
Augmenting Aerospace System Design Using Large Language Models

Petter Krus

Division of Fluid and Mechatronic Systems, Linköping University, Sweden
E-mail:

petter.krus@liu.se

Abstract
The democratization of artificial intelligence, exemplified by the widespread availability of Chat-
GPT since late 2022, presents significant opportunities for innovation in engineering system
design. This paper explores how large language models (LLMs) can support and partially auto-
mate engineering design processes by generating system configuration rules and conceptual sys-
tem architectures.
The methodology is demonstrated using case studies on hybrid-electric propulsion systems and
actuation system design. LLMs are used to generate system configurations represented as
UML component diagrams. Recognizing the non-deterministic behaviour of LLMs, a structured
prompting methodology is proposed. This includes reusable context prompts with embedded
examples (micro templates), allowing increased reproducibility and specificity.
Furthermore, the study shows how LLMs can be used to generate Python scripts that act as
configurators, producing system descriptions within specified design freedoms. These scripts
enable iterative expansion, refining the architecture over time. The outputs are exportable to
simulation environments, allowing further analysis and optimisation.
Integration with LLM APIs within engineering tools enables interactive expansion of system
diagrams into subsystems and detailed components, streamlining complexity management.
These findings highlight the potential of LLMs to transform aerospace system design by improv-
ing efficiency, traceability, and early-phase exploration of system architectures.

Keywords: large language models, aerospace engineering, system configuration, hybrid-electric
propulsion, LLM-API, system modelling

1 Introduction

The emergence of generative artificial intelligence (AI), par-
ticularly through large language models (LLM) such as
OpenAI’s ChatGPT, marks a paradigm shift in engineering
system design. Since its public release in late 2022, Chat-
GPT has democratized access to advanced AI capabilities,
enabling domain experts rather than AI specialists to apply
natural language models directly within their own engineer-
ing workflows [1, 2].

LLMs have proven effective as few-shot or even single-shot
learners [3], making them particularly suited for conceptual
and architectural design tasks where the available information
may be imprecise or incomplete. Their ability to generate
human-readable output, such as UML component diagrams
and Python scripts, bridges the gap between textual require-
ments and formal system models [1].

This paper explores how LLMs can support system configur-
ation and modeling activities in aerospace applications. The
focus is on hybrid electric propulsion and actuation systems
as representative domains [1, 2]. By combining reusable
context prompts including structures termed micro-templates
with task specific prompts, it is possible to guide LLMs to-
ward producing useful and repeatable outputs despite their
inherent stochasticity [2].

Moreover, instead of asking LLMs to generate full systems
directly, a more reliable approach is to use them to gener-
ate code—typically in Python—that acts as a configurator.
This allows the resulting design space to be constrained and
iteratively refined across several levels of abstraction [4].
These scripts can be further extended using LLM assistance
and eventually exported to simulation environments such as
Hopsan or Modelica for system simulation and analysis.

1

Finally, LLMs can be integrated into engineering tools us-
ing APIs, facilitating interactive expansion of system mod-
els and integration of domain knowledge, requirements, and
design rules. In this way, LLMs enable a new workflow where
early-phase design exploration is more rapid, creative, and in-
formed by both domain logic and learned language patterns
[1].

The application used throughout this paper is the conceptual
design of Hybrid Electric aircraft propulsion system. Hybrid
electric aircraft has been studied intensly during especially the
last decade as a way forward towards low-emission aviation.
A review of these systems can be found e.g. in [5].

2 Methodology
This section outlines the structured methodology for employ-
ing large language models (LLMs), specifically ChatGPT,
in the conceptual and system-level design of aerospace sys-
tems. The approach rests on leveraging prompt engineering,
reusable prompt templates ("micro-templates"), and iterative
expansion via script generation. The core methodology can
be divided into five key steps [2, 1]:

2.1 Prompt Engineering and Interaction Modes

The first step involves formulating prompts that communicate
the design task effectively to the LLM. For using an LLM it is
usefull to think of its function as black-box systems, where an
input string produce an output string in response. The effect-
iveness depends primarily on how well the task is described.
A useful strategy is to divide the prompts into two parts:

• Context prompt: Contains general instructions, defin-
itions, design rules, and small examples as micro-
templates. This is a prompt for domain, e.g., aircraft
propulsion systems, actuation systems, etc, needed for
the design task.

