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Abstract
AI is increasingly used in the aviation industry such as traffic management, predictive mainten-
ance, flight operations and safety systems. The fast progress in AI increases the potential for
improvements at all levels. Wise integration into aviation will enable improved performance,
enable a faster pace of transition to environmental-friendly solutions and thus reduce the envir-
onmental impact, operational costs and safety.
We are conducting research in AI systems and developing “proof of concept” in a wide area
of applications such as predictive maintenance, autonomous flight systems solutions, hybrid
human-AI systems, flight path planning, decision support, mental state monitoring (tiredness,
stress, distraction, etc.). At the same time, it is a risk to become overconfident in AI systems
and it is critical to develop safe and secure hybrid AI systems; there are many examples of naive
deployment of AI where lack of understanding of the application domain together with lack of
understanding of the different AI methods, techniques, and algorithms have led to serious implic-
ations and even fatalities. Many AI systems we see today are by nature not fully trustable, since
they relay heavily on statistical learning and lack reasoning capabilities and deeper understand-
ing. We need to take this into account already when designing an AI system. Securing proper
safeguards and validation already in the initial design phase is essential; otherwise, the system
may become a dead end, unreliable, unscalable, or unsafe for deployment.
In conclusion, artificial intelligence is rapidly transforming the aviation industry in all areas, in-
cluding safety, efficiency, and sustainability. We will over the next 5–10 years see more autonom-
ous aircraft and drones occupying our airspace, see an increase in safety, performance and re-
duced environmental impact as a consequence of increased deployment of AI. At the same time,
we need to be in control, and understand when, where and how to use AI as well as to know how
much we can trust AI and how much responsibility we can delegate to AI.
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1 Introduction

Artificial Intelligence (AI) is a research field exploring and
developing methods, techniques, and algorithms enabling
computer systems to perform tasks typically requiring human
intelligence and today they even outperform humans in cer-
tain tasks such as recognizing patterns, learning from exper-
ience, making decisions in complex situations normally re-
quiring a human. Exploring intelligence and building intel-

ligent systems is one of the main objectives of this cross-
disciplinary research field in parallel with gaining a deeper
understanding of intelligence. AI is already transforming so-
ciety and industries such as healthcare, finance, and logistics,
and its impact on aviation is only in its infancy. The require-
ments in the aviation industry are unique in many aspects with
extremely high requirements in safety and efficiency. AI of-
fers already today many new advantages in the aviation in-
dustry, that are operated, maintained, and managed, but the
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potential is huge and we have only seen the beginning. In this
paper we explore areas and cases on how AI is used or can be
used in aviation in the near future, including some discussions
of its benefits, limitations and risks. We hope this paper will
support a broader understanding of AI’s role today and in the
future of aviation.

Figure 1: Example of areas in aviation and the aviation in-
dustry where we see a high or very high potential for AI sys-
tems for the coming years. Much is already ongoing today,
but the challenge is what is coming in a near future. In main-
tenance we see the highest activity, operations, design and
navigation are areas in acceleration. Environment is an im-
portant area relevant in all areas of aviation.

2 Examples of AI applications in aviation
As mentioned, AI today is a major disrupter and plays a key
role in society and industry. In avionics there is currently
much focus on autonomous flights, but the imminent big dis-
ruptor is caused by integration of AI in all aspects of avionics,
assisting pilot, design, maintenance, safety, fuel consumption
to mention some. In this chapter we are summarizing some of
the ongoing trends and give some examples of both existing
and ideas for future use of AI in aviation.

2.1 AI enhanced pilot awareness

AI plays an increasingly important role in enhancing system
intelligence in aircraft. There is a huge potential in decision
support systems where AI collects, analyses and understands
huge amounts of data and assist pilots. In critical situations AI
enhanced systems extends the pilots awareness enabling the
pilot to make more informed decisions in close collaboration
with AI enhanced systems.

2.2 Intelligent predictive maintenance

AI driven predictive maintenance systems can not only pre-
dict and inform pilot of potential failures, but also assess

consequences and how to resolve them and advice pilots
of actions and prepare preventive maintenance at next stop.
This has the potential to lower operational costs and increase
safety. There are numerous cases in aircraft accidents where
the forensic accident investigation team detected sound in the
Cockpit Voice Recorder (CVR) indicating engine problems
before any alarm sounded. If these subtle sound fingerprints
detectable by AI systems would be distributed among all air-
craft with same engine, the AI system could immediately alert
the pilot of the similarity and brief the pilot of consequences
and actions to take to avoid an accident.

