller manoeuvrers involving long-duration
step captures. Similarly, four variations of this task were de-
veloped and randomly presented to the pilots. Both types of
tasks are illustrated in Figure 5, along with the pilot’s corres-
ponding attempts to track the demanded pitch angles.

The flight test campaign thus comprised a total of 480 sim-
ulation runs, resulting from ten pilots performing two types
of pitch tracking tasks (each with four different variations)
across six aircraft model configurations.

The flight data for each run was recorded in a .mat file con-
taining time-series data of the pitch tracking task, aircraft
pitch rate and angle (states 3 and 4 of Eq. 4), and the stick
deflections inputs, with each run lasting approximately 50
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Figure 5: Types of pitch angle tracking tasks, both performed
by Pilot 1 under the baseline model case.

seconds. All flight runs were conducted with a sampling fre-
quency of 20 Hz. At the conclusion of each run, the pilot
provided a PIO assessment using the PIO rating scale, indic-
ating both the presence or absence of PIO and the intensity of
the oscillations as perceived.

From a machine learning perspective, the raw dataset consists
of 480 data samples (the .mat files), each labelled with the
corresponding PIO rating (six classification classes). Table 2
presents the number of flight runs that received each specific
PIO rating for every model case. As shown in this table, the
resulting dataset is not perfectly balanced, with the propor-
tion of samples for each PIO rating ranging from 11.7% to
21.4% of the total, whereas an ideal distribution would alloc-
ate 16.7% to each grade.

Table 2: Distribution of PIO ratings in the dataset.

Model PIO rating scale
case 1 2 3 4 5 6
1 29 32 16 3
19 29 27 5
8 32 34 6
10 17 36 17
9 26 35 10
6 4 18 58
Total 56 103 103 80 70 68
% 11.7 214 214 167 146 142

B W

Given the structure and generation process of the dataset,
there is potential to apply data augmentation techniques while
preserving the original labels, in order to improve class bal-
ance. This could enhance the ability of the PIO classification
algorithm to generalize more effectively. The data augmenta-
tion procedures will be described in the next section.

3 Flight data pre-processing

Between data acquisition and its application in a ma-
chine learning algorithm for classification purposes, a pre-
processing stage is required. This section describes how the
data was prepared to be fed into a convolutional neural net-
work designed to classify PIO events.

Among the four time series collected during each flight run,
only the pitch rate and stick deflections were selected for use
in the PIO classification algorithm as inputs. These para-
meters were chosen because they are readily measurable in
real flight conditions and exhibit zero mean, which facilitates
the detection of oscillatory patterns. This rationale is con-
sistent with other quantitative identification methods, such as
the Real-time Oscillation Verifier (ROVER) [7, 6] and the In-
ceptor Peak Power Phase (IPPP) [8, 21], which also rely on
these parameters for similar reasons.

The pitch angle time-series presents the challenge of a non-
zero mean, requiring a reference signal to compute the track-
ing error and detect oscillatory behaviour. While the ref-
erence signal (i.e., the pitch tracking task) is available in
this test campaign, such information is rarely accessible in
real operational scenarios. Therefore, a robust PIO classi-
fication/detection method should not depend on a predefined
reference pattern as part of its input. Instead, it should fo-
cus solely on identifying the oscillatory characteristics of the
pilot-aircraft interaction.

The pitch tracking task time-series and the variation in model
proneness to PIO were solely intended to generate data across
the full range of the PIO rating scale by inducing pilot-
induced oscillations at different severity levels. These vari-
ables were not used as input parameters for the classification
algorithm, thereby eliminating dependence on data generated
exclusively under controlled flight test conditions.