• Specific prompt: Defines the specific design task (e.g.,
"Generate a concept for a hybrid electric aircraft propul-
sion system with fuel cells, for a commuter aircraft under
FAR 25 rules").

This two-tier structure ensures that outputs are consistent and
aligned with engineering expectations. The use of micro-
templates within a generic-domain-prompt is critical to en-
sure the LLM’s output format and quality [2]. The generic-
domain-prompt, GDP, contains general instruction related to
a domain of interest and can be re-used for other similar tasks
related to this domain. With this approach, a specific-prompt,
SP, can then be added that can be short and only contain spe-
cifics for the particular task, while a considerable effort can
be put into refining the GDP. Here it is good practice to use
a structured format using, e.g., such as Markdown, JSON, or
a Prompt Declarative Language (PDL) based on the YAML
format for readability and re-usability [6]. However, it seems
that it is more important that the prompt is structured than ex-
actly which format is chosen. In this study Markdown has
been used, but no significant differences were detected when

using YAML. One drawback with YAML is that it is sensitive
to indentation, which makes it complicated to use fragments
of a YAML code in another code with a different structure.

Figure 1: Illustration of prompting structure using a generic-
domain-prompt and a task-specific prompt.

2.2 Micro-Templates

Micro-templates are embedded examples within the generic-
domain-prompt that show representative correct outputs (e.g.,
component-based UML code). These guide the LLM in pro-
ducing outputs with correct syntax, structure and also the de-
sired level of abstraction. They can also be customized to
define preferred subsystem configurations [1].

Figure 2: Example of a UML micro-template for a simple
battery electric propulsion system.

2.3 From Natural Language to Structured Diagrams

Once a valid prompt is issued, the LLM can generate output
such as:

• PlantUML code for UML activity diagrams representing
system architecture.

• code for diagrams for function-means trees.

• Morphological matrices.

These outputs can be visually rendered or integrated into sys-
tem modeling environments. This approach has been tested
across different engineering domains, including fluid power
and aerospace propulsion [2, 1].

2.4 Python Configurator Generation

To manage design complexity and improve repeatability, a
preferred approach is to ask the LLM to generate a Python
script that acts as a system configurator [2, 4]. This script:

• Encodes configuration rules.

2

2.5 API Integration and Interactive Expansion

• Generates specific system instances based on design
parameters.

• Allows for iterative refinement and expansion.

The following process cane be sued to generate the Pyhon
code for the configurator:

• User

– Define a prompt based on a context prompt with a
specific prompt.

• LLM

– Use this prompt to generat a UML diagram for val-
idation and return it to the user.

• User

– Reviews the generated UML diagram.

– Requests Python code that implements the config-
uration rules and generates UML code.

• LLM

– Produces the Python code according to the config-
uration rules.

• Python Code

– Execute various input configurations and generate
corresponding UML diagrams automatically.

• User

– Reviews the generated UML diagrams and test
configurations.

– Provides feedback and final approval.

• End Result: Validated Python code with configuration
rules → UML diagrams are iteratively refined with LLM
and user feedback.

This approach helps contain the stochasticity of the LLM by
delegating deterministic structure generation to code.

2.5 API Integration and Interactive Expansion

The final step involves integrating the LLM into engineering
tool chains via APIs. This allows for:

• Context-aware prompting using in-tool state.

• Incremental design elaboration, e.g., decomposing a sys-
tem into subcomponents interactively.

• Integration of requirements, standards, and functional
constraints [1].

The methodology enables design engineers to work within a
controlled yet creative process, where LLMs serve as assist-
ants capable of proposing, generating, and transforming con-
ceptual structures on demand.