2.3 Hybrid AI systems

By enabling communication between the different AI-based
avionic systems a higher level of situational awareness can be
achieved where an overall situational assessment can focus on
the most critical aspects of the situation in collaboration with
the pilot.

2.4 Integrating pilot and AI

The ongoing research effort to establish direct communica-
tion between humans and computers (using neuro-adaptive
systems, e.g. with Brain Computer Interfaces, BCI) will en-
able exciting scenarios where the pilot both feels the aircraft
as an extension of their body and can communicate directly
with the aircraft. Research in this area has focused on send-
ing commands to the computer system, but communication
directly to a pilot is a more imminent and interesting idea.
To feel it in your foot when one tyre of your aircraft is over-
heating at landing may be a more realistic imminent scenario
and a first step towards more integrated “mind controlling”
of an aircraft. Research so far struggles with direct mind
control of external devices due to operators often experience
mind-wandering and constantly sustain a strong focus is diffi-
cult. "Mind control" also relies on extensive machine learning
techniques and requires extensive, individual calibration and
large amounts of training data for each user [1].

2.5 Optimal aircraft design

In design of aircraft, 3D printers of both synthetic mater-
ials and metals (AM, additive manufacturing adding layer
by layer, instead of milling or cutting, producing minimal
waste and enabling production of complex geometries) is a
disruptive technology in design of aircraft and enables new
design of aircraft and in its combination with machine learn-
ing and generative AI systems it enables designs of custom-
ized, lightweight structures with advanced materials. Parts
designed using generative AI can be both stronger and lighter
[2]. Already 2019 Airbus designed a partitioning wall using
generative AI with the same strength but 45% lighter than the
traditionally design partitioning wall. A saving according to
Airbus of nearly half a million metric tons of CO2 emission
per year.

2.6 Fuel/energy consumption

Weather services and sensors are giving increased informa-
tion on what is happening both in proximity of the airplane as



well as on other altitudes. All this information is increasingly
used to adapt flight path and altitude to reduce fuel consump-
tion and environmental impact. Already today AI models are
in some cases surpassing traditional numeric weather models
running on supercomputers [3] and research on using AI for
4D flightpath optimization with fixed landing times is ongo-
ing [4].

2.7 AI-supported scheduling in aviation

In civilian aviation, managing aircraft operations involves a
wide range of complex, interdependent activities—such as
fueling, routine service, repair, inspection, baggage handling,
and coordination teams and crews with different competences
and skill levels. These tasks require extensive planning and
dynamically re-scheduling in order to avoid delayed flight
schedules, handle unforeseen maintenance issues, adapt to
weather conditions, and personnel availability. For example
in [5] an AI-supported enterprise modeling framework is pro-
posed originally developed for a dynamic tactical decision-
making context. It relies on enterprise modeling to capture
workflows, roles, constraints, and information flows across
the aviation ground operations ecosystem.

By introducing semantic modeling (ontology), digital twins,
and AI-based reasoning into this system, various ground tasks
can be matched in real time to available personal with appro-
priately skilled teams. By integrating the system with data
from aircraft health monitoring, schedules, and logistics sys-
tems, enables automated re-prioritization and resource real-
location to optimize planning and scheduling according to de-
sired priorities (in aviation maximizing aircraft flight time and
minimizing delays). From an environmental perspective this
is also an advantage since redundancy in aircraft, spare parts
and staff can be optimized. Overall the main benefits we see
of increased intelligence in scheduling and planning are:

Figure 2: Example of a mission in aviation and how it is
broken down into tasks mapped to available resources.

An AI enhanced planning and scheduling framework has
a huge potential in improving operations efficiency in civil
aviation, by combining enterprise modeling principles with
AI functionality and shared ontology-based semantics offer-

ing transparent, knowledge-based infrastructure that supports
automation and decision making. This has the potential to
improved aircraft availability by scheduling tasks to ensure
aircraft return to service faster and with higher reliability. It
also enabled increased transparency and coordination trough
the potential of sharing a semantic model and real-time data
between ground crews, aircraft systems, and operations con-
trol to support better coordination and accountability. This
closely relates to the Command and Control loop (C2), a
model for organizing, coordinating and scheduling resources
to achieve a specific goal [6]. The C2 loop has four stages:
sensing, decision-making, execution, and feedback to carry
out the mission. The resources in a mission may be humans,
mixed teams and autonomous teams. With an shared onto-
logy and shared resources it enables optimization, coordina-
tion and collaboration between different prioritized missions.

