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Abstract

The sculpture “Kryptos” at the Central In-
telligence Agency in Langley, Virginia,
contains four encrypted passages. The
last, known as “K4” and consisting of 97
letters, remains unsolved.

In this work, we look at unusual statistical
properties of the K4 ciphertext, together
with the known plaintext, using Monte
Carlo sampling to perform permutation
testing. This provides evidence strongly
indicating a definite “one-to-one” relation-
ship between corresponding plaintext and
ciphertext letters. It also points toward a
possible encryption method which could
account for most or all of the observed
properties. This is the “Gromark” cipher
invented by Hall (1969, 1975) and ana-
lyzed by Blackman (1989).

1 Introduction

The “Kryptos” sculpture was installed at the Cen-
tral Intelligence Agency (CIA) in Langley, Vir-
ginia in November 1990. The sculptor was Jim
Sanborn and the cryptographic consultant was Ed
Scheidt, who retired from the CIA in December
1989. The sculpture contains four encrypted mes-
sages totalling 865 letters plus 4 question marks.

Scheidt has indicated that the codes were de-
signed to be solved in five, seven or ten years.

The first three sections were solved indepen-
dently by three different teams or individuals: an
NSA team in 1992, David Stein from the CIA in
1998, and Jim Gillogly in 1999. The fourth sec-
tion, “K4”, consisting of 97 letters remains un-
solved and its encryption method remains publicly
unknown. During the period 2010 to 2020, four

parts of the K4 plaintext with locations were re-
leased by the sculptor, totalling 24 letters. Fur-
ther details may be found in Dunin and Schmeh
(2020).

Callimahos (1977) and Lewis (1992) describe
the process of diagnosis of an unknown cipher
type. Callimahos, in a chapter entitled “Principles
of Cryptodiagnosis”, sets out a process of hypoth-
esis formulation and hypothesis testing. This in-
volves arrangement and rearrangement of the data
to disclose nonrandom characteristics, followed
by recognition and explanation of these character-
istics. The chapter headers are: manipulating the
data, recognizing the phenomena, and interpreting
the phenomena.

Lewis states that the task of an analyst is find-
ing, measuring, explaining, and exploiting a phe-
nomenon (or phenomena). Writing about cipher
type diagnosis, he describes the search for “some-
thing funny” or “finding the phenomena”.

Since these publications, Mason (2012) pre-
pared a table of cipher statistics for many
American Cryptogram Association (ACA) types,
with associated random forest (2013) and neural
net (2016) classifiers. Nuhn and Knight (2014)
also developed a classifier for ACA cipher types
using a support vector machine approach.

In this paper we attempt to measure some of
the interesting phenomena seen in K4 and provide
possible explanations. We perform statistical test-
ing using Monte Carlo sampling and describe one
possible encryption method, the Gromark cipher
of the ACA, and its variants. Finally we conduct
an extensive search of the Gromark key space for
various bases and key primer lengths before dis-
cussing our conclusions.



2 Analysis

Good (1983) commented on the practice of look-
ing at a sample ciphertext and deciding on a test
of significance based on the observed data, instead
of running a standard series of tests. The passage
is worth quoting in full to describe the risks and
rewards of such an approach.

... it is sometimes sensible to decide on a signif-
icance test after looking at a sample. As I’ve said
elsewhere this practice is dangerous, useful, and
often done. It is especially useful in cryptanalysis,
but one needs good detached judgment to estimate
the initial probability of a hypothesis that is sug-
gested by the data. Cryptanalysts even invented
a special name for a very far-fetched hypothe-
sis formulated after looking at the data, namely
a “kinkus” (plural: “kinkera”). It is not easy to
judge the prior probability of a kinkus after it has
been observed.

2.1 Ciphertext analysis

One of K4’s most prominent unusual features is
the number of repeated bigrams when the ci-
phertext is written at width 21 (Hannon, 2010;
LaTurner, 2016; Kirchner, 2003); see Table 1.