Figure 3: UML component diagram from single prompt

3 Case Studie: Hybrid Electric Aircraft
To evaluate and demonstrate the proposed methodology, a
representative case studie from aerospace systems design of
a hybrid-electric propulsion system concept is used. This ex-
ample illustrate the full workflow, from prompt engineering
to structured system representations and Python-based con-
figurator, and also a behavioral diagram.

The design task was to generate an architecture for a hybrid-
electric aircraft featuring two propellers and a fuel-cell-based
power system.

3.0.1 Prompt-Based System Generation

The specific prompt was:

"Generate a concept for a hybrid electric aircraft
for 49 passengers with fuel cells. Show the archi-
tecture as code for a component diagram in Plan-
tUML format."

The LLM generated a PlantUML diagram describing the sys-
tem structure, including fuel cells, electric motors, power con-
verters, and a battery shown in Fig. 3.

This system lacks some details about redundancy, e.g., re-
garding battery and fuel cells, and have no well defined port
definitions that would be necessary for translation into e.g.,
a simulation model. Furthermore, the output varies greatly
between chats with identical prompts. However, the output
provides also additional textual description about the system
and can definitely serve as a starting point that could be used
for further refinement. It also includes systems that was not
mentioned in the instructions, such as thermal management
system and aircraft systems (avionics, flight control).

This reflects the typical performance of LLMs in such tasks,
as also observed in [1], although the quality of the output has
improved greatly from ChatGPT3.5 to ChatGPT-4o, to GPT
o3 and GPT o4-mini and to ChatGPT 5.

To improve the result and to make the response more con-
sistent, the context Prompt in the Appendix is used. Using
this, a more concise system is obtained with port definitions
and naming. Using ChatGPT 5 this results in the following
plantUML code:

3

3.1 Behaviour, UML Activity Diagram

@startuml
’ Top-down layout
top to bottom direction

’ === Controller at the Top ===
component "Controller\nctrl" as Controller #LightYellow

’ === Left Energy Chain ===
component "Hydrogen Storage L\nQM" as H2StorageL #Turquoise
component "Fuel Cell L\nEL" as FuelCellL #LightGreen
component "DCDC Converter L\nEL" as DCDCL #LightGreen
component "Battery L\nEL" as BatteryL #LightGreen
component "EMG L\nEL, MR" as EMGL #LightGreen
component "Gearbox L\nMR" as GearboxL #LightBlue
component "Propeller L\nMR, PMX" as PropellerL #LightBlue

’ === Right Energy Chain ===
component "Hydrogen Storage R\nQM" as H2StorageR #Turquoise
component "Fuel Cell R\nEL" as FuelCellR #LightGreen
component "DCDC Converter R\nEL" as DCDCR #LightGreen
component "Battery R\nEL" as BatteryR #LightGreen
component "EMG R\nEL, MR" as EMGR #LightGreen
component "Gearbox R\nMR" as GearboxR #LightBlue
component "Propeller R\nMR, PMX" as PropellerR #LightBlue

’ === Aircraft Body at Bottom ===
component "Aircraft Body\nPMX, Aero, states" as AircraftBody
#LightBlue

’ === Positioning (parallel left-right) ===
H2StorageL -down-> FuelCellL
FuelCellL -down-> DCDCL
DCDCL -down-> BatteryL
BatteryL -down-> EMGL
EMGL -down-> GearboxL
GearboxL -down-> PropellerL
PropellerL -down-> AircraftBody

H2StorageR -down-> FuelCellR
FuelCellR -down-> DCDCR
DCDCR -down-> BatteryR
BatteryR -down-> EMGR
EMGR -down-> GearboxR
GearboxR -down-> PropellerR
PropellerR -down-> AircraftBody

’ === Controller Connections ===
Controller -[dashed]-> FuelCellL : ctrl
Controller -[dashed]-> FuelCellR : ctrl
Controller -[dashed]-> DCDCL : ctrl
Controller -[dashed]-> DCDCR : ctrl
Controller -[dashed]-> EMGL : ctrl
Controller -[dashed]-> EMGR : ctrl
BatteryL -[dashed]-> Controller : SOC
BatteryR -[dashed]-> Controller : SOC

’ === Title ===
title Vertical Layout – Redundant Hybrid-Electric
Propulsion (Fuel Cell)
@enduml

This code results in the diagram in fig. 4.

