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Abstract

Cryptanalysis of enciphered documents
typically starts with identifying the cipher
type. A large number of encrypted histor-
ical documents exists, whose decryption
can potentially increase the knowledge of
historical events. This paper investigates
whether machine learning can support the
cipher type classification task when only
ciphertexts are given. A selection of en-
gineered features for historical ciphertexts
and various machine-learning classifiers
have been applied for 56 different cipher
types specified by the American Cryp-
togram Association. Different neuronal
network models were empirically evalu-
ated. Our best-performing model achieved
an accuracy of 80.24% which improves
the current state of the art by 37%. Ac-
curacy is calculated by dividing the total
number of samples by the number of true
positive predictions. The software-suite is
published under the name ”Neural Cipher
Identifier (NCID)”.

1 Introduction

Historical records show that encryption is about
as old as scripture itself. The earliest documented
use of cryptography can be traced back to the
Old Egyptian Empire in the third millennium BC
(Lieven, 2007). In ancient history, cryptography
was mainly used by the aristocracy and the mil-
itary. In principle, classical ciphers can be di-
vided into substitution ciphers and transposition
ciphers. With simple substitution, each letter is
substituted with a different one from the alphabet.
Homophonic substitution replaces letters by sev-
eral different substitutes, so the ciphertext alpha-
bet is bigger than the plaintext alphabet. Trans-
position ciphers mix (permute) the letters of the

plaintext into a quasi-random order. There are also
ciphers combining substitution and transposition
like ADFG(V)X (Friedman, 1941).

A typical cryptanalysis method for classical
substitution ciphers is frequency analysis. Here,
the frequencies of single or groups of multiple ci-
phertext symbols are counted and then compared
to the frequencies of the assumed plaintext lan-
guage. Then, based on the different frequencies in
the plaintext language, assumptions of which let-
ter was replaced by which symbol, can be made.
Knowledge of the used cipher type allows the
application of cipher-specific and heuristic algo-
rithms to find the plaintexts more precisely. For
example the Kasiski examination (1863) of the Vi-
genère cipher takes advantage of the fact that, by
chance, repeated words are sometimes encrypted
using the same key letters and therefore give indi-
cation for the possible key lengths.

The goal of this research is to determine how
cipher type detection can be improved with ma-
chine learning approaches like feedforward neu-
ral networks (FFNN), decision trees (DT), random
forests (RF) and naı̈ve Bayes networks (NBN) us-
ing newly calculated statistics in a massive feature
engineering approach (see Section 3.7). A sys-
tematic, exhaustive evaluation over all American
Cryptogram Association (ACA) ciphers (2005)
has been performed. To achieve the best results,
multiple optimizers, activation functions and fea-
tures were implemented and evaluated with sev-
eral relatively unparameterized neural networks.
The identified features are mainly based on previ-
ous work starting with Kopal’s prototype (2020)
for the MysteryTwister1 challenge ”Cipher ID”,
and on the implementations from Bion (Mason,
2021).

1MysteryTwister: https://www.mysterytwisterc3.org/



The result of this work is the software suite
”Neural Cipher Identifier (NCID)” (Leierzopf,
2021), which also will be available online.2 It can
be used for training and evaluation of neural net-
works with different classifiers like FFNN, DT and
NBN. A potential use case for the software suite
could be the DECRYPT project, with the aim to
offer a working infrastructure for researchers en-
abling the collection, automated digitization, anal-
ysis, and decryption of encrypted historical docu-
ments (Megyesi et al., 2020).

This paper is structured as follows. The next
chapter discusses all important related work for
cipher type detection with neural networks. The
third chapter describes all implemented cipher
types, data generation procedures, feature selec-
tion and different classifier architectures. The re-
sults of the empirical evaluation are summarized
in Chapter 4. Chapter 5 concludes this paper.

2 Related Work

The search for related work included classification
of classical ciphers as well as modern ciphers. The
idea was that recognition methods, which work on
modern ciphers, most certainly also work on clas-
sical ciphers. It is state-of-the-art to use the same
datasets for training to achieve better comparabil-
ity to other work. Unfortunately no such standard
dataset exists for the field of cipher type detection.

