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Abstract

The Schliisselgeridt 41 was an highly se-
cure encryption machine developed by Fritz
Menzer and used from 1944 by the Ab-
wehr. Bletchley Park could not decipher
its traffic. In this article, we provide a func-
tional description of the SG-41 and present
anovel cryptanalytic method to recover the
key settings from ciphertext and known-
plaintext. This attack requires extensive
computing power, a testimony to the re-
silience of the SG-41 even against modern
cryptanalysis. We also present an alterna-
tive method, based on acoustic cryptanal-
ysis, which allows for the recovery of the
key settings in minutes.

1 Overview

This article is structured as follows: In Section 2, a
brief overview of the history of the SG-41 is given
and a functional description. Section 3 describes
cryptanalysis attempts by Bletchley Park and the
US against the SG-41. In Section 4, we describe
a novel known-plaintext attack that is feasible but
requires extensive computing power, and in Sec-
tion 5, a highly-efficient side-channel attack that
relies on acoustic analysis of the device. Finally,
in Section 6, we assess the security of the SG-
41 compared to other encryption machines of the
1940s.

2 The SG-41 - Introduction

The SG-41 was an encryption machine introduced
by Fritz Menzer, Regierungsoberinspektor of OK-
W/Chi, the cryptographic branch of the Wehrma-
cht. While inspired by the Hagelin pin-and-lug
devices, the design of the SG-41 incorporated sev-
eral novel features that significantly enhanced its
security. Logistical reasons prevented its produc-
tion in large volumes, and it was only deployed in

1944 on a few Abwehr networks. Bletchley Park
could not decipher its traffic unless multiple mes-
sages were sent in-depth. Until recently, little was
known about the inner functioning of the SG-41.
Several historical documents have been declassi-
fied that provide extensive details about its func-
tioning. A small number of SG-41 have survived,
and some have been restored.

In this section, we provide an overview of the
history of the SG-41, as well as a functional de-
scription, and an analysis of its keyspace size.

2.1 Fritz Menzer and the SG-41

Fritz Menzer (1908-2005) was the Government
Inspector (Regierungsoberinspektor) of OKW/Chi,
the cryptographic arm of the Wehrmacht, and later,
Admiral Canaris, the head of the Abwehr charged
him with ensuring the security of the organiza-
tion’s communications. Menzer designed and led
the development of several cipher devices, meth-
ods, and procedures, some of which created some
difficulties for British and U.S. codebreakers. In
a post-war NSA publication, Menzer is described
as “Cryptologic Inventor Extraordinaire”, and the
peak of his achievements, however, is most proba-
bly the invention of the SG-41, shown in Figure 1
(Mowry, 1983).

Having previously worked on the cryptanaly-
sis of the Enigma and the Hagelin C-36, Menzer
understood their weaknesses. While much of the
SG-41 borrows from the Hagelin pin-and-lug de-
sign, Menzer introduced some features that pro-
vided enhanced security (Mowry, 1983). Boris
Hagelin later complained to William Friedman that
the Germans had stolen his design. He had ob-
tained one of the SG-41 machines, wrongly calling
it C-41 (Friedman, 1955).!

The SG-41 was designed with a keyboard and a
strip printer to speed up the process of enciphering

It is also called C-41 in some U.S. documents (Agency,
1947).



and deciphering (unlike the Enigma that required
at least two operators, one to type into the key-
board, and another one to write down the lamps
activated).

The army ordered 11,000 units in 1942, and a
prototype was presented in 1943, but by the end
of the war, only 1000-1500 had been produced by
the firm Wanderer-Werke in Chemnitz. The chal-
lenges of wartime production and the lack of ma-
terial may have prevented its production in higher
volumes. In addition, the device was considered
too heavy - over 13 kg - to be used at the front-
lines (Dahlke, 2018; Mowry, 1983). Near the end
of 1944, it was deployed on at least three Abwehr

links, between Berlin, Bordeaux in Southern France,

Northern Italy, and Vienna, replacing the Enigma
G machines (Batey et al., 1945).

