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Abstract

A previous study investigated the application of Large Language Models (LLMs) in Agent-Based
Simulations for Systems of Systems (SoS) studies, where the LLM acted as an Incident Com-
mander during a wildfire event [1]. Firefighting Concepts of Operations (CONOPS) were util-
ised as an initial prompt to limit the LLM’s answers. The findings were promising, indicating
that LLMs may effectively drive simulation agents. Building on these insights, the goal was
to integrate an LLLM directly into a particular agent’s decision-making loop. The present work
investigated whether LLMs can be used in a cyber-physical simulation environment. The LLM
was used with a cyber-physical simulation to fly a Unmanned Aerial Vehicle (UAV) and study its
adherence to mission objectives. The LLM’s judgments and the computational resources utilised
throughout the simulation are discussed with special interest in future improvements and implic-
ations for designing autonomous aerial firefighting systems.
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1 Introduction

Large Language Models represent a significant leap in gen-
erative Artificial Intelligence (AI), enabling the automated
production of human-like text [2]. These models typically
require extensive training on large datasets to develop suf-
ficiently complex neural networks. As a result, early ver-
sions of LLMs demanded substantial computational power
and were predominantly accessed from remote servers [2][3].
Recent advancements, however, have introduced optimised
LLMs, which run on average consumer-grade hardware at
the cost of reduced reasoning and generative capabilities [3].
The present work will investigate an LLM’s performance in
a cyber-physical simulation while piloting a UAV. The LLM
will carry out a mission related to wildfire monitoring and
suppression. The LLM’s judgments and the computational
resources utilised throughout the simulation will be analysed.
SoS studies provide the necessary understanding for evaluat-
ing collections of Constituent Systems interacting with each
other. For example, in the context of a firefighting mission,
these Constituent Systems could include firefighters, heli-
copters, satellites, etc. The relevance of performing a SoS
analysis comes from finding emergent behaviours that arise

from communication and collaboration [4].

These studies provide insight into the possible challenges
during operations, such as coordination, interoperability, or
group value [5]. When a new constituent system that should
fulfil capabilities is to be designed, a holistic perspective is ne-
cessary to decide how it will be operated, in what scenarios,
the interoperability with other systems, and which stakehold-
ers will be involved. This holistic view will provide better re-
quirements for the engineers, and it can only be achieved by
studying the whole SoS. The drawback of SoS studies for gen-
erating new system concepts (aircraft concepts for the present
work) is the potentially prohibitive cost [6]. For this reason,
modelling and simulation are used for these studies [7].
Models are a representation of reality, having different levels
of fidelity that are the source of different errors. They are
cheaper than a real environment, and if used correctly, they
can bring the necessary understanding for trade-off discus-
sions. For these reasons, it is common to use Agent-Based
tools for SoS analysis, as they are oriented towards the study
of interactions and behaviours [8]. Previous research explored
the use of LLMs in Agent-Based Simulations for SoS studies,
where the LLM assumed the role of an Incident Commander
during a wildfire situation [1]. Firefighting Concepts of Op-



erations (CONOPS) were used as part of the initial prompt to
constrain the LLM answers. The results were promising, sug-
gesting that LLMs could effectively drive simulation agents.
Building upon these findings, the goal is to embed an LLM
directly within a specific agent’s decision-making loop.

2 Implementation

The study performed here is exploratory to support design
research methodologies [9], which support design research
for product development [10]. The current level of know-
ledge and understanding of LLMs interacting in dynamic
simulation environments is low, as it has not been possible
until recently. For the study, the methodology followed was:

* The software used for the simulation was Hopsan [11],
implemented in the C++ language.

¢ The LLM model used was the 3-Gigabytes Gemma [3].
¢ The model was called through the Ollama interface [12].

* Regular expressions were used to update the prompts
and parse the answers, converting from strings to
numerical values.

The inputs taken by the LLM navigator component are shown
in Figure 4 were:

 Battery State of Charge (SoC)
* Remaining Distance

* Distance to Runway

* Distance to Waypoint

 State
The outputs of the LLM navigator component were:

 Latitude
* Longitude

¢ Return

The inputs "State" and "Distance to Waypoint" were respect-
ively used to enable the component and as a trigger for the
prompting. The remaining inputs were used in the prompting
with a list of coordinates by replacing the values at the ap-
propriate place. To improve the simulation performance, the
LLM calls are limited to every 10 simulated seconds instead
of each simulation time step, which was 0.005 seconds. The
given prompts were as follows:

Flight prompt: You are piloting an Aircraft. The next way-
point in your list is [LATITUDE] latitude [LONGITUDE]
longitude. Your current remaining battery capacity is [BAT-
TERY STATE OF CHARGE]% (theoretical remaining flight
distance is [REMAINING DISTANCE |m), and the distance to

the runway is [DISTANCE TO RUNWAY|m. Please answer
"1 if you want to fly back to the runway for landing, or °0’ if
you want to fly to the designated coordinates.