Nuhn and Knight achieved remarkable results
in the area of the classification of classical ci-
phers with neural networks and were the bench-
mark (2014). The researchers trained a neural
network with a linear classifier and a Stochastic
Gradient Descendent (SGD) optimizer with de-
fault parameters for 50 ACA ciphers. An accuracy
of 58.5% was achieved by using a quadratic loss
function and adaptive learning rates with 1 million
ciphertexts and 20 epochs. According to Nuhn and
Knight, squared features have not improved accu-
racy. They implemented 55 features from Bion
and developed three features themselves. The ran-
dom text lengths without defined ranges of lengths
are a major drawback in the comparability of their
work. The reason for this assumption is that most
features rely on statistical calculations, which are
more precise for longer texts.

Results from the work of Sivagurunathan et. al
(2010), where the three classical ciphers Playfair,

2https://www.cryptool.org/ncid

Hill and Vigenère were analyzed with a simple
neural network, coincide with the results of Kopal
(2020). Both discovered the difficulty of classify-
ing (distinguishing) the Hill and Vigenère ciphers,
because of their similar statistical values.

A multi-layer classifier has been introduced by
Abd and Al-Janabi (2019) to classify plaintexts
and ten different cipher types. The impressive re-
sults of over 99% accuracy are lessened by the
enormous ciphertext length of about one million
characters, which is the equivalent of an aver-
age book with 500 pages. Ciphertexts with these
lengths are seldom. The greatest part of original
historic encrypted manuscripts are only between a
few lines and some pages of ciphertext long.

Krishna (2019) developed approaches that have
not yet been used by other authors for the four
ciphers Simple Substitution, Vigenère, Transposi-
tion and Playfair. An important point for compar-
ison is that the Hill cipher was not used here. The
first approach, a support vector machine (SVM),
uses the ciphertexts of length 10 to 10,000, which
are mapped in a number range, as training data.
The SVM uses the implementation of the Sklearn
Library3 with a 10-Fold StratifiedKFold Cross-
Validation and a One-vs-Rest Classifier for the cal-
culation of the confusion matrix. This means that
9 out of 10 datasets were used for training and 1
dataset for testing in order to find the most suitable
class. In the second and third approach, a Hidden
Markov Model (HMM) was trained for 1000 ci-
phertexts per class and used by means of conver-
sion as input for a convolutional neural network
(CNN) in the second approach and an SVM in the
third approach. The first approach achieves an ac-
curacy of 100% with a text length of 200, the sec-
ond 71% with a text length of 155 and the third
100% with a text length of 155.

Zhao et al. (2018) extracted 54 features from 15
different NIST 800-22 (Rukhin et al., 2010) ran-
domness tests. The efficiency was tested in several
10-fold-cross-validation SVM one-to-one classi-
fiers for six modern block ciphers (AES, Blow-
fish, Camellia, DES, 3DES and IDEA). The result
was that 42 features gave better results than ran-
dom guessing, i.e. 50%. 12 of these features even
provide a recognition rate of over 60%.

Tan and Ji (2016) developed a very similar
model with the five modern ciphers AES, Blow-
fish, DES, 3DES and RC5. The experiments are

3Sklearn Library: https://scikit-learn.org/stable/



Author # Features Accuracy in % Text Length Dataset Size Epochs # Cipher Types Cipher Category Technology
Nuhn 58 58.50 random 1,000,000 20 50 classical Vowpal Wabbit

Nils Kopal 4 90 100 4,500 20 5 classical FFNN
Sivagur. 12 84.75 1,000 900 N/A 3 classical FFNN

Abd 7 99.60 1,000,000 N/A 500 11 classical 3-Level-Classifier
Krishna N/A 100 155 4,000 N/A 4 classical SVM, Hid. Markov M.

Zhao 54 47.8-89.5 512,000 6,000 N/A 6 modern One-vs-One SVM
Tan N/A 39 100,000 1,100 N/A 5 modern SVM

Manjula 10 72.20 1-2,000 1500 N/A 11 modern DT
Chandra 46 80 12,800 1,000 N/A 3 modern One-vs-One FFNN

Table 1: Summarized results and attributes of related work

carried out in this work with two scenarios: Once
the same key material for training and test data and
the other time with different key material. For the
same key, the result is 85% from 20 kB of data
and 96% from 100 kB of data. For different key
lengths with the same amount of data it is 35% or
39%. The parameters used by the SVM were not
explained in more detail.