Figure 1: The SG-41

2.2 Functional Description of the SG-41

Until recently, little was known about the inter-
nal mechanism of the SG-41 (Dahlke, 2018; Mu-
seum, 2020b; Schmeh, 2004). Recently declas-
sified U.S. and British documents, and in partic-
ular, a wartime report from Bletchley Park, pro-
vide enough details to fully reconstruct the func-
tioning of the SG-41 (Batey et al., 1945; Mowry,
1983; Mowry, 1989; Mowry, 2003). While very
few devices have survived, most in bad condition,
some units are in the hands of museum curators
and crypto collectors, who were able to analyze
the physical/mechanical design of the SG-41. At
least one machine has been restored so that it is

fully functional (Historica, 2019; Dahlke, 2018).

While the SG-41 is described in several docu-
ments (Mowry, 1989; Mowry, 2003; Mowry, 1983;
WDGAS-14, 1946), those descriptions are incom-
plete, and sometimes conflicting. The most reli-
able historical source describing the SG-41 is a
G.C. & C.S. report titled Secret Service SIGINT
Volume II - Cryptographic Systems and Their So-
lutions - Machine Cyphers written by Keith Batey,
Mavis Batey, Margaret Rock, and Peter Twinn in
1945. The authors were part of ISK - Intelligence
Services Knox (headed by Dilly Knox before his
death in 1943) and were responsible for analyzing
Abwehr traffic with its agents and offices world-
wide. While most of the report is about the crypt-
analysis of the Abwehr Enigmas, against which
ISK had considerable success, the last seven pages
of the report are dedicated to a detailed functional
description of the SG-41 and to the mostly un-
successful attempts by ISK to decipher its traffic
(Batey et al., 1945).

The focus in this section is on the logical and
functional aspects of the SG-41, rather than on
its physical design and implementation. Figure 2
shows a functional diagram of the SG-41. The
SG-41 enciphers symbols of the A-Z alphabet into
symbols of the same alphabet. To encipher, the
operator presses a plaintext symbol on the key-
board (spaces are represented by the symbol J).
The plaintext symbol is encrypted, and the result-
ing ciphertext symbol is printed on a paper strip
(together with the plaintext symbol). The decryp-
tion process is similar: The operator presses a ci-
phertext symbol on the keyboard. The encryption
process, which is reciprocal, converts back the ci-
phertext symbol into a plaintext symbol printed on
the paper strip (together with the ciphertext sym-
bol).
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The encryption logic is governed by the outputs
of a rotating bar cage with 25 bars, as well as of
a set of six rotating pinwheels, as shown in Fig-
ure 3. The pinwheels are numbered 1 to 6, from
left to right, and have 25, 25, 23, 23, 24, and 24
pins each, respectively. Each pin can be set to an
active or an inactive state. Each wheel from 1 to 5
affects one or more bars. The pin currently in front
of the cage determines whether the bar is engaged
or not. Those pins are denoted as C1 to C5, for
wheels 1 to 5, respectively. C6 does not affect the
cage bars, but it affects encryption as described in
Section 2.4.

Each bar has a fixed lug positioned in front of
one of the wheels 1 to 5. In front of wheels 1,
2, 3, 4, and 5, there are 1, 2, 4, 8, and 10 bars
with such a fixed lug, respectively. The bar cage
performs a full rotation during the encryption of
a single symbol. When a bar has its lug against
an active pin, it is engaged and it adds one to a
total additive kick, denoted as K (its function is
described in Section 2.4). If a bar is not engaged,
it does not add to K. Therefore, wheels 1 to 5 may
add 1, 2, 4, 8, and 10, to K, respectively. When all
the bars are against active pins, and thus, they all
are engaged, the total kickis 1 +2+4+8+10=
25.

So far, the mechanism of the first five wheels
and the bar cage is very similar to the Hagelin C-
35, which also had bars with fixed lugs, and five
wheels that affect kick (Museum, 2020a). But the
SG-41 introduces two features which greatly en-
hance its cryptographic security: irregular step-
ping (see Section 2.3), and complementary kick
(see Section 2.4). It also features a fixed substi-
tution (see Section 2.5), which has no significant
effect on cryptographic security.

2.3 Irregular Stepping

The SG-41 features an irregular wheel stepping
mechanism. The stepping of each wheel is gov-
erned by the state of pins in other wheels (see Fig-
ure 2). The pins of wheels 1 to 6 that affect other
wheels’ stepping are denoted as T1 to T6. Those
pins are at a certain distance on the wheel from the
pins that control the bars (C1-C6). With wheel 1,
if pin 1 currently affects the bar cage (it generates
C1), at the same time, pin 14 affects the stepping
of another wheel (generating T1). Similarly, if the
wheel has advanced one step, pin 2 generates C1
and pin 15 generates T1, and so forth. The same

applies to C2 and T2 for wheel 2, and similarly to
the other wheels.