O B K R U O X O G H U L B S O L I F B B W
F L R V Q Q P R N G K S S O T W T Q S J Q
S S E K Z Z W A T J K L U D I A W I N F B
N Y P V T T M Z F P K W G D K Z X T J C D
I G K U H U A U E K C A R

Table 1: K4 ciphertext written at width 21

If we consider the 76 bigrams formed vertically
(starting with OF and finishing with GR), there
are 11 repeated bigrams (AZ BS IT LS LW PK
QZ SN WA ZT KK). This value is in line with the
expected number of repeated bigrams if a typical
English plaintext was written out at width 21; for
example, testing all 97-letter contiguous subsets of
the King James Bible gives an average value of 9.7
repeated bigrams at width 21.

If we perform Monte Carlo sampling and take
a large number of permutations of the cipher-
text (Good, 2013), we can estimate the propor-
tion of permutations of the ciphertext which would
have at least this number of repeated bigrams. In
this case, this proportion is approximately one in
6,750. Programs written in C to calculate values

in this paper are provided via Github.1

The recently solved (Oranchak et al., 2020)
“Zodiac 340” cipher also had a similar prop-
erty (Daikon, 2015; Van Eycke, 2015). A rela-
tively high number of repeated bigrams was seen
at width 19 in the ciphertext. The cipher was ulti-
mately found to be a combination of transposition
and homophonic substitution. The width 19 prop-
erty can thus, after the fact, be deemed “causal”
as the enciphering process caused this property to
appear.

2.2 Seriated ciphers
The “seriated Playfair” cipher of the ACA might
provide a partial aesthetic explanation for the
width 21 patterns. This cipher is digraphic and
works by performing Playfair encryption on verti-
cal pairs of letters. That is, any given pair of letters
in plaintext (p1, p2) maps to another pair of letters
(c1,c2) in a one-to-one fashion. Thus, numbering
the positions 0 to 96, the repeated “BS” bigrams at
positions 12/33 and 18/39 would reflect the same
underlying plaintext, or “AZ” at positions 49/70
and 57/78. Similarly, the “double box cipher” or
Doppelkastenschlüssel, sometimes referred to as
“double Playfair”, described by David (1996) is a
digraphic cipher which required seriation at width
21.

There are also several arguments against this as
a method:

• according to the “ACA Cipher Statistics”
webpage of Mason (2012), the index of co-
incidence (IC) of a typical “seriated Playfair”
ciphertext is 0.048 with standard deviation
0.003 versus K4’s IC of 0.036

• 26 letters occur in the ciphertext, while the
most common Playfair variant uses only 25
from a 5x5 square

• the doublet “KK” is present, which cannot
occur in standard Playfair

• a plain interpretation is that there are 97 ci-
phertext letters, an odd number, while Play-
fair works on pairs of letters. As 97 is also
prime, this is also an argument against the
Hill cipher suggestion of Bauer et al (2016).

The original description of the Playfair cipher
by Wheatstone entitled “Specimen of a Rectan-
gular Cipher”, seen in Kahn (1996, p. 199) uses

1https://github.com/RichardBean/k4testing



a 9x3 rectangle, and enciphers doubled letters,
which would account for the last three observa-
tions. We could take the question mark before
“OBKR” on the sculpture as the initial charac-
ter, with 27 different characters and 98 ciphertext
characters. The low IC could then be accounted
for by careful selection of the key.

However, these theories all became moot af-
ter the “BERLIN” plaintext clue was released in
November 2010. This corresponds to the cipher-
text “NYPVTT”. Thus, if a seriated digraphic ci-
pher at width 21 had been used to encipher the
plaintext, we would have two different plaintext
bigrams ending in “I” and “N” both mapping to
“ZT”, which is impossible. As the letter “K” in the
2014 plaintext clue of “CLOCK” also enciphered
to “K” this ruled out the use of standard Playfair
for the vertical bigrams.

We might also wish to check a width of seven,
based on a purely aesthetic argument, since 98
characters is seven pairs of rows with seven char-
acters per row. Similarly, the “NORTHEAST”
plaintext clue was released in January 2020, which
corresponded to letters 26-34 in the ciphertext,
“QQPRNGKSS”. If a seriated digraphic cipher
had been used to encipher the plaintext at a width
of seven, we would have two different plaintext
bigrams ending in “N” and “O” both mapping to
“BQ”, again impossible.