Manjula and Anitha (2011) designed a C4.5
classifier for eleven modern ciphers and achieved
a recognition rate of over 70% for ciphertexts with
a variable length of 1-2000 bytes. The C4.5 al-
gorithm creates a decision tree based on the infor-
mation gain ratio. A total of ten features were de-
signed, seven of which are based on the maximum
entropy of different characters. Further features
are the entropy of all characters, the correlation
coefficient of capital letters and the length of the
ciphertext, since the expected entropies depend on
this.

Different algorithms for the one-to-one classi-
fication, i.e. a comparison of individual mod-
ern stream and block ciphers, were presented by
Chandra et al. (2007). The tested neural net-
work architectures were back propagation, back
propagation with momentum, resilient propaga-
tion, scaled conjugent gradient, conjugent gradi-
ent with Powell-Beale restarts and conjugent gra-
dient with Polak-Ribiere update. On average, all
algorithms achieved an accuracy of over 80%, but
resilient propagation was able to achieve over 6%
better results, especially comparing one stream ci-
pher with another stream cipher. The training was
carried out with texts with a length of 12.8 kB and
46 features that are not described in detail.

Table 1 summarizes the state of the art with re-
spect to the number of features, the self-reported
accuracy, the utilized text lengths for evaluation
and the training dataset size in the respective pa-

per.

3 Neural Cipher Identifier

In this paper general classifier architectures are re-
ferred to as classifiers. Trained instances of these
classifiers are called models. The selected archi-
tectures and algorithms of the models were, more
or less, biased by the knowledge of the authors,
and the hyperparameters were set to default values
without optimization.

A common theme in the related work is that fea-
tures are selected from one or a few sources and
not further questioned or tested. These features are
often incomplete and correlated to other features,
which can even make the models worse. By select-
ing features based on individually tested results
and implementing and optimizing multiple feature
engineering machine learning approaches, better
results for more cipher types can be expected. This
approach has been implemented in this paper. Ev-
ery test used newly generated data to prevent spe-
cialization on a specific dataset.

3.1 Implemented Cipher Types

This work is based on Kopal (2020), who analyzed
the five ciphers, simple monoalphabetic substitu-
tion, columnar transposition, Vigenère, Hill and
Playfair with an FFNN. As a result from previous
work, an FFNN with five hidden layers and a hid-
den layer size of

2 · input layer size
3

+out put layer size

is used as the starting point of research (further
on called ”baseline reference model”). In the
first step, the solution was expanded by adding
interfaces, cipher implementations, a custom data
loader and a testsuite for all classes. Training and
test data is generated on-the-fly.



For the test setup, all Bion features plus the
already existing features from previous work to-
gether with a selection of 55 of the 60 ACA ci-
phers and plaintext were used. The ciphers Twin
Bifid and Twin Trifid were excluded, because they
combine two ciphertexts, Incomplete Columnar
Transposition and Interrupted Key were also ex-
cluded, because they are indistinguishable ciphers.
Syllabary (Friedman, 2012) was not implemented,
because it was invented 2012 and does not fit into
the classical cipher period. Table 2 shows the ci-
phers used during this evaluation.

amsco grandpre per. gromark ragbaby
autokey grille phillips railfence
baconian gromark phillips rc redefence
bazeries gronsfeld plaintext route transp.
beaufort headlines playfair running key
bifid homophonic pollux seriatedpfair
cadenus key phrase porta slidefair
checkerboard mnmedinome portax swagman
col. transp. morbit progkey tridigital
condi myskowski quagmire1 trifid
cmbifid nicodemus quagmire2 trisquare
digrafid nihilist subst. quagmire3 two square
foursquare nihilist transp. quagmire4 variant
fract. morse null numbered key vigenère

Table 2: All 56 implemented ACA ciphers

To get comparable results with different archi-
tectures, the training and validation text length is
fixed to 100 characters, after all non-alphabet char-
acters are filtered. According to the American
Cryptogram Association (2005), all ACA ciphers
need 40 to 220 characters to be broken.

3.2 Keywords
For historical reasons, all ACA ciphers, whose
keys do not consist of digits, do not choose the
key words and alphabets at random, but rather use
English words. So called key alphabets use one
keyword and fill the rest of the alphabet in the al-
phabetical order. This allows the following three
training scenarios to be defined and sorted by their
classification difficulty:

1. Keywords are chosen from a dictionary. Key
alphabets use key words from a dictionary
and the rest of the alphabet is arranged in the
correct order.