The result is now more consistent when repeating the prompt
in a new chat. Also the level of abstraction and the types of
components and types of connections are now more consist-
ent and reliable. As another example, a parallel hybrid propul-
sion system is generated using the generic domain prompt to-
gether with the following prompt:

"Generate a concept for a parallel hybrid electric

Figure 4: PlantUML diagram generated directly from a LLM
prompt describing a hybrid-electric aircraft with fuel cells.

aircraft for 49 passengers with gas turbines, bat-
teries and electric motors. Show the architecture
as code for a component diagram in PlantUML
format."

This results in the diagram shown in fig. 5.

Figure 5: Parallel hybrid propulsion configuration.

3.1 Behaviour, UML Activity Diagram

Another aspect of the system design is to describe the sys-
tem behaviour and function. This can be done using a UML
Activity Diagram. Here, the LLM can be used to generate
a UML activity diagram of a flight referring to the previous
dialog.

4

3.1 Behaviour, UML Activity Diagram

Prompt: "Make an UML activity diagram for Plan-
tUML of a flight of the regional fuel cell electric
aircraft in the example"

The result is shown in fig. 6. Note that for this result no
generic domain prompt was used, but that this could be used
to have more control of the type of information, the level of
detail, and appearance of the diagram.

Figure 6: UML activity diagram generated directly by code
from an LLM prompt.

3.1.1 Python-Based Configurator Generation

In order to have a more reliable result, especially for more
complex systems. The LLM can be asked to generate a Py-
thon program that in turn can generate the system giving a set
of degrees of freedom, as indicated in Fig. ??.

The process for this example was started off using the prompt
below that followed the chat where the parallel hybrid was
generated.

Prompt:"Generate Python code that programmat-
ically produces PlantUML component-diagram text
for a variety of aircraft propulsion architectures.
For example:

- Fuel-cell hybrid-electric systems - Mixed (paral-
lel) hybrids, where both the primary source and bat-
teries can drive propellers (distributed propulsion)

The code should allow me to specify:

-**num_propellers**: the number of
propellers (e.g. 2–8)
-**hybrid_mode**: either "series" or
"parallel"
- **primary_source**: either
"hydrogen" (fuel cell) or "kerosene"
(gas turbine)

After tests and a few corrections, the configurator could gen-
erate the diagrams in Figs. 7 and 8.

This Python configurator encodes configuration rules for a
class of hybrid-electric aircraft architectures. This script in-
cludes parametric definitions for the number and type of en-
ergy sources (e.g., batteries, fuel cells), power distribution lo-
gic (e.g., series or parallel hybrid), and propulsion arrange-
ments. When executed, the script can automatically produce
consistent PlantUML system descriptions for different mis-
sion profiles or technology configurations [1, 2]. The calls to
the configurator to generate the two diagrams are simply:

uml_series = generate_plantuml(
num_props=6,
hybrid_type=’series’,
primary_energy=’hydrogen’)

uml_parallel = generate_plantuml(
num_props=4,
hybrid_type=’parallel’,
primary_energy=’aviation_fuel’)

5

3.2 API Integration and Interactive Expansion

Figure 7: PlantUML output of a hybrid-electric propul-
sion configuration generated using a Python-based LLM-
generated configurator. Here it is a distributed propulsion
system with eight electric motors have been specified.

Figure 8: PlantUML output of a hybrid-electric propulsion
configuration generated using the same Python-based LLM-
generated configurator as in 7. Here it is a system with four
electric machines and two gas turbines in a parallel-hybrid
configuration.

This Python-based configurator approach has several advant-
ages:

• It constrains the LLM output to a validated structural
template, improving reproducibility.

