
From the Arctics to Antarctica

- A multimodular visualisation of data

Jonathan Westin1, Tristan Bridge1, Matteo Tomasini1

1 Gothenburg Research Infrastructure in Digital Humanities, Göteborgs universitet, Renströmsgatan 6, Göteborg, 405 30,
Sverige

Abstract
This paper outlines the structure of Multimodal Map, a tool developed at GRIDH to access and visualise
place-based datasets. The Multimodal Map frontend, which is developed with a Vue3 framework that
fetches data from a backend built in Django, is arranged as a series of distinct and interconnected views
that lets the user interact with the material at different scale and level of abstraction. To support the
wide variety of formats the different projects need to handle, Multimodal Map makes use of both custom
solutions and several open frameworks and libraries. These include Open Layers for the geographical
visualisations, OpenSeadragon for IIIF-images, potree.js for point clouds, 3D Heritage Online Presenter
(3DHOP) for meshes, and relight-viewer.js for RTI Photography.

Keywords
Research Infrastructure, User Interface, Data model 1

1. Introduction

The Gothenburg Research Infrastructure in Digital Humanities (GRIDH) have developed a
package of user interface modules organised around a data model specifically aimed at spatio-
temporal visualisations. The core package, which we refer to as Multimodal Map (henceforth
MuM) was first fully developed for the project Extended Rephotography where the researchers
needed both a system to register data collected in the Arctics and a tool through which to visualise
the spatio-temporal relations in the material. The dataset consisted of glacier observations,
historical and present photography and rephotography, measurements, and 360-degree video
recordings. Since April 2023, MuM has been adapted and developed to accommodate the needs
of several subsequent projects, including Reading the Signs, Göteborgs Jubileum 1923, Etruscan
Chamber Tombs, Sonora, Stokkastovan, The Inscriptions of Saint Sophia, and Built Cultural Heritage
in Antarctica. Through these projects, MuM has been expanded with capabilities to view, perform
measurements on, and evaluate 3D data, explore reflectance transformation imaging (RTI),
browse and filter visual galleries of datasets, and group and sort documentation according to date
or type. Hence, rather than offering semantic annotation and structuring or processing of text and
images, functions handled much better by mature tools such as Recogito
(https://recogito.pelagios.org), MuM is defined by a “linear modularity”, a semi-rigid structure
that moves from the visual establishment of context to the exploration of digitisations through
media-specific tools. The common denominator for the MuM projects is that the data, primarily
visual in nature, is organised around an exact geographical position and a moment or event in
time, which allows both for spatial exploration and chronological presentation and filtering.
However, data-modelling informs the structure of a dataset by establishing hierarchies. In the
MuM projects these hierarchies – and therefore the data model – are instigated by the concept of

Huminfra Conference 2024, Gothenburg, 10-11 January 2024.

 jonathan.westin@lir.gu.se (J. Westin); tristan.bridge@lir.gu.se (T. Bridge); matteo.tomasini@lir.gu.se (M..Tomasini)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Proceedings of the Huminfra conference (HiC 2024)

135

approaching the material at different scales, from abstract to concrete. Thus, we argue that MuM
also offers a conceptual method for data registration that guides how a dataset is structured.

The present projects that make use of the MuM frontend and backend span a wide array of
categories and geographies, from the Arctics to Antarctica, but all collect and make available
datasets related to heritage that have been structured around the concept of place and scale
through their adaption to MuM. These datasets include documentation of inscriptions from
threatened environments and inscriptions in Ukraine, documentation of Swedish pipe organs,
data collections about street signs in Rwanda, historical photographs from Gothenburg,
immersive documentation of glaciers and the remains of the polar expeditions, and high-
resolution point clouds of Etruscan chamber tombs in Italy and log houses on the Faroe Islands.

2. General description

The MuM frontend, which is developed with a Vue3 framework that fetches data from a
backend built in Django, is arranged as a series of distinct and interconnected views that lets the
user interact with the material at different scale and level of abstraction; the map view (A), the
gallery view (B), the place view (C), and the object view (D).

Figure 1: The conceptual connection between the different views. Illustration: J. Westin.

The main interface, the map view, is organised around the core component of a graphical

representation of a Euclidean space where the data is spatially presented either as interactive
markers or as overlays. Depending on the datasets that need to be visualised, this map view could
be limited to the floor plans of one or several buildings (Stokkastovan, The Inscriptions of Saint
Sophia) or be expanded to include an entire countryside or the better part of a continent (Etruscan
Chamber Tombs, Sonora, Extended Rephotography). On the left hand of the screen, the user has
access to a set of widgets through which to filter down the displayed data. These can be specified
for each individual project and include controls that let the user limit the visible data to a
particular dataset or period, view only data from a delimited geographical area or of a certain
type, and focus on data that has been associated with a particular tag. As an example, in the
Etruscan Chamber Tombs project, the user can filter by dataset, type of data (3d models, plans, or
all data), time period (ranging from unknown to 400-200 BC), site, necropolis, and type of tomb.
Such controls enable a level of data manipulation that is non-hierarchical through the ability to
interact with specific sites as well as a more general filtering.