A full encryption cycle, in which a plaintext sym-
bol is encrypted (or a ciphertext symbol is decrypted),
and the wheels advance, consists of three stages,
one of which is optional (Batey et al., 1945):

1. An optional pre-encryption stepping stage that
occurs before encryption, only if T6 was ac-
tive (at the beginning of the cycle).

2. The encryption stage.

3. A post-encryption stepping stage that always
occurs after encryption.

The two stepping stages are identical. Each step-
ping stage consists of two phases, as follows:

* Wheels 2 to 6 step if the pin affecting step-
ping on the wheel on its left was active (at
the beginning of the stage). For example, if
T3 was active, wheel 4 steps.

* All the wheels (1 to 6) step.

This mechanism creates a circular interdepen-
dence between the wheels, as illustrated in Fig-
ure 4. This circular interdependence means that
any wheel may affect the stepping of any other
wheel, directly or indirectly, and that there is no
way to know how the wheels step without first de-
termining the pin settings of all wheels.

! ! ! - ! ! ! ]J
[Wheel 1 ];1.[ Wheel 2 h[ Wheel 3 L‘S{ Wheel 4 ];:[ Wheel 5 };[ Wheel 6

Figure 4: Wheel Stepping — Circular Interdepen-
dency

This two-stage mechanism ensures that every
wheel will step at least once, and no more than
four times, per encryption cycle. Depending on T6
at the beginning of the encryption cycle, either:

* Wheels 2 to 6 step two to four times, and
wheel 1 steps twice, or

* Wheels 2 to 6 step once or twice, and wheel
1 steps once.

Wheel 2 has 25 pins and completes a full rota-
tion after 7 to 13 cycles. Wheels 3, 4, 5, and 6
(with 24 or 23 pins) complete a full rotation after
6 to 12 cycles.



2.4 Complementary Kick

The second security enhancement has to do with
how K affects encryption. In the regular Hagelin C
machines, encryption is according to the Beaufort
reciprocal formula (p is the plaintext symbol, ¢ the
resulting ciphertext symbol, and K the total kick)
(Lasry et al., 2016):

c=(25—p+K) mod?26 (D

Decryption works similarly (modulo 26):
p=25—c+K=25—(25—-p+K)+K=p (2)

The SG-41 introduces a complementary feature,
that works as follows (modulo 26):

e If C6isinactive: c=25—p+K

 If C6is active: ¢ =25 — p+ (25 — K), effec-
tively complementing the kick.

The complementary feature complicates the re-
lationship between the effective kick K., computed
as K, = ¢+ p — 25, and the state of C1-C5, the
pins that affect encryption. Without the comple-
mentary feature, if K, = 1, for example, we could
clearly establish that C1 is active, and C2-C6 are
inactive. But with the complementary feature, K, =
1 could also be obtained if C1 is inactive, C6 is
active, and C2-C5 are active. In general, there are
two possible C1-C6 options for any K, between 0
and 9, and from 16 to 25 (instead of one without
the complementary feature). Similarly, there are
four possible C1-C6 options for any K, between
10 and 15 (instead of two without the complemen-
tary feature), as illustrated in Table 1.

2.5 Fixed Substitution

It should be noted that SG-41 first applies a substi-
tution alphabet (denoted as S) to the input symbol,
and its inverse to the output symbol, after encryp-
tion. The substitution alphabet is as follows (the
letter on the top row maps to the letter on the bot-
tom row, e.g., A maps to P, B maps to T, etc...):

ABCDEFGHIJKLMNOPQRSTUVWXYZ
PTOIUHVREFWACXQSEZKGMYJBNLD

So therefore the full encryption formula (mod-
ulo 26) is as follows:

* If C6 is inactive: ¢ = S~1(25 - S(p) +K)

* IfC6is active: c=S"1(25—S(p)+(25—K))