• It allows scalability and reuse by encoding architectural
degrees of freedom in the script.

• It decouples the probabilistic behavior of LLMs from the
deterministic process of system instantiation.

The configurator can also be extended through dialogue with
the LLM, which is instructed to add new capabilities, e.g.,
support for solar panels, and auxiliary systems. The output
UML diagrams can be used for architecture visualization, sys-
tem documentation, or simulation initialization. Such config-
urators could e.g., be used to configure simulation models for
different classes of systems.

3.1.2 Comparison: Direct LLM output vs.
Configurator-Driven Generation

The difference between directly generating system architec-
tures using LLM prompts and using an LLM-generated Py-
thon configurator lies in their trade-off between creativity and

control. Prompt-based generation allows for broad explora-
tion of possible system configurations but suffers from non-
determinism and occasional structural errors. In contrast, the
configurator approach offers a deterministic and repeatable
output bounded by a predefined design space.

• Prompt-Based Output: Flexible, exploratory, but vari-
able in quality.

• Configurator Output: Consistent and scalable, but lim-
ited to encoded rule sets.

Figure 9: Comparison between system generation using dir-
ect LLM prompting and system generation via Python config-
urator. LLM prompting can go outside what is defined in the
generic-domain-prompt.

The demonstrated results demonstrates the capacity of LLMs
to assist with early-stage engineering design tasks that require
conceptual abstraction, functional decomposition, and archi-
tectural reasoning.

3.2 API Integration and Interactive Expansion

A useful application that has been enabled by LLM API
integration, is the automatic generation and refinement of
Function-Means Trees. Here, a top function can be defined,
e.g., "Provide air transport for 70 passengers". This then goes
into the LLM through the API as a prompt. This, generates
a set of alternative means as shown in fig. 10. In addition to
the name, also a comment is generated that together with the
name can go into the next level to generate the next level of
functions. Here some of the alternative means are not viable,
but only one means should be selected from all the alternat-
ives, and chances are that there is at least one viable solution,
in the unlikely event there is none, the system can be set to
generate more alternatives.

These function-means structures can be used for ideation,
comparison of architectural variants, and communication
between design stakeholders. Through API integration, the
LLM can dynamically update the function-means tree in re-
sponse to system changes or additional requirements.

6

Figure 10: Function-means tree generated using LLM-API
for a transport aircraft aircraft.

In addition to functional decomposition, API-assisted tools
enable interactive system decomposition. Starting from a top-
level architecture such as the hybrid electric aircraft with fuel
cells and two propellers, the user can select a component (e.g.,
the fuel cell) and invoke an LLM-assisted prompt to elaborate
supporting subsystems such as "air supply", "humidification",
or "thermal management" [1]. This facilitates interactive sys-
tem development where complexity is added incrementally
through modular expansion.

Figure 11: System imported into a system editor enabled with
LLM-API for a fuel-cell-based hybrid-electric aircraft.

Figure 12: Decomposition of the fuel cell subsystem using
interactive LLM-API to generate, auxiliary components such
as air supply and thermal management.

Incorporation of LLMs via APIs transforms static system
models into dynamic and evolvable design spaces. This is par-
ticularly valuable in early-stage system design, where design
intent is still emerging and flexibility is essential.

4 Discussion
The case studies and integration examples discussed in this
paper reveal both the promise and current limitations of using
large language models (LLMs) in engineering system design.

The primary benefit of incorporating LLMs into the design
process is the acceleration and support of conceptual system
development. Unlike conventional CAD or simulation tools,
LLMs offer:

• Rapid synthesis of system architectures from high-
level natural language input.

• Assistance with documentation, such as generating
structured diagrams, requirement breakdowns and activ-
ity diagrams.

• Support for creativity and exploration, especially in
the early stages when design alternatives are numerous
and loosely defined.

• Scalable automation through code generation, partic-
ularly via Python scripts that define configurable design
spaces.

In addition, LLMs provide a flexible framework for integrat-
ing auxiliary features such as regulatory compliance checks.