2.8 AI-driven mission planning for aviation intense
Search And Rescue (SAR) operations

The proposed CAMP framework [7] offers potential for civil-
ian aviation missions in complex SAR missions like wildfire,
natural disasters like earthquake etc. In such operations dif-
ferent aircraft including Unmanned Aerial Vehicles (UAVs)
have to be assigned different tasks to complete the mission
as efficiently as possible. E.g. in a forest fire context ariel
vehicles need to drop water, monitor fire spread, transport
ground crew, airlift persons in need and direct trams in real
time. The proposed framework will enables high-level mis-
sions to be dynamically translated into tasks and tasks will be
distributed among available resources, teams and agents.

Dynamic planning and adjustments is a complex task where
AI-driven assistance based on context analysis, mission mon-
itoring and situation assessment will enable:

• Faster Response – achieved through real-time data fu-
sion and AI-supported decision-making.

• Better Coordination – facilitates seamless collabora-
tion between air and ground entities.

• Optimized Resource Use – by better matching team
capabilities and platform functionalities to mission re-
quirements.

• Continuous Monitoring – enables live re-planning and
adaptation as conditions evolve.

3 Explainability in AI
In many applications of AI, a central challenge is how to
handle explainability - the ability to make the output transpar-
ent and understandable to human users. AI techniques such
as Artificial Neural Nets (ANN) and Large Language Models
(LLMs) are often “black boxes” with the ability to produce
high quality output without or with limited capability to ex-
plain how the output was achieved.

AI systems based on ANN and LLMs struggle with the abil-
ity to consistently produce trustworthy output. When build-
ing AI systems, this aspect needs to be addressed. Also, the



lack of explainability is a risk, since human competence may
deteriorate and lead to overconfidence on the system, if an AI
system produces correct and good results in 99 cases and then
produces a bad solution the hundred case, a human user may
not question the solution critically enough. THIS may cause
serious consequences in applications like avionics.

Interpretability refers to the property of a system enabling hu-
mans to understand and follow how it functions. This under-
standing enables users to assess the system’s performance and
reliability. In safety-critical domains, such as avionics, many
AI applications require interpretability to increase trust and
increase safety in situations where the system performance
may be weaker.

4 Levels of control and autonomy
When using AI, levels of control and autonomy is important
to consider. Different application may need different levels of
autonomy and control. Below we have given an example of
a generalized table of autonomy levels. The table is inspired
by, and is a simplified version of Sheridan and Verplank’s 10
levels of automation [8] reduced to 6 more generic and gen-
eral levels of autonomy mapping the more specific SAE J3016
standard for driving autonomy [9].

Level Name Description

0 No automation Human does everything.

1 Suggestion / Support System provides op-
tions/recommendations;
human decides.

2 Guidance System guides with few
ranked alternatives; hu-
man decides.

3 Shared execution Executes action if human
approves or if no veto
within a short time.

4 Supervised autonomy Executes actions auto-
matically, informs hu-
man; human can inter-
vene if needed.

5 Full autonomy System decides and acts
independently, human in
the loop is optional.

Table 1: Generalized levels of automation for decision & ac-
tion.

An approach taken in the military domain is the classifica-
tion of human control levels. They define 3 levels of human
control, human in the loop, human on the loop, human out of
the loop as shown in table 2. In many situations here there
is no time for having a human in the loop due to short re-
sponse time requirements. This rises comcontrolplex ethical
issues as AI systems today rarely are 100 percent reliable. In
the WARA-PS project (The Wallenberg AI, Autonomous Sys-
tems and Software Program, WASP) the different aspects of
autonomy and control are explored [10].

Concept of control Explanation

Human-in-the-loop A human actively particip-
ates in the decision-making
process. AI suggests ac-
tions, and the human ap-
proves or modifies them be-
fore execution.

Human-on-the-loop A human supervises the
system while it operates
autonomously. The AI
makes most decisions, but
the human can intervene if
necessary.

Human-out-of-the-loop The system operates fully
autonomously without hu-
man intervention. Humans
are not involved in real-time
decisions.

Table 2: Levels of human involvement in AI systems.