Effective Kick K,

Active C1-C6

0

none active

C1+C2+C3+C4+C5+C6

1

Cl1
C2+C3+C4+C5+C6

2

C2
C1+C3+C4+C5+C6

Cl1+C2
C3+C4+C5+C6

C3
C1+C2+C4+C5+C6

C1+C3
C2+C4+C5+C6

C2+C3
Cl1+C4+C5+C6

C1+C2+C3
C4+C5+Co6

Cc4
C1+C2+C3+C5+C6

Cl+C4
C2+C3+C5+C6

10

C5
C2+C4
C1+C3+C5+C6
C1+C2+C3+C4+C6

11

C1+C5
C1+C2+C4
C3+C5+C6

C2+C3+C4+C6

12

C3+C4
C2+C5
C1+C3+C4+C6
C1+C2+C5+C6

13

C1+C3+C4
C1+C2+C5
C3+C4+C6
C2+C5+C6

14

C3+C5
C2+C3+C4
C1+C5+C6

C1+C2+C4+C6

15

C1+C3+C5
C1+C2+C3+C4
C5+C6
C2+C4+C6

16

C2+C3+C5
C1+C4+C6

17

C1+C2+C3+C5
C4+C6

18

C4+C5
C1+C2+C3+C6

19

C1+C4+C5
C2+C3+C6

20

C2+C4+C5
C1+C3+Co6

21

C1+C2+C4+C5
C3+C6

22

C3+C4+C5
C1+C2+C6

23

C1+C3+C4+C5
C2+C6

24

C2+C3+C4+C5
C1+C6

25

C1+C2+C3+C4+C5
C6

Table 1: Options for Effective Kick K,




In a still-classified TICOM report, Menzer claims
that this alphabet was designed to flatten the fre-
quency counts in the ciphertext (Mowry, 1983; I-
72, 1945). While it is true that the effective kick
stream is not randomly distributed (the values 10
to 15 are more likely to appear), it is not clear to
what extent this additional substitution enhances
the cryptographic security of the SG-41.

2.6 Analysis of the Keyspace

Any pin on a pinwheel may be set to be either ac-
tive or inactive. There are 25+ 25+ 23 +23 +
24 424 = 144 pins, therefore the size of the the-
oretical keyspace is 2!44. In practice, operational
procedures on how to set the pins would probably
have reduced this number. Unfortunately, no doc-
uments have survived that describe the operational
procedures of the SG-41.

3 Historical Cryptanalysis of the SG-41

In this section, we present historical attempts at
the Cryptanalysis of the SG-41.

3.1 Attacks on Depths

(Batey et al., 1945) describes how the mechanism
of the SG-41 was reconstructed from depths by
Bletchley Park, but could only be fully understood
after a unit was captured in 1945. The SG-41, sim-
ilarly to other Hagelin cipher machines, is still sus-
ceptible to attacks on messages in-depth, that is,
encrypted with the same key settings. If we have
two ciphertexts originally enciphered with the same
key settings, and we look at the ciphertext symbols
c1 and ¢; at the same position in the message, then,
assuming that C6 is inactive at that encryption cy-
cle, we obtain (modulo 26):

c1=S5125-S(p1) +K)
cr=5"125-S(p2) +K)

3)
“4)

where p; and p; are the corresponding unknown
plaintext symbols.

After applying S (the known fixed substitution)
on both sides, we obtain:

S(er) =25-S(p1) +K 5)
S(c2) =25—-S(p2) +K (6)

and therefore:
S(p1) +S(c1) = S(p2) +S(c2) (7

It can easily be seen that Equation 7 also applies
if C6 is active and ¢ = S~1(25 - S(p) + (25— K)).

Since S, c1, and ¢, are known, if we can guess
p1, we obtain p,.

The same techniques historically used for re-
covering depths (e.g., from Hagelin ciphertexts)
can be applied here (Lasry et al., 2018).

Depths are available if operational discipline is
poor, and the same key and starting positions are
reused for different messages. From the histor-
ical reports, it can be understood that the same
key settings (the active and inactive pins on the
wheels) were used for a certain period of time.
To avoid sending messages in-depth, the opera-
tor would first change the starting positions of the
wheels for each message and securely communi-
cate to the other party those starting positions, us-
ing concealed indicators (Batey et al., 1945).

3.2 Conditions for a Long Period

Another way depths may occur is if the machine
repeats the keystream (the series of K,) after a rel-
atively short period, which we denote as motion
period. In theory, because of irregular stepping,
this should happen only after 25 * 25 * 23 * 23 *
24 * 24 = 190,440,000 stepping stages. In prac-
tice, the longest achievable period will be shorter
than that, as there might be one or two stepping
stages per encryption cycle.