4.1 Structured Process Summary

The methodology proposed in this paper follows a six-step
structured process for LLM-augmented aerospace design:

1. Prompt Engineering: Design task-specific and reusable
context prompts to structure the model interaction.

2. Use of Micro-Templates: Embed representative ex-
amples to guide output structure and semantics.

3. Direct System Generation: Generate architectures as
structured code e.g., for UML diagrams.

4. Python-Based Configurator Generation: Create de-
terministic system generators encoding design rules and
degrees of freedom.

5. LLM-API-Based Interactive system editor: Enable
system refinement and decomposition in context-aware
design environments.

This structured flow forms a repeatable and scalable design
approach that can be adapted across different domains.

4.2 Challenges and Limitations

Despite these strengths, several limitations remain. One key
challenge is the stochastic nature of LLM outputs. Even with
structured prompts and context prompts, outputs can vary
across different sessions or model versions. This limits repro-
ducibility and can reduce trust in LLM-generated artifacts. It
should also be noted that even if the output is correct, it can

7

REFERENCES

vary since a design solution to a set of requirement, is not
necessary unique.

Second, LLMs often produce incomplete or partially incor-
rect outputs when handling high system complexity. In such
cases, prompt refinement or post-processing is necessary.

LLMs are generally quit forgiving if the prompt is not fully
complete or correct, which in general, is an advantage. How-
ever, a prompt with mistakes, will result in a result of lower
quality, something that is not immediately recognized when
using the prompt. Therefore, when designing a context
prompt that should be reused, it can be hard to detect miss-
takes.

There is also the aspect of the limitation of the knowledge
in the LLM. Working at a general level of design, the gen-
eral knowledge stored in the LLM can be sufficient, however
as we go deeper into details domain specific knowledge is
needed that may not be generally available. Here, we have
used the context prompt to feed additional information to
some degree. However, to take full advantage of existing
knowledge in e.g., a company it is necessary to use altern-
ative approaches such as fine tuning or Retrieval Augmented
Generation, RAG, to make this knowledge accessible to the
LLM.

Finally, validation of generated content remains a manual
task. Domain knowledge is essential to filter, adapt, and cor-
rect LLM-generated structures. As such, LLMs should be
seen as collaborators rather than as an autonomous designers.

5 Conclusion
This paper has explored the integration of large language
models (LLMs), specifically ChatGPT, into the conceptual
and system-level design of aerospace engineering applica-
tions. Through structured prompting, the use of micro-
templates in context prompts, and script-based configurators,
LLMs have been shown to support and partially automate
early design tasks that traditionally require extensive manual
effort and expert knowledge.

A case study involving a hybrid-electric propulsion system
demonstrated how LLMs can generate useful system repres-
entations, including UML diagrams and Python-based config-
urators.

Key contributions of this work include:

• A structured methodology for LLM-based engineering
design using reusable context prompts with embedded
examples.

• Demonstration of system configuration workflows sup-
ported by Python script generation.

• Integration strategies using APIs for interactive, tool-
supported system decomposition and refinement.

Overall, the findings highlight the value of LLMs as assistants
rather than replacements for engineers, capable of accelerat-
ing design iteration and supporting complex system synthesis
within constrained design spaces.

References
[1] Petter Krus. Large language models in aircraft system

design. In 33rd Congress of the International Council of
the Aeronautical Sciences (ICAS), Florence, Italy, 2024.

[2] Petter Krus. Ai-augmented design of fluid power systems
using large language models. In Proceedings of the JFPS
International Symposium on Fluid Power, Okayama, Ja-
pan, 2024.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Chris-
topher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot
learners. Advances in Neural Information Processing
Systems (NeurIPS), 33:1877–1901, 2020.

[4] Alejandro Pradas, Petter Krus, Panarotto Massimo, and
Oskar Isaksson. Large language models in complex sys-
tem design. In Design 2024 – 18th International Design
Conference, Dubrovnik, Croatia, 2024.