The pilot’s input, whether in the form of stick deflection or
force (as used in other methods [7, 8]), and the aircraft’s re-
sponse, represented by angular rate, constitute the most fun-
damental relationship in the pilot-aircraft interaction and form
the basis of the PIO phenomenon. Any additional informa-
tion, such as the phase difference between the pilot’s input and
the aircraft’s response, can be interpreted as a consequence of
these two signals and lies within the scope of specific PIO
definitions. An identification method built upon a particular
set of PIO definitions will only detect and quantify what that
set describes as PIO. Slight variations in these definitions can
lead to different identification outcomes.

For the reasons discussed above, the proposed machine
learning-based identification method relies solely on these
two input signals, without incorporating any additional para-
meters derived from existing PIO definitions. The intent is for
the algorithm to autonomously identify and quantify PIO be-
haviour by learning patterns in the data and correlating them
with the PIO rating scale. This approach contrasts with the
work of Bruschi et al. [11], who performed machine learning-
based PIO identification using input parameters already asso-
ciated with established PIO definitions found in the literature.



This approach also differs from pilot assessments using the
PIO rating scale in terms of underlying definitions. Although
the scale is based on a structured set of definitions, the rat-
ing process is inherently subjective and varies according to
each pilot’s perception and interpretation of both the scale
and the PIO phenomenon [6, 5]. Therefore, the algorithm
is also expected to learn an approximate or "average" map-
ping function that captures the common patterns underlying
the human-assigned PIO ratings.

3.1 The Wavelet Transform

One way to enrich the information contained within time-
series data, without relying on predefined PIO characteristics,
is through the application of the Wavelet Transform. This
mathematical tool is a multi-scale time-frequency analysis
technique particularly suited for non-stationary signals, which
are common in piloting scenarios, including those involving
PIO. Similar to the Fourier Transform, the Wavelet Transform
reveals the frequency content of a signal, though at the cost of
reduced frequency resolution. However, it offers a signific-
ant advantage by also providing the specific time intervals at
which those frequencies occur, making it highly valuable for
capturing transient events in dynamic flight data.

Over the past few decades, the Wavelet Transform has been
applied to PIO analysis in a range of contexts: from basic
applications, such as expanding flight data signals into the
frequency domain while preserving time-localized transient
information, to more advanced uses, including the estimation
of time-varying frequency responses [22, 23] and the develop-
ment of criteria such as the Inceptor Peak Power Phase (IPPP)
[8, 21].

The Wavelet Transform is defined as the convolutional integ-
ral between the analysed signal x(¢) and the complex conjug-
ate of the wavelet function ¥(¢), as shown in Eq. 6.

W(t,f) = \f/ f(t—1))dt (©6)
The parameter 7 is used to translate the wavelet function
along the time axis during the convolution, while f scales
the wavelet function, effectively adjusting its resolution in the
frequency domain. These parameters correspond to the fre-
quency and time axes in the output of the transform.

In this work, the wavelet function used is the Morlet wavelet,
defined in Eq. 7, where u = f(t — ), B controls the temporal
width of the wavelet function, and ¢ determines the number
of oscillation cycles within the wavelet.

P(u) = \/I?Beé’z [cos(zc”u> + j sin (zfuﬂ %)

The Wavelet Transform was therefore applied to both the stick
deflection and pitch rate time-series, expanding the original
one-dimensional representation, amplitude over time, into a
two-dimensional representation of amplitude over both time
and frequency. Figure 6 illustrates the original time-series

signals (in green and purple) alongside their corresponding
scalograms, which represent the absolute value of the com-
plex amplitude resulting from the Wavelet Transform. The
pitch task and pitch angle signals are included in the top plot
solely to illustrate the data generation process; however, they
were not used as inputs to the machine learning algorithm, as
discussed.
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Figure 6: Stick deflections and pitch time-series (top), stick
deflection scalogram (middle), and pitch rate scalogram (bot-
tom), related to a pitch capture task.