2.3 Other observations

Many other statistical anomalies have been noted
by others. Previous solvers of Kryptos have noted
the repeated doublets (BB, QQ, SS, ZZ and TT)
in the same columns when the ciphertext is writ-
ten at width seven. These letters are shown in bold
in Table 1. An NSA analyst (Redacted, 2007) and
Gillogly (Gillogly, 1999a) suggested this property
could be due to combined polyalphabetic substi-
tution and transposition. The width 21 property
could also be used to argue for combined trans-
position and substitution, as with the Zodiac 340
cipher; however, this paper argues against a trans-
position step.

Stehle (2000) noted that the ciphertext segment
“DIAWINFBN” has the property that when con-
verted to numbers (from the standard alphabet), 0
to 25, the difference between the first five letters
and the corresponding letters four positions right
is 5 (modulo 26). Thus I minus D corresponds to
8 minus 3, N minus I to 13 minus 8, and so on.

These observations are unusual, and may well
be causal, but were ultimately considered harder to
measure, explain or exploit than the observations
discussed here.

2.4 Known plaintext analysis

The 24 known plaintext letters are as fol-
lows: “FLRVQQPRNGKSS” in cipher corre-
sponds to “EASTNORTHEAST” in plain and
“NYPVTTMZFPK” in cipher corresponds to
“BERLINCLOCK” in plain.

Materna (2020) noted that for the known K4
plaintext, where the plaintext letters are in the
set {K,R,Y,P,T,O,S} the corresponding cipher-
text letters are very close in the standard alphabet
to the plaintext letters. Thus, the 10 shortest dis-
tances (the so-called “minor differences” (Fried-
man, 1954)) sum to 21, as shown in Table 2, for a
mean of 2.1.

Plaintext letter S T O R T S T R O K
Ciphertext letter R V Q P R S S P F K

Distance 1 2 2 2 2 0 1 2 9 0

Table 2: Minor differences between plain and ci-
phertext letters

Monte Carlo sampling by permuting the cipher-
text letters of K4 demonstrates this occurs only in
about one in 5,520 permutations of K4 ciphertext
letters.

With the release of 24 known plaintext charac-
ters, we can create a table showing, for each re-
peated plaintext letter, what the corresponding ci-
phertext letter set is, and then measure the short-
est distance between each of the ciphertext letters.
The repeated known plaintext letters are A, C, E,
L, N, O, R, S and T. Table 3 measures the mi-
nor differences between the ciphertext letters cor-
responding to each, producing 13 values.

We note that the mean is 3.6 and 10 of 13 values
are less than five. Performing Monte Carlo sam-
pling and permuting the ciphertext randomly, we
found that about one in 240 permutations have a
mean less than or equal to 3.6, while about one in
310 permutations have at least 10 values less than
five.2

2Looking at the distances in the Kryptos alphabet, 7 of 13
values are multiples of 5. If the plaintext letters are numbered
0-25 from the standard alphabet and the ciphertext letters are
numbered 0-25 from the Kryptos alphabet reversed, then the
sequence plain minus cipher modulo 26 is calculated, 13 of
24 values are multiples of 5; randomly permuting the cipher-



Plain Cipher Distances in Distances in
standard “KRYPTOS”
alphabet alphabet

A KL 1 9
C MP 3 11
E FGY 1,7,8 1,10,11
L VZ 4 3
N QT 3 10
O QF 11 8
R PP 0 0
S RS 1 5
T RSV 1,3,4 5,5,10

Table 3: K4 distances between cipher letters cor-
responding to repeated plaintext letters

These observations are unusual and strongly
suggest that “one-to-one” encryption of single let-
ters to single letters is occurring; that is, there is no
transposition involved in the encryption process.
It is of course possible that a new encryption algo-
rithm never before seen is in use, but this would
render solution very unlikely.

2.5 The Gromark Cipher

Instead, we suggest that these observations are
most compatible with the “Gromark” cipher (Hall,
1969; Rogot, 1975a; American Cryptogram As-
sociation, 2016). This was also a suggestion of
Gillogly (1999a; 1999b; 2004b; 2004a) before
known plaintext was made available in 2010.