Distress prompt: You are piloting an Aircraft. There is
a distress call from firefighters in need of aerial support
at coordinates [LATITUDE] latitude and [LONGITUDE]
longitude. Your current remaining battery capacity is [BAT-
TERY STATE OF CHARGE]% (theoretical remaining flight
distance is [REMAINING DISTANCE] m and the distance to
the runway is [DISTANCE TO RUNWAY] m. Please answer
Just ’1’ if you want to fly back to the runway for landing, or
Just 'O’ if you want to fly to the designated coordinates to
provide support.

The mission to perform consists of a take-off phase, an
airborne phase, and a landing phase. It is during the airborne
phase that the LLM navigator is enabled to visit the coordin-
ates that define the fictional area where a wildfire would be
located. If the LLM decides to continue with the mission,
the outputs are the latitude and longitude coordinates, and
a value of O for the "Return" output. A value of 1 for the
"Return" variable disables the LLM navigator component and
enables the phase where the UAV returns to base for landing,
becoming controlled all the way by a classical physics-based
control system. The distress prompt is triggered after 2500
seconds in the simulation. This value could be randomised or
parametrised for the user, but kept as a constant for consistent
experiments.

Figure 1: Agent-Based Simulation of a fire suppression case.
(Adapted from [1] with permission.)

The navigation components in a cyber-physical aircraft model
(Figure 2) were replaced with the LLM navigator agent. In the
existing setup, mission waypoints and flight logic are connec-
ted to a control system that flies the aircraft (Figure 3). Here,
the LLM acts as a simplified human pilot, evaluated in terms
of communication and decision-making. Introducing such
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Figure 2: Electric Aircraft model in Hopsan.
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Figure 3: Flight logic diagram and waypoint components in Hopsan.

smart agents can support early trade-off discussions, helping lishment of operational guidelines for new aircraft concepts.
with the definition of functional requirements and the estab-
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Figure 4: Large Language Model Navigator block.

3 Results

The scenario described in Section 2 was simulated both with
and without a discretionary return choice for the LLM navig-
ator. The simulations ran for approximately 20 minutes (1175
seconds) on a desktop computer, whereas the baseline model
without the LLM component (Figure 2) completed the same
in 12 seconds. For a simulated duration of 5000 seconds,
the model still ran faster than real time. Figure 1 presents a
simulation of a fire suppression scenario, with a UAV flying
around the fire perimeter (the lighter, cone-shaped area indic-
ating its visual range), which provided the trajectory used in
the present study. Figures 5 and 6 show the latitude—longitude
flight path, where the square-shaped trajectory is clear. The
main difference in the flight path is the loop around the centre
of the square, where the UAV performs a loiter task to provide
aerial support to firefighters in distress. Figure 8 shows the
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Figure 5: Path flown by the UAV without distress calls.

altitude during the mission (notice the variations during turns)
and the changes during climbing or landing. Figure 7 shows
the remaining SoC of the battery. Figure 9 shows the flight
path when the LLM was allowed to choose between return-
ing or continuing the flight at its own discretion. Figure 11
illustrates the altitude variation during climbs and turns. In
this case, however, at the end of the simulation, the UAV re-
mains in the airborne phase but is gradually losing altitude.
As shown in Figure 10, the battery is nearly depleted and un-
able to provide the energy required to sustain flight.
Additionally, to test the image recognition capabilities of the
LLM, Figure 1 was fed to it, providing the following output:
"Here’s a description of what I see in the image:
Overall Scene:
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Figure 6: Path flown by the UAV with a distress call and
forced return.
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Figure 7: Evolution of the battery state of charge during
flight.

The image depicts a pixelated, top-down view of a grassy
landscape, reminiscent of an early computer game. The
background is a detailed texture of green grass with brown
patches, suggesting a field or meadow.

Elements:

Yellow “Fire”: A cluster of yellow pixels is arranged in a tri-
angular shape, clearly meant to represent flames or fire.

Blue Character: A single blue pixel character is positioned in
the lower centre of the scene.

White Character: A small, white pixel character is located on
the left side of the image.