The scalograms, obtained using MATLAB®, show that the
pilot applied stick deflections across a varying range of fre-
quencies during the task, and that the aircraft response exhib-
ited excitation at some of those same frequencies. The colour
scale represents the magnitude of the Wavelet Transform, cor-
responding to the square root of the power spectral density as-
sociated with each signal. This highlights the enhancement of
the signal’s informational content, as the relationship between
pilot input and aircraft response can now be observed simul-
taneously in both the time and frequency domains.

From a machine learning perspective, the raw time-series
data were transformed into two-dimensional tensors using the
Wavelet Transform. These tensors can also be interpreted as
grey-scale images (despite being displayed in colour in Fig-
ure 6), where the time and frequency axes define the pixel
locations, and the square root of the power spectral density



determines the pixel intensity.

The dataset of 480 labelled samples described in Section 2,
originally containing four raw time-series per sample, was
thus transformed to contain two scalograms per sample, while
preserving the same number of labelled instances. Therefore,
the stick deflection and pitch rate scalograms form a two-
channel input to the convolutional neural network algorithm.
After the transformation, each scalogram had a resolution of
512 x 941 pixels, corresponding to the frequency and time
axes, respectively. All scalograms were saved as matrices in
.csv files.

3.2 Dataset augmentation

Before using the dataset in the PIO classification model train-
ing process, the .csv scalogram files and their correspond-
ing PIO rating labels were consolidated into a single .A5 file
(Hierarchical Data Format) for use in a Python environment.
This format offers the advantage of packaging the entire data-
set into one file, allowing for easier manipulation and applic-
ation within the algorithm.

As mentioned in Section 2, the dataset is imbalanced, with
a disproportionate distribution of labels across samples (see
Table 2). This imbalance can impair the model’s ability to
generalize effectively [24]. To mitigate this issue, the data-
set was augmented using an oversampling strategy, which in-
volves duplicating samples from under represented classes to
increase their presence in the dataset. Specifically, classes 1,
4, 5, and 6 were expanded to 95 samples each, while classes
2 and 3 remained unchanged with 103 samples each. This
approach constitutes a partial balancing process, intentionally
preserving some degree of label imbalance to better reflect the
real-world conditions of the flight simulator campaign.

Simple duplication, however, does not fully address the gen-
eralization problem. While oversampling helps balance the
dataset, repeatedly exposing the model to identical data can
lead to overfitting. To address this, data augmentation tech-
niques were applied to all samples. Specifically, Gaussian
noise was introduced, and a combination of time and fre-
quency masking was employed by randomly zeroing out
columns and rows of the scalograms, respectively. These
augmentations ensured that duplicated samples varied slightly
from the originals, enhancing diversity in the training data and
promoting better generalization [25].

It is important to note that common augmentation techniques
such as image flipping along the x-axis or y-axis and image
rotations are not suitable for this particular scalogram dataset.
Flipping along the frequency axis, for instance, would dis-
tort the fundamental structure of the signal, as low-frequency
oscillations differ significantly in nature from high-frequency
ones, meaning a pilot would not assign the same PIO rating
to both. On the other hand, flipping along the time axis would
not pose a problem if only one channel were used. However,
since the scalograms represent both stick deflections and pitch
rate, two channels with a causal relationship, reversing the
time axis would violate this causality, which is critical to ac-
curately capturing the PIO phenomenon.

Due to the inherent uncertainty in the pilot-assigned PIO rat-
ings during flight tests, some samples are likely mislabelled.
To account for this labelling noise, a label smoothing tech-
nique was incorporated into the training process. In this ap-
proach, a 90% confidence level was assigned to the original
label, reflecting the assumption that each sample has a 90%
probability of being correctly labelled. This value was selec-
ted based on findings in the literature related to PIO rating
assignments in longitudinal motion scenarios [6].

4 PIO classification model

The proposed machine learning model for detecting and clas-
sifying Pilot-Induced Oscillations (PIO), based on the PIO
rating scale severity metric, comprises two main components:
a convolutional neural network (CNN) and a multilayer per-
ceptron (MLP), as illustrated in the model schematic in Figure
7. The CNN is responsible for identifying patterns in the 2-
channel scalogram inputs that are indicative of PIO behaviour.
These extracted patterns are then passed to the MLP, which
classifies them according to the corresponding PIO severity
rating [26]. The model was implemented in Python using the
PyTorch library.
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Figure 7: PIO classification model schematics.