In parallel with the map view there is a gallery view which offers a graphical representation of
the markers. Depending on the project, the gallery is populated with either a single visual
representation of each of the places on the map (Etruscan Chamber Tombs, Sonora, Stokkastovan,
and The Inscriptions of Saint Sophia), or all photographic data (Extended Rephotography,

Proceedings of the Huminfra conference (HiC 2024)

136

Göteborgs Jubileum 1923). The map and the gallery mirror each other regarding what data sources
they display, meaning that if the user filters down the dataset to a certain area on the map or a
certain type of place, only images from that area or that type of place will be shown in the gallery.

Figure 2: The map view and gallery view of Etruscan Chamber Tombs with filter-widgets on

the left.

When a marker is selected, data associated with that place is shown. Presently MuM has three

possible interfaces for displaying this information; a place card that overlays the right hand side
of the map and assembles available photos from the selected place into a carousel with a preview
of the metadata presented below (Etruscan Chamber Tombs, Sonora, Stokkastovan, and The
Inscriptions of Saint Sophia), a compact scrollable column that overlays the right hand side of the
map with place data and previews of associated visual media (Extended Rephotography and
Göteborgs Jubileum 1923), or as an expandable area to the right of the map view populated both
with previews and metadata (Reading the Signs).

Figure 3: The place card in Etruscan Chamber Tombs and the column view from Extended

Rephotography.

The projects that make use of the place card to preview the data all have an additional view,

the place view, that the place card and images in the gallery link to. This view collects all the data
from a place in an expanded interface that lets the user sort the associated data by type or date
and presents a more generous space for descriptions and metadata connected with the place. In
order to display and let the users interact with the wide variety of formats the different projects
need to support, MuM makes use of both custom solutions and several open frameworks and
libraries. These include Open Layers for the geographical visualisations, OpenSeadragon for IIIF-
images, potree.js for point clouds, 3D Heritage Online Presenter (3DHOP) for meshes, and relight-
viewer.js for RTI Photography. These libraries all come with their own user interfaces and have
therefore been redesigned to present a coherent experience for the MuM user. When the user
selects a preview image for visual data, the interaction is handed over to either the built in MuM
object view for images, rephotography, and videos (both standard and 360) or for point clouds,
meshes and RTI photographs to an auxiliary web-app built to handle that type of data.

Proceedings of the Huminfra conference (HiC 2024)

137

Figure 4: Place view and Point Cloud Viewer from Etruscan Chamber Tombs, Image viewer from

Göteborgs Jubileum 1923, and Rephotography viewer from Extended Rephotography.

3. Frameworks and libraries used for MuM

In order to visualise meshes, point clouds, and RTI photography, the 3DHOP
(https://3dhop.net), potree.js (https://github.com/potree/potree), and relight-viewer.js
(https://vcg.isti.cnr.it/relight/) libraries were of particular interest. These come equipped with
a wide range of features that facilitate user interaction and fast downloads of 3d assets through a
pre-pyramidisation of the 3D data where only the necessary information is loaded at runtime.
3DHOP, for instance, provides built-in support for controlling scene lighting and carrying out
measurements. Similarly, potree.js offers capabilities for camera manipulation and both distance,
area, and volume measurement within a point cloud, and relight-viewer.js light manipulation and
shader appearance. These features were considered invaluable for researchers interested in
working with such material.

However, there are technical challenges involved in adding these libraries to MuM: 3DHOP
and potree.js are predominantly jQuery-based libraries, while the main frontend framework for
MuM is Vue3. The architecture and reactive databinding in Vue3 differ significantly from jQuery's
more direct manipulation of the DOM (Document Object Model). Furthermore, Vue3 is designed
to have primary oversight over its designated section of the webpage, and if jQuery makes any
changes to that area, Vue3 may overwrite them during its next update. This leads to complexities
in integration, as bringing jQuery into a Vue3 environment can result in conflicts and unexpected
behaviour. Hence, a separate frontend/backend interface using Express and JavaScript were
instead constructed. By building an auxiliary site with a near seamless connection with the main
site, MuM-projects are able to utilise the 3DHOP, Potree and Relight libraries without the
constraints of Vue3’s architecture. This auxiliary site operates in parallel to MuM and serves as a
unified platform for visualising and collecting all the point clouds and models across GRIDH’s
various platforms.