Gromark as described by Hall (1969) operates
by using a “primer” of five digits, which is ex-
panded to form a key of the length of the plaintext,
using a “lagged Fibonacci generator” by continu-
ally adding the first two available digits, starting
with and including the primer, to get the next key
digit (modulo 10).

A plain and cipher alphabet are used; in ACA
puzzles, the standard alphabet is used for the plain
(A to Z) and the primer is given. The plain and
cipher alphabets are written in rows with the plain
on the top. The key digit corresponding to a partic-
ular plaintext letter is then used to count that many
steps right from the corresponding letter in the ci-
pher alphabet to produce each ciphertext letter.

Rogot (1975b) pointed out that, analogously
to the “Quagmire” cipher types, various kinds of

text, this is a 1 in 1,470 result. This might imply a method
involving 5x5 Polybius squares, such as a conjugated matrix
bifid; but nothing was found.

plain and cipher alphabets can be used. They can
be standard or keyword-based. Lewis (1992, p.
116) wrote about using the same alphabet for plain
and cipher, or using a superadditive numeric key.

Thus, one explanation for the “minor differ-
ences” observations in the “Analysis” section
above could be that the cipher alphabet is “near”
the standard A-Z alphabet, perhaps based on a
keyword, and then the minor differences between
ciphertext letters corresponding to repeated plain-
text letters are small numbers.

Blackman (1989) considered further variations,
such as using a non-decimal base, varying the
length of the primer, or as in Barker (1984), us-
ing a different rule for building up the key.

Holden (2018) used Gromark as an illustration
of the concept of the “linear feedback shift reg-
ister” (LFSR) which is more fully described in
Barker (1984).

Rogot (1975a), Deavours (1977a) and Black-
man (1989) all noted that with an even base and
a five digit primer, there is an underlying structure
of length 21 in the key and ciphertext. For ex-
ample, Deavours remarked that writing such Gro-
mark ciphertext out at width 21, each column is
encrypted by either all even or all odd key digits,
and with enough ciphertext, the underlying struc-
ture of the primer is revealed. Blackman extended
this approach to recovery of the base and length
of the primer by examination of the index of coin-
cidence, although typically a ciphertext of length
much greater than 100 letters is required.

The more general concept of inferring a se-
quence generated by a pseudo-random number
generator (PRNG)3 from known terms is dealt
with in more detail in Reeds (1977), Plum-
stead (1982), Knuth (1985), and Boyar (1989).
For instance, Boyar wrote about a linear congru-
ential recurrence with n terms:

Xi = a1Xi−1+a2Xi−2+ ...+anXi−n+an+1 (mod
m)

In the case of the standard ACA Gromark ci-
pher, we have m = 10, n = 5, a4 = a5 = 1, and
a1 = a2 = a3 = a6 = 0.

If a base two, five digit Gromark cipher is used,
with standard English plaintext taken from the
King James Bible, simulations indicate that for
any given key, about one in 10 ciphertexts will
have the property of at least 11 repeated vertical

3It is curious, but probably not relevant, that this is the
only 4-letter sequence occurring twice in the ciphertext part
of the sculpture.



bigrams at width 21. By way of explanation, Ta-
ble 4 shows the key expansion beginning with the
primer 00001. Ten of the values in each complete
row are the digit 1, and the vertical bigrams are
enciphered with either 00 or 11; thus, enciphering
will tend to preserve existing patterns of vertical
bigrams present in the plaintext.

0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1
0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1
0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1
0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1
0 0 0 0 1 0 0 0 1 1 0 0 1

Table 4: Gromark binary key

This “one in 10” proportion is very different 
from the “one in 6,750” result obtained from the 
Monte Carlo sampling above. Similarly, for a par-
ticular plaintext and sufficiently large base, it is 
generally simple to find a five digit primer which 
results in the ciphertext having the property of a 
large number of repeated vertical bigrams.

The known K4 plaintext now indicates the base 
must be at least three, because some plaintext let-
ters encipher to at least three different ciphertext 
letters.