The convolutional neural network consists of four blocks
(Convl1 to Conv4), each containing a convolutional layer fol-
lowed by batch normalization, an activation function, dro-
pout, and pooling operations. The multilayer perceptron (FC1
and FC2), in contrast, comprises two linear layers with activ-
ation functions and dropout. The full architecture and layer
specifications are detailed in Table 3.

In Table 3, the two-dimensional convolutional layer paramet-
ers k, s, and p denote the kernel size, stride, and zero padding,
respectively. The Rectified Linear Unit (ReLU) was selec-
ted as the activation function due to its widespread use and
effectiveness in modern convolutional networks. Batch nor-
malization and dropout layers were incorporated to enhance
the model’s generalization capability and reduce the risk of
overfitting. The value that accompanies the dropout layers is
the probability of neurons being deactivated during the train-
ing process.

The number of channels increases progressively as the scalo-
grams pass through the network, enhancing its ability to ex-
tract meaningful features while compensating for the spatial



Table 3: Detailed architecture of the PIO classification model.

Layer Type Output Shape Parameters
Convl Conv2D 2x256x470 k=4,5=2,p=1
BatchNorm + ReLU 2 %256 x470 -
MaxPool2D 2 x 128 x 235 k=2
Conv2 Conv2D 3x128%x235 k=3,s=1,p=1
BatchNorm + ReLLU + Dropout(0.2) 3 x 128 x 235 -
MaxPool2D 3x64x117 =
Conv3 Conv2D 4x64x117 k=3,s=1,p=
BatchNorm + ReLU 4x64x117 -
MaxPool2D 4x32x58 =
Conv4 Conv2D 2x32 %58 k=3,s=1,p=
BatchNorm + ReLU 2x32x58 -
MaxPool2D 2x16x29 k=2
Flatten - 928 2x16x29
FC1 Linear + BatchNorm + ReL.U + Dropout(0.5) 64 -
FC2 Linear 6 -

resolution loss introduced by pooling operations. However,
in the final convolutional layer, the number of channels is re-
duced back to its original value. This reduction helps limit
the number of parameters in the multilayer perceptron, which
receives the flattened output of the convolutional network.

5 Model training and validation

Model training and validation were performed using the strat-
ified k-fold cross-validation procedure [25]. In this approach,
the dataset is randomly shuffled and then partitioned into k
equally sized subsets, or folds, ensuring that each fold main-
tains approximately the same class distribution. In each iter-
ation, one fold is held out as the validation set, while the re-
maining k — 1 folds are used to train the model. This process is
repeated k times, with each fold used once for validation. As
a result, k distinct model versions are trained, each based on
a different training-validation split, providing a more robust
estimate of the model’s generalization performance. A value
of k =9 was chosen for the training-validation procedure of
the PIO identification model.

For each fold iteration, the model was trained for 60 epochs
using a batch size of 16 samples. The loss function employed
was a modified version of the cross-entropy loss, implemen-
ted in PyTorch, which incorporated the label smoothing tech-
nique described in the previous section. Optimization was
performed using the AdamW algorithm, with a learning rate
of 0.001 and a weight decay parameter of 0.001. Weight de-
cay is used as a regularization method to improve the model’s
generalization capability by penalizing large weight values.
The highest accuracies achieved on the training and valida-
tion subsets for each model version are presented in Table 4.

Accuracy is a metric that evaluates the overall ability of the
model to predict the correct PIO ratings by comparing its out-
puts with the corresponding ground truth labels. As shown
in Table 4, the training accuracy consistently exceeds 93%
across most folds, significantly outperforming the corres-
ponding validation accuracy. This discrepancy suggests that

Table 4: Best training and validation accuracies for each
model version.