[5] Ye XIE, Al SAVVARISAL, Antonios TSOURDOS, Dan
ZHANG, and Jason GU. Review of hybrid electric
powered aircraft, its conceptual design and energy man-
agement methodologies. Chinese Journal of Aeronautics,
34(4):432–450, 2021.

[6] Qianyu Zhou, Shaofeng Huang, Jiasen Wu, Yuxuan Zou,
Aman Agrawal, Rohit Singh, and Percy Liang. Prompt-
as-declaration: A declarative language for prompt pro-
gramming. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2023.

8

REFERENCES REFERENCES

Appendix
Here is an example of a context Prompt, GDP, for hybrid elec-
tric aircraft. For clarity and re-usability it is written in Mark-
down format.

Aircraft Propulsion System Configuration Guide
*Hybrid-electric architectures with gas turbines, fuel cells, batt
eries, and electric machines.*

Components

Gas Turbine
- **Alias:** ‘GasTurbine‘
- **Ports:** ‘MR‘
- **Color:** LightCoral
- **Description:**

Converts chemical energy (‘dotPM‘) from a fuel source (Fuel Tank
or Hydrogen Storage) into rotational power (‘MR‘). Each ‘MR‘ port
can connect to only one component.

Fuel Cell
- **Alias:** ‘FuelCell‘
- **Ports:** ‘EL‘
- **Color:** LightGreen
- **Description:**

Converts chemical energy (‘dotPM‘) from Hydrogen Storage into
electric power (‘EL‘).

Propeller
- **Alias:** ‘Propeller‘
- **Ports:** ‘MR‘, ‘MX‘
- **Color:** LightBlue
- **Description:**

Converts rotational power (‘MR‘) into thrust (linear power output).

Gearbox
- **Alias:** ‘Gearbox‘
- **Ports:** ‘MR‘
- **Color:** LightBlue
- **Description:**

Combines or distributes rotational power (‘MR‘) from multiple
sources to a single output (‘MR‘).

Electric Motor Generator (EMG)
- **Alias:** ‘EMG‘
- **Ports:** ‘EL‘, ‘MR‘
- **Color:** LightGreen
- **Description:**

Converts electric power (‘EL‘) from a Battery into mechanical
rotational power (‘MR‘) or vice versa. Each ‘MR‘ port can connect
to only one component.

Electric PowerManagement
- **Alias:** ‘EPM‘
- **Ports:** ‘EL‘, ‘MR‘
- **Color:** LightGreen
- **Description:**

Converts and regulates electric power (‘EL‘).

Battery
- **Alias:** ‘Battery‘
- **Ports:** ‘EL‘
- **Color:** LightGreen
- **Description:**

Stores and provides electric power (‘EL‘). Allows multiple
connections.

Connection Principles

- **Port Matching:**
Connect ports of the same type between components.
- ‘EL‘ ? ‘EL‘
- ‘QM‘ ? ‘QM‘
- Use ‘-down-‘ for direction.

- **Dashed Connections:**
Use dashed lines (‘-[dashed]-‘) for control signals.

- **Mandatory Connections:**
Only include relevant components in a configuration.

Energy Storage Requirements

- System must include at least one energy storage: **Hydrogen
Storage**, **Fuel Tank**, or **Battery Pack**.

- Gas turbines must connect to a chemical energy source.
- At most **one type** of chemical energy source allowed in addition

to the battery.

General Requirements

- At least one continuous power path from storage to each propeller.
- Two independent propulsion drives and two propellers (per **14 CFR

25**).
- No single point of failure; ensure redundancy throughout.

Power and Control Separation

- Distinguish **power-distribution components** from **storage
components**.

- Controller manages operations via ‘ctrl‘ signals; monitors battery
SOC.

- External references may be included for control parameters.

Validation Rules

- Only **one type** of chemical energy source allowed (Fuel Tank
or Hydrogen Storage).