An historical report by the predecessor to the
NSA, the Army Security Agency, analyses the pre-
conditions for a full motion period. According to
the report, the Germans came up with a list of nec-
essary and sufficient conditions to ensure a max-
imum period. The keys were selected to always
comply with those conditions (Agency, 1947; I-
72, 1945). We denote the number of active pins on
the wheels as N; to Ng and list the conditions:

1. N is not divisible by 5

2. N #21

3. N3 #0and N3 #£23

4. Ny#1 mod2and Ny #1 mod 3
5. Ns is neither divisible by 2 nor by 3

In (Agency, 1947), an example is given demon-
strating that by violating only one of the five con-
ditions, it is possible to obtain a motion period
with only 70 stepping stages. Generally, if the
conditions are not systematically followed, the vast



majority of (randomly-selected) settings would re-
sult in periods shorter than the maximum period.
It can be seen that condition 1 leaves only 0.8 of
the possible wheel settings, condition 4 one-third
of those, and condition 5 leaves one-third of the
latter, so that they may generate a complete pe-
riod. With just those three conditions, we are left
with 0.8/9, which is less than one-tenth. There-
fore, more than 90% of randomly selected settings
would be sub-optimal, and even if the motion pe-
riod is longer than one million, on a day with heavy
traffic, with tens of thousands of symbols inter-
cepted, overlaps (partial depths) are likely to oc-
cur.

The Bletchley Park report, and a report written
by Walter Fried, the U.S. liaison officer in Bletch-
ley Park, states that no generic solution could be
devised to read SG-41 traffic, for messages not in-
depth. Furthermore, even the availability of a crib,
or plaintext recovered from depths, did not allow
for the reconstruction of the key settings (Batey et
al., 1945; Fried, 1944).

4 A Novel Known-Plaintext Attack

Because of the complex stepping mechanism, there
are no periodic patterns that would allow statisti-
cal attacks to be effective, such as the ciphertext-
only and known-plaintext attacks that were devel-
oped against Hagelin systems with regular step-
ping (Lasry et al., 2016; Lasry et al., 2018). Fur-
thermore, the circular dependencies of the wheels
with regards to their stepping (as illustrated in Fig-
ure 4) make the problem even more challenging.
Basically, to know how the wheels will step, one
needs to know all the pin settings. But to recover
the pin settings, one needs to know how the wheels
step.

To break that circular dependency, one approach
is to exhaustively test some of the elements of the
circular logic chain and to validate the elements
under test and/or reconstruct additional elements
further in the logical chain. There is a trade-off be-
tween the number of options to test and the num-
ber of elements under test. On the one hand, the
richer the information in the elements under test,
the easier it is to rule out wrong options in an ef-
ficient manner. On the other hand, more elements
under test means that more options need to be tested.

Finding the right balance between the number
of options to test and the amount of information
that allows for a definitive evaluation requires ex-

tensive trial-and-error with various testing scenar-
i0s. In this section, we present a recursive, back-
tracking algorithm to validate candidate settings of
wheels 1 and 6, based on a sequence of effective
kick K, (obtained from the ciphertext and known-
plaintext). The technique is illustrated in Figure 5.
It not only tests the settings of wheels 1 and 6 but
also reconstructs the settings of wheel 2. The al-
gorithm starts with unknown states for all the pins
of wheels 2. It recursively processes the sequence
of K,, testing all possible TS options at each en-
cryption cycle, advancing wheels 1, 2, and 6 ac-
cordingly. It then validates candidate C1 and C6
against K, and Table 1 (C1 can always be deter-
mined unambiguously from C6 and K, ), and tries
to deduce C2 from K,. If C2 can be deduced un-
ambiguously, the pin at the current C2 position is
updated accordingly. If C2 at that position has al-
ready been updated (this is possible if the wheel
has already rotated once or more), then the algo-
rithm validates that there is no conflict. If there
is a conflict, the algorithm discards the option for
T5, and if all TS options have been discarded, it
backtracks. If there is no conflict (neither with
C1 nor with C2), the algorithm recursively pro-
cesses the next encryption cycle and its associated
K.. If this is the last encryption cycle for which
there is known-plaintext, and there are no more K,
elements to process, the (tested) settings of wheels
1 and 6 and the reconstructed settings of wheel 2,
constitute a solution candidate.

| Wheel 2 | T5
d ' (recursively
test)

Wheel 1

(test) (reconstruct)

Wheel 6
(test)

C1 C2

(validate) (update or
validate)

Possible
C1-C6

!