Additional arguments for the use of the Gro-
mark cipher include:

• Gromark was described by Blackman (1989)
as a “pencil-and-paper field cipher”. Sim-
ilarly, Scheidt has been quoted as
stating: “K4 cryptography is similar to
what would be provided agents or pilots in
case of capture” (Hannon, 2011);

• Gromark is definitely “more than one stage”
as the primer must be expanded to the com-
plete key. Scheidt stated in 2015 that “[he]
would consider [K4 encryption] [to be] more
than one stage”. (Schmeh, 2015);

• Gromark does not involve transposition and
enciphers letters to letters. Sanborn has been
quoted as stating: “BERLINCLOCK in plain
matches directly with NYPVTTMZFPK. It is
a one-to-one match with plain B taken, has
the encipherment done to it, and out pops a
cipher N, plain E is then enciphered to a ci-
pher Y” (Bogart, 2019);

• Gromark is one of the few ACA ciphers in
Mason’s table to result in a “flat” index of co-

incidence, that is, one close to the value 1/26
= 0.03846. The IC value of K4 is 336/97/96
= 0.03608;

• The unique feature of the Berlin Clock is 
that it uses base 5 or 12 arithmetic (Schridde, 
2020) and Sanborn has stated “you’d better 
delve into that particular clock” (Schwartz, 
2014);

• Scheidt hints about base arithmetic in the 
2015 interview above and also in 2020: “if 
you can change the language base then it be-
comes in my favor and not your favor of try-
ing to break it. It becomes more of a chal-
lenge now, when it was used as the mask 
it was current, 2020 secret.” (Jacobs, 2020). 
This may refer to Blackman (1989);

• The raised letters on the sculpture stylized 
as “DYAHR” may refer to a Gromark five-
digit primer and are reminiscent of binary.4 
Indeed, the “Vimark” cipher (Dickerhoof, 
1971) is just Gromark at base 26 using nu-
meric values of letters.

Arguments against use of the Gromark cipher
are:

• The initial ACA experience showed that Gro-
mark encryption is error-prone and all ACA
challenges are now provided with a check
digit. However, the most error-prone aspect
is the key expansion stage; this could be
checked by a third party without revealing the
plaintext.

• Sanborn has stated that he is an “anathemath”
on several occasions (Allsop, 2010);

• At the 2011 “Kryptos Dinner” at the Zola
Restaurant in Washington DC, Scheidt stated
“[K4 cryptography] is not mathematical (al-
though this does not preclude it being mod-
eled mathematically), it is simple, can be re-
membered, and executed years later when
used with the correct key word/s.” (Hannon,
2011)

4Alternatively, this may be a reference to historical codes.
Telegraph and telex messages were charged per word sent. To
reduce costs, large international companies (mostly banks)
developed and used five letter codes. Codes such as Acme
had error correction features which in time were replaced by
binary error correction systems.



• Typically, the ACA version of the cipher uses
a “standard” plain alphabet, that is, A-Z in or-
der. With the release of the “CLOCK” crib,
C and R in the plaintext alphabet would both
need to map to P in the ciphertext alphabet
but are more than 10 places apart in the stan-
dard alphabet.

• Assuming Gromark is in use, there is a ten-
sion between the observations concerning the
IC, the ciphertext bigrams at width 21, and
the base chosen. A low base means that the
number of different vertical bigrams in the
key may be low; but on the other hand, very
few ciphertext outputs will have an IC as low
as 0.036. If, however, the encipherer wants
to deliberately insert the width 21 property,
with a higher base, they have many primers
to choose from to achieve that property.

The given plaintext maps plain T to cipher V at
position 24, and L to V at position 66 (number-
ing the positions 0 to 96). If Gromark was used as
the cipher, this implies the key is not repeating at
period 21 or 42. Perhaps the period is 63 or 84.
A period of 63 is reminiscent of an m-sequence
or “maximal length sequence” as seen in a par-
ticular example of Golomb and Gong (2005). In
this example, Golomb and Gong produced an m-
sequence over F22 of degree 3 with period 63 using
the irreducible polynomial x2 + x+1.