2. All characters of keywords are chosen at ran-
dom. Key alphabets use keywords with all
characters being chosen randomly and fill the
rest of the alphabet in the correct order.

3. All characters of keywords are chosen at ran-
dom. Key alphabets are arranged randomly.

By default, all tests were run in the second sce-
nario which use keywords with all characters cho-
sen randomly and key alphabets are arranged in
the correct order after the keyword. Filling the
rest of the alphabet in the correct order is a ma-
jor weakness of each cipher. However, histori-
cally ciphers were used in the first scenario with
a word chosen from a dictionary. At the time of
invention this procedure offered enough security.
Compared to scenario 1, the advantage of the sec-
ond scenario is that the model is less likely to be
overfitted due to the lack of different keywords for
specific lengths and it should be more general and
more secure than with predefined keywords.

3.3 Optimizer Selection

Before testing new architectures some tests were
made beforehand. The algorithm used to deter-
mine the weights after every training cycle is re-
ferred to as optimizer. The optimizer was selected
by the best result of empirical test runs with the
default parameters. SGD with Momentum = 0.9,
RMSprop, Adam, Adadelta, Adagrad, Adamax
and Nadam were tested. To find out which of the
seven optimizers is the best for our scenario, each
model was trained with a different optimizer with
100 million data records, i.e. 1.8 million per ci-
pher. Ciphers which need keywords were trained
with the key lengths 5 to 8 as these lengths were
typical at the time of invention. The rest was
trained with no keywords and the same amount of
data. A baseline reference model with plaintexts
of the exact size of 100 characters and the second
training scenario were used for the comparison.

Optimizer Accuracy Top 3 Training Converge?
in % Accuracy Time

in %
SGD with 64.78 81.50 4h 21m Yes

Momentum
RMSprop 69.96 84.60 4h 27m Yes

Adam 72.97 87.18 4h 21m No
Adadelta 48.04 68.82 4h 23m No
Adagrad 56.31 74.74 4h 23m No
Adamax 73.71 87.80 4h 25m No
Nadam 72.42 86.91 4h 33m Yes

Table 3: Results of the comparison of 7 optimizers

From the results in Table 3 it can be seen that
Adam and Adamax deliver the best results in terms



of accuracy with default parameters. The training
time of the model is very close for all optimizers
which can be attributed to the preprocessing time
on the CPUs being greater than the training time
on the GPUs. For better comparability, further
tests and the search for the best hyperparameters
are carried out with the Adam algorithm.

3.4 Activation Functions

Activation functions are mathematical functions
which are used to adapt the weights in a neural
network. In order to be able to determine how the
training corresponds to different activation func-
tions, the baseline reference model was trained up
to convergence with 10 different activation func-
tions. The exponential function is an exception in
which only one hidden layer was used, as other-
wise the loss cannot be calculated. These results
were calculated after the selection of the best fea-
tures, which is described later on. Using the ac-
tivation functions in Keras (2021), the results of
the activation function comparison can be seen in
Table 4.

Function Accuracy Top 3 Training Converges
in % Accuracy Time after Mio.

in % Iterations
ReLU 74.70 88.94 16h 50m 146

Leaky ReLU 72.64 87.45 12h 30m 99
Parametric 75.18 89.02 19h 29m 152

ReLU
Sigmoid 72.32 87.01 1d 22h 385

tanh 65.48 81.87 9h 33m 68
ELU 68.51 84.18 10h 24m 76

SELU 67.54 83.58 13h 48m 103
Exponential 70.10 85.62 17h 54m 140

Swish 70.32 86.07 20h 33m 150
RBF 1.59 4.92 3h 30m 16

Table 4: Results of the activation function comparison

With the exception of the Parametric ReLU
function, the ReLU function delivered the best re-
sults in terms of accuracy and training time. Due
to the more reliable results of the ReLU function
it was preferred over the more complex Paramet-
ric ReLU function in further tests. The exponen-
tial function delivered impressive results with only
one hidden layer.

3.5 Data Generation

Figure 1 shows the training process of the cipher
classification model. 14 GB of English texts of

the Gutenberg Project4, which is free to use for
research purposes, were used as dataset for train-
ing and validating of the models. Loading and
preprocessing of the features is done by an own
data loader and is described in more detail in the
next paragraph. After the training process is com-
pleted, the model is saved and evaluated.

Gutenberg Library
Existing?