Ke
(derived from
known plaintext)

Figure 5: Known-Plaintext Attack — Recovering
Wheel 2 Settings

We present here the algorithm to recover the set-
tings of wheel 2 from the settings of wheels 1 and
6 and from known-plaintext. Its complexity re-
flects the complexity of the stepping logic.

T6



Recursive procedure:

1.

25424 _ 49
2 =2

Repeat (2) to (5) for all possible pin settings of wheels 6 and wheels 1. There are such

settings.

Initially mark the state of all the pins of wheel 2 as unknown. We will mark them as active or
inactive as we gather unambiguous evidence in the procedure described here.

Assume that the starting position of all wheels is pin 1 (another position may be assumed, and the
algorithm would produce equivalent, shifted, pin settings).

Start by processing the first encryption cycle (the first ciphertext and known-plaintext symbols).

Determine T6 (from the wheel 6 settings under test, at the pin currently driving T6):

(a) If T6 is active, the optional pre-encryption stepping stage is applied:
i. Advance wheels 1, 2, and 6, and advance again wheel 2 if T1 was active.
ii. For each possible state of pre-encryption TS (active or inactive):

A. Advance wheel 6 if TS5 is active.

B. Validate/update C1 and C2 (see below). If a conflict is detected, discard this option for
T3, or backtrack if both T5 options result in a conflict.

C. Advance wheels 1, 2, and 6, and advance again wheel 2 if T1 was active.

D. For each possible state of (post-encryption) TS - active or inactive, advance wheel 6 if T5
is active, and recursively perform (5) for the next encryption cycle (the next ciphertext
and plaintext symbols). If this is the last encryption cycle (for which there is known-
plaintext), store the settings of wheel 2 as a candidate solution.

(b) If T6 is inactive, only the post-encryption stepping stage is relevant:
i. Validate/update C1 and C2 (see below). If a conflict is detected, discard this option for TS5,
or backtrack if both T5 options result in a conflict.
ii. Advance wheels 1, 2, and 6, and advance again wheel 2 if T1 was active.

iii. For each possible state of (post-encryption) T5 - active or inactive, advance wheel 6 if T5
is active, and recursively perform (5) for the next encryption cycle (the next ciphertext and
plaintext symbols). If this is the last encryption cycle (for which there is known-plaintext),
store the settings of wheel 2 as a candidate solution.

Procedure to validate/update C1 and C2:

1.
2.

Compute K,, the effective kick for the current ciphertext and known-plaintext symbol.

Determine the expected state of C1 from K, and the current C6 (C1 can be determined unambigu-
ously - see Table 1). If the expected state of C1 is different from the state of C1 at the current
position (based on the wheel 1 settings being tested), the procedure fails.

Update or validate C2, as follows:

(a) If K, is between 0 and 9, or 16 and 25, it is possible to determine the state of C2 unambiguously
from K, and the current C6 (see Table 1).

i. If the state of C2 at the current position was previously marked as active or inactive, verify
that it does not conflict with the C2 derived from K, and C6. If there is a conflict, the
procedure fails.

ii. If the state of C2 at the current position was previously marked as unknown, update it with
C2 derived from K.
(b) If K, is between 10 and 15, it is not possible to determine C2 unambiguously from K, and the
current C6. No update or validation for C2 can be done in this encryption cycle.



When processing the initial known-plaintext sym-
bols, the state of C2 at the current position can
only be updated and not validated, as there is no
prior knowledge. As wheel 2 completes a full ro-
tation, previously updated C2 states can be com-
pared with C2 states newly derived from K, check-
ing for contradictions and pruning wrong T5 as-
sumptions, or wrong options under test (settings of
wheels 1 and 6). If SG-41 were designed so that
wheels advance only once or twice (versus up to
four times) per encryption cycle, this attack would
have been less effective.

A similar technique is employed to recover the
pin settings of wheel 3 from the pin settings of
wheels 6, 1, and 2. Similarly, the pin settings
of wheels 4 and 5 can be recovered. The can-
didate pin settings that survive all the algorithm
stages are finally verified by decrypting the cipher-
text and ensuring that the resulting decryption in-
deed matches the known-plaintext.

To rule out all wrong settings of wheel 2, a crib
of about 150 symbols is required. However, a crib
of 80 symbols is enough to rule out most of the
wrong wheel 2 settings, while the additional phases
(recovering wheel 3, wheel 4, and wheel 5) can
discard the remaining wrong ones.