This sequence (extended to 84 entries) is
shown in Table 5, with the field elements in F22

{0,1,β ,β 2} replaced by {0,1,2,3}. As with the
binary Gromark key, the number of distinct verti-
cal bigrams is quite low; only four: 00,12,23 and
31.

1 1 1 0 1 3 0 0 1 1 2 3 0 1 0 3 1 3 1 1 3
2 2 2 0 2 1 0 0 2 2 3 1 0 2 0 1 2 1 2 2 1
3 3 3 0 3 2 0 0 3 3 1 2 0 3 0 2 3 2 3 3 2
1 1 1 0 1 3 0 0 1 1 2 3 0 1 0 3 1 3 1 1 3

Table 5: Golomb and Gong m-sequence of period
63

Meanwhile, a period of 84 is often seen with
base eight and primer length five, further ex-
plained below.

3 Search

Given the 24 known plaintext letters, we discov-
ered that a simulated annealing search (see for in-

stance Lasry (2018) using hexagram statistics for
scoring as in Bean (2020)) for the plain and cipher
alphabets would eventually converge for a given
key, when the alphabets were allowed to vary.

A set of inequalities and equalities was devel-
oped to narrow down the possible primers for base
and primer length possibilities. By means of this
reduction, the entire search space for base 10,
length 5 was examined thoroughly.

If we number the numeric key from 0 to 96, so
that each key digit is denoted by k0, ...,k96, we can
write out the relationships between the 24 known
plaintext and ciphertext letters. The “p” and “c”
functions here calculate the numerical equivalent
of a given letter in the plaintext and ciphertext
alphabets (0 to 25). Then, pairs of these rela-
tionships imply relationships between digits of the
key.

• p(T ) + k24 = c(V ), p(T ) + k28 =
c(R), p(T )+k33 = c(S) =⇒ k24 6= k28,k28 6=
k33,k24 6= k33

• p(E) + k21 = c(F), p(E) + k30 =
c(G), p(E) + k64 = c(Y ) =⇒ k21 6=
k30,k21 6= k64,k30 6= k64

• p(R) + k27 = c(P), p(R) + k65 = c(P) =⇒
k27 = k65

• p(N) + k68 = c(T ), p(N) + k25 = c(Q) =⇒
k68 6= k25

• p(A) + k22 = c(L), p(A) + k31 = c(K) =⇒
k22 6= k31

• p(L) + k66 = c(Q), p(L) + k70 = c(Z) =⇒
k66 6= k70

• p(O) + k26 = c(Q), p(O) + k71 = c(F) =⇒
k26 6= k71

• p(C) + k69 = c(M), p(C) + k72 = c(P) =⇒
k69 6= k72

• p(S) + k23 = c(R), p(S) + k32 = c(S) =⇒
k23 6= k32

• p(O)+ k71 = p(E)+ k21 = c(F) =⇒ k71 6=
k21

• p(N)+ k25 = p(O)+ k26 = c(Q) =⇒ k25 6=
k26

• p(T )+ k24 = p(L)+ k66 = c(V ) =⇒ k24 6=
k66



• p(A)+ k31 = p(K)+ k73 = c(K) =⇒ k31 6=
k73

• p(H)+ k29 = p(B)+ k63 = c(N) =⇒ k29 6=
k63

• p(S)+k32 = p(T )+k33 = c(S) =⇒ k32 6= k33

• p(I)+ k67 = p(N)+ k68 = c(T ) =⇒ k67 6=
k68

• p(R)+ k27 = p(C)+ k72 = c(P) =⇒ k27 6=
k72

• p(S)+ k23 = p(T )+ k28 = c(R) =⇒ k23 6=
k28

For base 10, primer length 5, out of the ini-
tial 99,999 possible non-zero keys, this left 1,040
remaining. If the digits in each key were ran-
domly chosen and uncorrelated within each key,
we have 21 inequalities and one equality at base
10; the proportion of keys satisfying all these
would be ( 9

10)
21( 1

10) = 0.01094, which implies in
some sense that the Gromark key digits are ap-
proximately “random”.