- **Aircraft Body** must be included and connected.
- Each **Electric Motor/Generator** must have its own dedicated

Battery pack.
- Gas Turbines must connect to a valid fuel source.
- For **14 CFR Part 25** compliance:

- System must include at least **two propellers**.
- Two power paths from the energy source are required.

- Ensure **no single point of failure**.

Solution Steps

1. Define system components from user input.
2. Validate the complete architecture against rules.
3. Generate **PlantUML diagram** for configuration.

Micro Templates

Basic Propeller
Description: A minimal system with a propeller connected to the
aircraft body.

PlantUML:
@startuml
’ Define the components with ports
component "Aircraft Body\nPMX, Aero, states" as AircraftBody1
#LightBlue
component "Propeller\nPMR,PMX" as Propeller1 #LightBlue
’ Connections
Propeller1 -down- AircraftBody1: PMX- PMX
’ Diagram Title
title Aircraft System with Aircraft Body and Propeller
@enduml

9

REFERENCES REFERENCES

Battery to Motor
Description: Connection of a battery to a motor-generator and a
propeller.

PlantUML:
@startuml
component "Battery\nPEL, SOC" as Battery #LightGreen
component "Electric Motor Gen\nPEL, PMR, ctrl" as ElMotorGen
#LightGreen
component "Propeller\nPMR,PMX" as Propeller #LightBlue
component "Gearbox\nPMR1,PMR2" as Gearbox #LightBlue
Battery -right- ElMotorGen: PEL- PEL1
ElMotorGen -down- Gearbox: PMR- PMR1
Gearbox -down- Propeller: PMR- PMR
title Aircraft System with Electric Motor and Propeller
@enduml

Turbo Prop
Description: A gas turbine connected via a gearbox to a
propeller.

PlantUML:
@startuml
component "Propeller\nPMR,F" as Propeller1 #LightBlue
component "Gearbox\nPMR1,PMR2" as Gearbox1 #LightBlue
component "FuelTank\nPdotM" as FuelTank1 #LightCoral
component "GasTurbine\nPdotM, PMR, ctrl" as GasTurbine1
#LightCoral
FuelTank1 -right- GasTurbine1: PdotM - PdotM
GasTurbine1 -down- Gearbox1: PMR- PMR1
Gearbox1 -down- Propeller1: PMR2- PMR
title Aircraft System with Gas-Turbine and Propeller
@enduml

Hybrid Electric with Fuel Cell
Description: Hybrid-electric configuration with a fuel cell,
motor-generator, battery, and controller.

PlantUML:
@startuml
component "FuelCell\nEL" as FuelCell1 #LightGreen
component "Hydrogen Storage\nQM" as HydrogenStorage #Turquoise
component "Electric Motor/Generator\nEL, MR" as EMG1 #LightGreen
component "Electric PowerManagement\nEL" as EPM1 #LightGreen
component "Battery Pack\nEL" as Battery1 #LightGreen
component "Controller\nctrl" as Controller1 #LightYellow
HydrogenStorage -down- FuelCell1: QM
FuelCell1 -down- EPM1 : EL
EPM1 -down- Battery1 : EL
Battery1 -down- EMG1: EL
Controller1 -[dashed]- FuelCell1: ctrl
Controller1 -[dashed]- EMG1: ctrl
Controller1 -[dashed]- Battery1: SOC Monitoring
title Hybrid Electric Aircraft Propulsion System with Fuel Cells
@enduml

Final Solution Steps

- Validate the complete architecture against the **validation rules**
once more. Make sure that all components used are defined in this prompt.

10

	Introduction
	Methodology
	Prompt Engineering and Interaction Modes
	Micro-Templates
	From Natural Language to Structured Diagrams
	Python Configurator Generation
	API Integration and Interactive Expansion

	Case Studie: Hybrid Electric Aircraft
	Prompt-Based System Generation
	Behaviour, UML Activity Diagram
	Python-Based Configurator Generation
	Comparison: Direct LLM output vs. Configurator-Driven Generation

	API Integration and Interactive Expansion

	Discussion
	Structured Process Summary
	Challenges and Limitations

	Conclusion