In addition to the auxiliary site built on the 3DHOP, potree.js, and relight-viewer.js libraries,
MuM has currently support for streaming video and layered rephotography visualisation built on

Proceedings of the Huminfra conference (HiC 2024)

138

https://github.com/potree/potree
https://vcg.isti.cnr.it/relight/

open standards, and geographical representations and IIIF-image visualisation through
OpenLayers (openlayers.org) and OpenSeadragon (openseadragon.github.io). Through its
modular design, MuM can in the future easily be expanded with libraries and custom modules
designed to access and visualise additional types of datasets as need arises, for instance through
image clouds or WebXR, without breaking the overarching structure of the interface and the data
model.

4. Diana and the data model

For its backend, MuM relies on a database coordination solution built by GRIDH, called Diana.
Diana was written in Django with PostgreSQL, and it consists of an app providing base
functionalities and abstract data models both for data input by the users and for making data
accessible through generated REST APIs. With the tooling offered by Django, we can provide
direct access to the database to our end-users, and limit their access to the projects they
collaborate in. Through the Django admin site, the end-users can easily upload a variety of data
without coding knowledge, and we can provide more tools for complex tasks such as batch
uploads of data.

For each MuM project, a new application is written and installed in the Diana framework. Each
application is generally centered around a data model indicating a Place, which includes some
naming, categorization and, most important, a geography data field in the form either of
geographical coordinates, or of a polygon indicating an area of interest. Places are then connected
to other data models representing features such as images, 3D models, authors and/or reporters,
observations, and various other forms of documentation, via Django’s ForeignKey and
ManyToMany fields (for more details, see Django Documentation). Tag models are used for
categorization of other data models: in Etruscan Chamber Tombs, for example, we created tag-
type models to describe different types of documentation, techniques used to develop 3D models,
but also the epoch of datation of tombs. The data models for each project inherit some of their
properties from the abstract data models provided through Diana. This ensures consistency in
the database structure, while at the same time providing flexibility for the specificities of each
project. For example, independently on what data models are specified within each specific
application, each model comes with fields “created_at”, “modified_at” and “published”, that get
automatically populated whenever a new data point is added to the database or modified. Some
of the abstract models in Diana include Tag models and Image Models. Tag models consist of short
case insensitive text, ideal for creating categories to which data points can be assigned. Image
models include a field to upload IIIF-images (through GRIDH’s IIIF server) as data points, as well
as generating Universal Unique Identifiers automatically. This is but a short description of Diana’s
data models and how they interact with MuM, but a full treatment of Diana’s capabilities is outside
of the scope of this paper.

In addition to providing each MuM project with a database requiring minimal boilerplate code
to be functional, Diana applications can potentially share data models and become an interactive
powerhouse that gets more powerful the more projects make use of its functionalities. Diana
shines also when it comes to the serialisation and generation of generic and consistent views in
the form of REST APIs (including GeoJSON API), through the Django REST framework. This
ensures the creation of compliant web APIs that the frontend relies upon. The flexibility of Django
makes it easy to tailor these APIs to the needs of the frontend.

5. Conclusions

While it is close at hand to describe MuM as a tool, a software through which to register, access,
and visualise a certain type of dataset, as has been shown it is to an equal amount a method for
data organisation and curation; it informs an analytical approach to the material where a defined
spatial position function as a fixture-point in Euclidean space for data of various types from
various times. Hence, each point in space also becomes an archive of its own that organises data

Proceedings of the Huminfra conference (HiC 2024)

139

https://openlayers.org/
https://openseadragon.github.io/

pertaining to that place. The user approaches the dataset from an abstract representation of the
data, as markers or analytical layers on a map or plan, but each step the user takes from there
brings her closer to a more detailed representation of the data; first through a description of the
spatially grounded place, and then through the individual representations of that spatial context
served through the expanding set of visual data modules. The backend solution upon which MuM
is developed allows for consistent data input and facilitates the interaction of end-users with the
data shown in the frontend.

Acknowledgements

During the development of MuM, there have been several persons involved in providing code and
solutions for both frontend and backend. Victor Wåhlstrand Skärström and Jonathan Westin
instigated an early version of the frontend for Reading the Signs, then Arild Matsson, Tristan
Bridge, and Jonathan Westin realised the first completed version for Extended Rephotography
with backend support from Aram Karimi in Diana, which was initially developed by Victor
Wåhlstrand Skärström. Tristan Bridge, Kristin Åkerlund and Jonathan Westin, with backend
assistance from Johan Åhlfeldt, completed the Göteborgs Jubileum 1923 and Reading the Signs
iterations. Matteo Tomasini, together with Tristan Bridge and Jonathan Westin developed
Etruscan Chamber Tombs, which served as a basis for Sonora, The Inscriptions of Saint Sophia,
Stokkastovan, and Built Cultural Heritage in Antarctica.

Proceedings of the Huminfra conference (HiC 2024)

140