Check
Gutenberg

Library

Download and
Extract

Gutenberg
Library

Preprocess
Texts and
Calculate
Statistics

Fit and Validate
Model

Iteration <
max_iter?

Save Model
Evaluate with
10% Size of

max_iter

Subprocess: see Process
"Load and Preprocess Text
Lines" in Figure 2

Gutenberg Library

N

Y

Y

N

Figure 1: Training process

Figure 2 shows the data loader process de-
scribed in the last section. This process loads one
or multiple lines of text, depending on the defined
ranges, from the given dataset, and adapts them
with the appropriate filter function for the specific
cipher. As the final length after a text is read
from file can not be determined due to the filter-
ing of non-alphabetic characters, lines are read in
loops. For example, the filter of the Playfair cipher
replaces all J characters with I characters. The
length of the entire text can be set using command
line arguments. It can be assumed that longer mes-
sages are easier to classify because the calculated
features are more meaningful. The process de-
scribed must be carried out until the number of
plaintexts generated equals the size of the required
dataset, which is defined as a parameter in the pro-
gram itself, divided by the sum of the ciphers and

4https://www.gutenberg.org/



their configured key lengths. This means that each
plaintext can be used once for each cipher with
each of the configured key lengths for training the
model. After enough lines of text are available,
several processes, so-called workers, are started in
figure 2 to calculate the features in parallel.

3.6 Features
The selected features can be divided into the fol-
lowing groups:

• frequency statistics (e.g. unigrams, bigrams)

• distribution statistics (e.g. IoC)

• binary features (e.g. HAS J, HAS X)

• cipher-specific features (e.g. A LDI)

Abbr Term Description

SDD Average
Single Letter

– Digraph
Discrepancy

Score

This feature uses a table of the differences between
unigrams and bigrams. The score is calculated by
adding each value at the position of the first letter in
the alphabet times 26 plus the position of the sec-
ond letter in the alphabet from the SDD table. The
score is then divided by the length of the text minus
1. For normalization the scores are divided by 10.

CHI2 Chi Square With the Chi2 function, the deviation from the dis-
tribution of English letters, which is known, can be
calculated. This value is divided by 100 to be nor-
malized.

DIC Digraphic
Index of

Coincidence

Sum of all probabilities of the occurrence of two
identical pairs of characters in a text times 1000.

DBL Double Letter Binary value about the occurrence of a double char-
acter in an even place and that the total length is
even.

AUTO Estimated Auto
Correlation

Autocorrelation is useful in identifying repeating
patterns in a sequence. Due to the different lengths
of the ciphertexts (the Null cipher has ciphertexts
a maximum of 10 times as long as plain texts), the
remaining data points must be filled with 0.

FREQ Frequencies Recursive calculation of the probability of occur-
rence up to and including bigrams.

HAS 0 Has Digit 0 Binary value based on the occurrence of the digit 0.

HAS H Has Hash Binary value based on the occurrence of the # sign.

HAS J Has Letter J Binary value for the occurrence of the letter J.

HAS X Has Letter X Binary value for the occurrence of the letter X.

HAS SP Has Space Binary value based on the occurrence of the space
character.

IoC Index of
Coincidence

Sum of all probabilities of the occurrence of two
identical characters in a text.

LDI Log Digraph
Score

Bigrams in a text are searched for in a list of pre-
calculated English letter frequencies and added up.
The average of this sum is the score. At Bion, the
real numbers are used instead, but these are too
large values, which is why the probability of oc-
currence divided by 10 is more suitable.

A LDI,
B LDI,
P LDI,
S LDI,
V LDI,

PTX

Log Digraph
Score for
Autokey,
Beaufort,

Porta, Slidefair,
Vigenère,
and Portax

The LDI calculates this set of Vigenère statistics
for different ciphers by converting the ciphertexts
with the respective shift functions. The score is di-
vided by 1000. For ciphertexts that contain charac-
ters other than letters, the PTX feature is 0.

Abbr Term Description

LR Long Repeat Percentage of characters that are repeated exactly
three times. For this purpose, all the same char-
acters are counted for each character from position
+1. The root of this result is divided by the length
of the text.

BDI Max Bifid
DIC for

Periods 3-15

As in the Bifid cipher, texts are read in periods of 3-
15 and the DIC is calculated from this. The highest
score is divided by 1000 and returned. For cipher-
texts that contain characters other than letters, this
feature is 0.