Style & Impression:

The image has a retro, 8-bit aesthetic, likely from an older
computer game. The limited colour palette and blocky shapes
create a nostalgic and simplistic visual style."”

4 Discussion

The results obtained demonstrate not only the feasibility of
employing an LLM as a form of AI within a simulation
but also its potential for operational analysis relevant to air-
craft concept generation. The most relevant outcome was the
LLM’s decision to respond to a distress call by holding posi-
tion and loitering above the personnel in distress, as shown in
Figure 9. This decision highlighted the importance of equip-
ping the system with the capability to land outside designated
facilities if necessary. Functional requirements to achieve this
could include, for example, a deployable parachute once the
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Figure 8: Evolution of the altitude during flight without dis-
cretionary return.
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Figure 9: Path flown by the UAV with distress call and discre-
tionary return.

battery is depleted (Figures 11 and 10), or vertical landing
capability through a tilt-rotor or tilt-wing design. Alternat-
ively, a more conventional option might involve a safety sys-
tem that overrides the LLM navigation, such as an energy-
monitoring mechanism (similar to the “Bingo Fuel” threshold
in military aviation) that enforces the return to base.

The inputs provided to the LLM were latitude and longitude
positions, the battery SoC, and the distances to the landing
runway and the theoretical maximum flight range under cur-
rent conditions. These were considered the minimum neces-
sary to support reasonable decision-making, with the combin-
ation of SoC and theoretical distance regarded as redundant.
The rationale was to assess whether the LLM would prioritise
a specific battery SoC percentage, or whether such a threshold
needed to be specified explicitly. Both Figures 7 and 10 indic-
ate that, without a defined threshold in the prompt, the LLM
did not consider it necessary to return, which is particularly
concerning in scenarios without enforced return logic. Such
behaviour is an important finding, as a UAV required to land
outside designated areas could compromise the safety of fire-
fighters already under distress. Therefore, when generating
the CONOPS for the system and the SoS, this must be taken
into consideration.

The prompts used in Section 2 were highly constrained, which
limited the evaluation. Since the simulation software is re-
stricted to numerical inputs and outputs, the responses had
to conform to a fixed structure for repeatability. A broader
assessment would require more advanced methods, such as

Figure 10: Evolution of the battery state of charge during
flight with discretionary return.
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Figure 11: Evolution of the altitude during flight with discre-
tionary return.

another LLM acting as a filter to extract the relevant outputs
from unconstrained responses.

The computational performance is relevant for generating
data for the analysis of different situations. The simulation
speed was faster than a real-time operation, which means it
has value for research, especially if parallelisation is used.
However, only one LLM component was used; thus, a simu-
lation with multiple LLM agents is still to be studied. Having
several agents with an Al based on an LLM could provide in-
sightful results for studying behaviours and operations, but if
the computational costs are too demanding, other forms of Al,
such as machine learning or reinforcement learning, should
still be considered.

Finally, the description of the simulation plot (Figure 1) given
by the LLM was compelling. With no prior prompt or context,
it recognised the fire symbols, identified human figures, and
correctly characterised the pixelated visual style, even noting
the blue area corresponding to a lake in the original model.
This performance suggests potential for experimenting with
aerial imagery of wildfires. If sufficiently reliable, this opens
the possibility of employing UAVs equipped with LLMs for
image recognition, capable of reporting wildfire detections in
natural language and providing descriptive situational inform-
ation.



5 Conclusion

The present work employed an LLM to make decisions dur-
ing a simulated mission involving a UAV. As a form of Al the
LLM interpreted the provided inputs and determined whether
to continue the mission or return to base.

Notably, when human lives were at stake, the LLM chose
to continue providing aerial support, even as the battery was
close to depletion. Albeit an early evaluation, the outcome is
considered both successful and promising, particularly given
the use of a low-performance LLM. These findings suggest
future potential for Agent-Based Modelling and Simulation,
where LLMs could be integrated into new types of agents,
replacing rigid, code-based rules. This integration would
provide greater flexibility and adaptability in simulated agents
for more extensive studies of SoS operations.

Challenges that remain and are difficult to overcome are the
variability of the answers from the LLM, even when identical
prompts are used. However, another future possibility is to
examine the suitability of a general purpose LLM against a
fine-tuned LLM. For agent behaviour research, it would be
interesting to find the issues or benefits related to using a gen-
eral purpose or a fine-tuned LLLM, or even some specific com-
bination of them, that allows to keep the freedom and also
enhances repeatability.
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