The first phase of the algorithm needs to test
options, for all possible settings of wheels 6 and 1.
Subsequent phases - for recovering the pins of ro-
tors 3 to 5 - require only 223 to 2% runs. Based
on preliminary benchmarks, it is estimated that a
few thousands of PCs would complete the process
in a month. Further research is needed to evaluate
whether additional optimizations or a GPU imple-
mentation could further speed up the process.
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5 Possible Side-Channel Acoustic Attack
on SG-41

The SG-41 is a purely mechanical machine. As
wheels step up to four times, it is also a noisy ma-
chine, as can be heard in a video of a machine re-
cently restored (Historica, 2019). The sound emit-
ted by the machine is likely to leak extensive infor-
mation about its internal functioning, and wheel
stepping in particular. In this attack, we assume
that it is possible to determine at each encryption
cycle, based on the sound generated by the SG-
41, whether there was one or two stepping stages
(that is, whether the optional pre-encryption step-
ping stage took place). In other words, it is pos-
sible to extract a sequence of T6 states from an

T6

(from acoustic
analysis)

| Wheel 1 | T5

| recursivel
i (reconstruct) : ( v

validate
test)

T6

(from wheel
pins)

C1 C6

(update or
validate)

Possible
C1-C6

Ke

(derived from
known plaintext)

Figure 6: Acoustic Attack — Recovering Wheel 1
Settings

acoustic recording. This assumption has not been
checked yet against a real machine, but it is highly
plausible.

The process for recovering the wheel settings is
similar to the process described in Section 4, and
only its outline is presented here. The algorithm
is applied to all possible settings of wheel 6 (there
are 2** such settings). The recursive backtrack-
ing algorithm is illustrated in Figure 6. It recur-
sively tests all TS options at each encryption cycle
and it recovers the states of wheel 1 pins, based
on C1 that can be derived from K, and C6 (after
wheel 1 completes a full rotation, contradictions
can also be detected). It also checks whether T6
derived from wheel 6 pins matches the T6 pattern
predicted via acoustic analysis. If there is a con-
flict (in either C1 or T6), it backtracks. If there
is no conflict, the next encryption cycle (the next
known-plaintext and ciphertext symbols) is recur-
sively processed.

After candidate settings of wheel 1 have been
recovered, the settings of wheels 2 are similarly
recovered, and so forth for the remaining wheels.
With about 100 known-plaintext symbols (and the
relevant T6 sequence), only a handful of candi-
date solutions survive the last stage of the algo-
rithms, and the wrong ones can be eliminated with
a simple decryption test. The algorithm takes a
few minutes to test all possible wheel 6 settings.



6 Conclusion

The functional description of the SG-41 in this
article is based on historical British and U.S. re-
ports(Batey et al., 1945; Mowry, 1989; Mowry,
2003; Mowry, 1983), and on information that has
been made available recently, following the work
of curators and collectors who own a SG-41 (Mu-
seum, 2020b; Historica, 2019; Dahlke, 2018; I-72,
1945). The acoustic attack described in Section 5
might need to be refined, based on further analysis
of the precise information that may leak acousti-
cally, but based on our work, we can provide an
revised assessment of the security of the SG-41.

The attack described in Section 4, when noth-
ing is known except for a segment of plaintext,
requires 2% runs of the core algorithm. Taking
into account the complexity of the core algorithm,
the author estimates that the security of the SG-
41 is comparable to a modern cipher with 60-bit
key (DES as a 56-bit key). The fact that a sig-
nificant amount of processing power is required
for its cryptanalysis with modern techniques is a
testimony to the high level of security of the de-
vice, compared to other WWII German and Al-
lied cipher machines. It is much more secure than
Enigma, and probably provides the same level of
security as SIGABA and T52e, the most sophisti-
cated cipher machines of the time (Lasry, 2019).
An historical report by the Army Security Agency
even suggested designing a new device based on
the same principles as the SG-41, to be used by
the U.S. (WDGAS-14, 1946; Mowry, 1983).

Some of the features of the SG-41 such as irreg-
ular stepping with circular dependencies, and the
complementary feature, are nowhere to be seen in
other devices, until the 1950s, with some advanced
models of the Hagelin CX-52 (Museum, 2020b;
Friedman, 1955).
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