5 Developing AI systems
The failure rate of AI projects in industry is estimated to be
over 80 percent [11]. On the other hand if an AI project suc-
ceeds the benefits and values may outweigh the risks and the
risks of failure can be minimized. If companies fail with some
initial AI projects it is important to learn from the events and
continue their effort to use AI, this may be a matter of sur-
vival. The potential for AI systems in aviation industry is
very high, hence it is important to minimize the risks. There
are many risks with developing AI systems and the right pre-
conditions need to be in place (list inspired by [12] and own
experience):

1. Clear objectives and metrics – well-defined problem
and feasibility assessment.

2. High-quality, relevant data – sufficient, accurate,
labeled data.

3. Skilled and experienced personnel – AI/ML special-
ists, domain experts, engineers, and legal/ethics ad-
visors.

4. Organizational support – executive backing, gov-
ernance, change management, and a culture of exper-
imentation.

5. Risk management and monitoring – performance
evaluation, safety checks, and fallback plans.

Our experience is that the better the preconditions are met,
then bigger the chance to succeed with an AI project. If not,
secure all five before you start and don’t under estimate the
importance and effort needed to reach this level. In aviation
industry these preconditions are even more critical since for
good reasons it is a conservative domain since safety and long



life span. Our success rate in in academic applied research
project are based on make sure that all five factors are in place
before committing to lead or participate in a project. An ex-
ample of a research project where we implemented an ad-
vanced research mock-up that has been evaluated in industry
is [13].

The better the preconditions are met, the higher the likeli-
hood to succeed with an AI project. Ensure these precon-
ditions are covered before starting, and do not underestimate
the effort required to do so. In a necessarily strongly regulated
and conservative sector where safety, reliability, and long as-
set lifespans are paramount, such as in the aviation industry,
these preconditions are even more important.

In traditional software development projects, implemented
solutions behave as specified, enabling verification of the
functionality. AI and machine learning systems are on a com-
plexity level making it difficult or impossible to verify com-
pletely as they have the ability to learn and are to complex to
verify fully. Thus making the outcomes unpredictable which
has to be addressed and properly handled in any safety crit-
ical domain. Conventional software engineering methodolo-
gies are therefore insufficient for AI projects. The resolution
to this challenge is to take a more rigorous approach: formu-
lation of hypotheses, systematic experimentation and valida-
tion of results (Hypothesis-Driven Development or Continu-
ous Experimentation). The approach often used in research is
visualized in Figure 3.

Figure 3: Development of AI systems often need an iterative
approach. Deciding too early what AI algorithms and system
constellations should look like can lead to dead ends later on
in the process.

In hypothesis formulation you develop a hypothesis about
how the AI system will solve the problem. The experiment-
ation phase is not about producing code, it is about test-
ing hypotheses, validating the outcome and learning with the
purpose of either confirming, refuting, or refining the hypo-
thesis. Insights from failures or partial success feed back
into the next iteration. Both Hypothesis-Driven Development
or Continuous Experimentation focus on a continuous cycle

of experimentation mirroring scientific method and continu-
ously working towards a sufficiently good solution. Tradi-
tional methodologies such as Waterfall and agile methods like
SCRUM/Kanban work from the assumption that some clear
requirements are formulated and that the solutions is known
in advance, and that implementation will be a straight forward
process. These methodologies are often mentioned as one of
the reason for the high failure frequency of AI projects.

Iterative development is a concept often used in AI projects
and our experience from more than 25 years of applied AI
research projects in industrial and medical applications is that
this is a key factor for success.

Also not starting with a “moonshot” project, putting all re-
sources into a single high-risk initiative may be risky consid-
ering the high failure rate in AI projects in industry. A bet-
ter approach is to begin with more manageable projects and
gradually build experience, capabilities, and confidence also
in an iterative way.

6 Conclusion
Artificial Intelligence (AI) is transforming the aviation in-
dustry—from flight operations and maintenance to mission
planning and airspace management. In this paper we have ex-
plored some examples and areas of AI in aviation available
today, under development or researched offering future op-
portunities and benefits of integrating AI. We have given ex-
amples on AI-driven predictive maintenance, intelligent pilot
assistance, aircraft design, and context-aware mission plan-
ning and how AI can improve efficiency, sustainability and
safety.

One promising development is the use of AI in complex mis-
sion planning in emergency situations, so called Search and
Rescue (SAR) operations and in aircraft ground handling. AI
systems that have context awareness and are able to interpret
mission purpose, dynamically allocate tasks, and provide con-
tinuous situation monitoring can greatly enhance capabilities
of human commanders, enabling more informed, faster and
efficient decision-making.

The challenge is to bear in mind such AI systems are fallible,
and over reliance without strong domain knowledge and safe-
guards can lead to severe consequences. Thus the first step is
to apply AI in the context of hybrid human-AI systems with
transparency, validation mechanisms, and human-in-the-loop
control—especially in safety-critical contexts like aviation.
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