Fold Training Accuracy Validation Accuracy

1 51.7% 39.4%
2 98.1% 63.1%
3 98.5% 61.5%
4 98.5% 58.5%
5 93.7% 50.8%
6 99.8% 63.1%
7 98.8% 50.8%
8 99.0% 60.0%
9 25.3% 27.7%

the model exhibits a certain degree of overfitting, despite the
measures implemented to mitigate it. Nevertheless, folds 2,
3, 6, and 8 achieved validation accuracies above 60%, which
can be considered a positive outcome given the limited size of
the dataset, the use of data augmentation, and the inherent un-
certainty in the pilot-assigned labels. On average, the model
achieved a validation accuracy of 52.8%, with a standard de-
viation of 12.2%.

While accuracy provides an overall measure of model per-
formance, it does not offer insight into how the model dis-
tributes its predictions across individual classes. To address
this, a confusion matrix for the best-performing model, cor-
responding to Fold 6, is presented in Figure 8. This model
was selected as the best version based on its highest training
and validation accuracies among all folds.

The confusion matrix illustrates how the Fold 6 validation set,
consisting of 65 samples, was classified by the model. The
values along the main diagonal represent the number of cor-
rectly classified samples for each class. Values within a given
row indicate samples that truly belong to the class associated
with that row but were misclassified as other classes (these
are considered false negatives). Conversely, values within a
column represent false positives, i.e., samples that actually
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Figure 8: Confusion matrix of the validation set for the best-
performing model (Fold 6).

belong to other classes but were incorrectly predicted as the
class associated with that column. It can be noted that PIO
ratings 2 and 3 were particularly challenging for the model
to classify correctly, as they exhibited a high number of false
positives. This misclassification contributed significantly to
the reduction in overall model accuracy.

To provide a more detailed understanding of the model’s clas-
sification performance, the Precision, Recall, and Fl-score
metrics were calculated, as shown in Table 5. Precision meas-
ures the proportion of true positives out of the total predicted
positives (i.e., true positives plus false positives), while recall
measures the proportion of true positives out of all actual pos-
itives (i.e., true positives plus false negatives). The F1-score
represents the harmonic mean of precision and recall, offer-
ing a balanced metric that accounts for both false positives
and false negatives [25].

Table 5: Precision, Recall, and F1-score metrics for the best-
performing model (Fold 6).

PIOR Precision Recall Fl-score
1 69.2% 90.0% 78.2%
2 50.0% 41.7% 45.4%
3 100.0% 18.2% 30.8%
4 77.8% 63.6% 70.0%
5 63.6% 70.0% 66.7%
6 55.0% 100.0%  71.0%

As expected, the F1-scores for PIOR 2 and 3 are significantly
lower than those of the other classes, which in turn negatively
impacts the overall performance metrics. Furthermore, ana-
lysis of the Precision, Recall, and the confusion matrix reveals
that classes 4, 5, and 6 exhibit a pattern of mutual misclassi-
fication, as indicated by their recall values. This grouping
is consistent with the nature of high-intensity PIO events de-
scribed by the PIO rating scale. The presence of false neg-
atives among these classes may be attributed to the inher-

ent subjectivity involved in the pilot’s rating process, partic-
ularly when distinguishing between closely related severity
levels of PIO behaviour. At the opposite end of the spectrum,
PIOR 1 achieved the highest F1-score, indicating that the al-
gorithm was most effective at identifying samples free from
PIO events.

Since the k-fold technique was applied using nine versions
of the training and validation datasets, nine different models
were obtained, each with varying performance. A common
practice to address this is to use an ensemble technique to
combine their results. In this work, the ensemble model was
obtained using the soft voting method [27], where the final
prediction for a given class is made by averaging the predicted
probabilities across all models.