After this, we can apply further restrictions.
The SageMath software (Stein, 2007) allows us to
compute the Gröbner basis for the set of equations
showing the relationship between the 24 plaintext
and ciphertext letters. This leads to another set of
14 inequalities and one equality which each have
either four or six terms. The full set may be found
in the Github source.

This process ultimately showed that only 39 dif-
ferent primers (for the base 10 five digit case)
could lead to the 24 letters of known plaintext in
the correct positions.

Two of these primers, 26717 and 84393, are
equivalent, up to length 97, using a variation of
an observation of Blackman (1989): the keys are
inverses of each other (modulo 10). So, for any
given plain and cipher alphabet P and C, the result
of encrypting with 26717 is equal to the result after
encrypting with 84393, with the original alphabets
P and C reversed. See Table 6.

These are the only two of the 39 keys which use
only nine different digits. Of the 99,999 keys of
length 97, only 88 keys do not contain the zero
digit anywhere.

One of Blackman’s ideas is that, for a given nu-
meric key, the index of coincidence can be cal-
culated for the ciphertext letters corresponding to
each digit, and the average taken. This is the

2 6 7 1 7 8 3 8 8 5 1 1 6 3 6 2 7 9 9 8 9
6 8 7 7 5 4 5 4 2 9 9 9 6 1 8 8 5 7 9 6 3
2 6 5 9 5 8 1 4 4 3 9 5 8 7 2 4 3 5 9 6 7
8 4 5 3 5 2 9 8 8 7 1 7 6 5 8 8 3 1 3 6 1
4 4 9 7 5 8 3 6 2 3 1 9 8 5

Table 6: Expansion of 26717 primer at base 10

method used to determine the most likely key
primers. In this case, starting with the key 98800
gives an index of coincidence of 0.0625, which is
the highest of any of the keys and closest to the
index of coincidence of typical English plaintext.

The restrictions above can be applied to primers
of other bases and key lengths: for instance,
the only possible base 10, four digit primers are
33015, 6740, and 9903, and the four possible base
eight, five digit primers include 00351 and 00537.
As seen in Table 7 the expansions of these base
eight keys have period 84 and the extra property
that all columns at width seven, as well as at width
21, have either all odd or all even key digits.

0 0 3 5 1 0 3 0 6 1 3 3 6 7 4 6 1 5 3 2 7
6 0 5 1 5 6 5 6 6 3 3 3 4 1 6 6 7 5 7 4 5
4 4 3 1 1 0 7 4 2 1 7 3 6 3 0 2 1 1 3 2 3
2 4 5 5 5 6 1 2 2 3 7 3 4 5 2 2 7 1 7 4 1
0 0 3 5 1 0 3 0 6 1 3 3 6 7

Table 7: Expansion of 00351 primer at base eight

After this, different key expansion rules can be
tried, perhaps inspired by the raised letters on the
sculpture. We restricted ourselves to rules where
the first digit in the primer (shift register) is used
in the generation function, as explained in Beker
and Piper (1982, p. 183).

Although many plaintexts close to ordinary En-
glish were discovered, none were entirely convinc-
ing. If a Gromark variant was indeed used in the
K4 encryption process, with a more general key
expansion rule, it becomes difficult to test all the
possibilities. Instead, it may be worth consider-
ing implications of the other observations in this
paper.

4 Conclusion

With the use of Monte Carlo sampling analy-
sis, the known plaintext released by Sanborn pro-

5Which reminds one of the Internet mystery “Cicada
3301”



vides strong indications that transposition is not
involved in the K4 encryption process.

If the “Gromark” cipher of the ACA was used as
the encryption method, this would explain many
of the observed properties of the ciphertext and
known plaintext. The “unicity distance” (Deav-
ours, 1977b) of the Gromark cipher is approxi-
mately 48 letters, not accounting for the numeric
primer, which means the solution would be unique
at a ciphertext length of 97 letters.

As the Gromark cipher is the inspiration for an-
other high-security cipher of Rubin (1996) such
a cipher may be quite difficult to solve, fulfilling
Sanborn’s stated intention of it “going on for a
century, hopefully long after my death.” (Sanborn,
2009)
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