The ensemble model achieved a validation accuracy of
84.6%, outperforming the individual models. Table 6 reports
the Precision, Recall, and F1-score for the ensemble. While
Precision and Recall show some variation due to the new clas-
sifications introduced by the model, the F1-score highlights
the overall improvement, most notably in PIOR 2 and PIOR
3. Despite the considerable improvement, the model’s ability
to classify these two classes remains unsatisfactory, as their
F1-scores are still below 80%.

Table 6: Precision, Recall, and F1-score metrics for the en-
semble model.

PIOR Precision Recall Fl-score
1 100.0% 90.0% 94.7%
2 87.5% 58.3% 70.0%
3 61.1% 100.0%  75.9%
4 88.9% 72.7% 80.0%
5 100.0% 90.0% 94.7%
6 91.7% 100.0%  95.7%

The confusion matrix in Figure 9 illustrates the classification
results of the validation set by the ensemble model. As shown,
the number of false negatives (row elements) decreased sub-
stantially, particularly for PIOR 2 and PIOR 3. In contrast,
the reduction in false positives (column elements) was more
modest.

The individual and ensemble models’ inability to accurately
classify samples from classes 2 and 3 may be attributed to
issues in the dataset generation process, where the collected
data may lack sufficient distinction to allow for reliable class
separation. Additionally, limitations in the model architec-
ture and data pre-processing pipeline could have contributed
to the observed misclassifications, suggesting that further re-
finement in these areas may be necessary. Another important
factor to consider is the inherent subjectivity of the PIO rat-
ing scale. The similarity between classes 2 and 3 may pose
a challenge even for the pilots to assign a rating, particularly
in simulation environments lacking motion feedback, which
can reduce the pilot’s ability to perceive subtle differences in
PIO severity [28]. Nevertheless, further research is required
to investigate the underlying causes of the classification chal-
lenges observed in this study.
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Figure 9: Confusion matrix of the validation set for the en-
semble model.

6 Conclusion

This paper presents a data-driven approach to the PIO iden-
tification problem using machine learning techniques. Flight
data were collected during a fixed-base flight simulator cam-
paign and labelled according to the PIO rating scale by the
participating test pilots. Stick deflection and pitch rate sig-
nals were selected as the primary inputs to characterize the
PIO phenomenon. These signals were transformed into sca-
lograms using the Wavelet Transform and combined into a
two-channel input for a convolutional neural network. The
network was designed to extract relevant features related to
PIO behaviour and to output a severity level aligned with the
PIO rating scale. The k-fold cross-validation methodology
was applied during model training, resulting in an average
validation accuracy of 52.8%, with the best-performing model
achieving an accuracy of 63.1%. The soft voting ensemble
method was subsequently applied, yielding improved classi-
fications with a validation accuracy of 84.6%.

It can be concluded that the model, developed without incor-
porating any predefined knowledge of PIO definitions, either
in its architecture or during data pre-processing, was able to
effectively classify the extreme classes at both ends of the
PIO rating scale spectrum in terms of severity. However, it
demonstrated difficulty in distinguishing between PIOR 2 and
3, which correspond to low to intermediate levels of PIO in-
tensity. This limitation significantly impacted the individual
and ensemble models’ overall classification accuracy and can
be attributed to several factors, including the method used to
construct the dataset, its limited size, the model architecture,
and the selection of hyperparameters. Additionally, it may
also reflect the inherent difficulty pilots face in accurately as-
signing PIOR 2 and 3 ratings, due to the subtle perceptual
differences involved in distinguishing between these interme-
diate levels of PIO severity.

This work contributes to the field of handling qualities, partic-
ularly in the area of PIO identification, by introducing a data-

driven alternative to the traditional use of the PIO rating scale.
Although the developed model requires further refinement to
improve its accuracy, it shows promising potential as a com-
plementary tool in handling qualities evaluations, offering a
quantitative counterpart to pilot assessments, while operating
within the same evaluative framework used by human pilots.
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