CDD Max Columnar
SDD Score for
Periods 4-15

As in the columnar transposition cipher, texts are
read in periods and the SDD score is calculated for
them. The result of this feature is the maximum
SDD score divided by 1000. This feature is 0 for
ciphertexts that contain characters other than let-
ters.

MKA Max Kappa Texts are shifted by p to the right for Periods 1-15.
The remaining p characters are padded with values
that are not contained in the text (e.g. -1). The
result of this statistic is the maximum percentage
of match between the moved text and the original
text.

NIC Max
Nicodemus IC

Texts are divided into periods 3-15. The highest
NIC is calculated by dividing and reading the text
as with the Nicodemus cipher. The highest value is
returned.

SSTD Max STD
Score for
Swagman

Periods 4-8

As in the Swagman cipher, texts are read in periods
and the STD score is calculated. The result of this
feature is the maximum STD score divided by 100.

MIC Maximum
Index of

Coincidence

Texts are divided into periods 1-15. The high-
est IoC of all subgroups is calculated by dividing
the text into p groups. Each group consists of all
characters spaced p. If p = 3 there are 3 groups,
whereby the first group contains every third char-
acter starting with 0; the second group every third
character starting with 1 and the third group every
third character starting with 2. The highest value is
returned.

NOMOR Normal Order The frequency of each character is calculated and
sorted by size. The normal order is the sum of the
distances of all characters from their normal posi-
tion divided by 1000.

PHIC Phillips IC Calculates the IC using a fixed column size = 5 and
a fixed period = 8. The result is multiplied by 10.
For ciphertexts that contain characters other than
letters, this feature is 0.

REP Repetition
Feature

This feature is adopted from Nuhn and Knight
(2014). It consists of the normalized number of ex-
actly n times occurring identical characters for 2 ≤
n ≤ 5. The normalization is calculated by dividing
through the total number of repetitions.

ROD Repetition Odd Percentage of odd-spaced repeating characters to
the sum of repeating characters. For this purpose,
all the same characters are counted for each char-
acter from position +1. The result is sum odd /
sum all

RDI Reverse Log
Digraph

Bigrams in a text are searched for in a list of pre-
calculated English letter frequencies and added up,
but the order of the letters is reversed, e.g. AB -
¿ BA. The average of this sum is the score. With
Bion, the real numbers are used instead, but these
are too large values, which is why the probability
of occurrence divided by 10 is more suitable.

SHAN Shannon’s
Entropy
Equation

Entropy is a measure for determining the informa-
tion content of a text. Basically, a higher entropy
indicates that data is encrypted. This value is di-
vided by 10.

Table 5: Feature definitions

The value ranges of the features are normalized
to [0..1] so that small changes in a feature with
a higher value range do not have disproportionate
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Figure 2: Load and preprocess text lines

effects on the decision and on the evaluation of
other features in the learning process. Every fea-
ture was calculated 1000 times. The average cal-
culation time contributed to the decision whether
a feature was included or not. Totally 28 features
were implemented and out of these 20 were se-
lected after extensive testing (see Chapter 4). The
tests were run evolutionary. This method does not
need as much testing as a grid search. Every fea-
ture which achieves better accuracy than the last
configuration is included in the following test. Ta-
ble 5 describes all implemented and tested fea-
tures. The selection is based on tests with adding
one feature at the time and checking the difference
in the results.

3.7 Classifier Architectures

Feature engineering classifiers have the property
that selected features are provided as input for the
model through expert knowledge. With regard to
text classification, features can be properties like
HAS J, which checks if a J can be found in the
text, and statistics like the index of coincidence.
An essential advantage of the feature-engineering
method is that known weaknesses of ciphers can
be modeled as features and trained in the neural
network. The greatest disadvantage of this method
is the initial effort required to design and imple-
ment the features mentioned.

Feedforward neural networks (FFNN) are
based on differentiable activation functions and
the finding of the local minimum for the gradient
descent error function.5 The structure of an FFNN
consists of one or more layers. The layers between
the input and output layers are called hidden lay-
ers. A neuron never has connections to other neu-
rons in the same layer. The output of one layer is
used as the input of the next layer. The goal of
the training phase is to calculate the optimal mul-
tiplier (weight) for every connection to minimize
the error (loss) by using a small factor (learning
rate). The weight is adjusted with a small part of
the calculated loss after each update iteration. The
complexity of a model is determined by the num-
ber and width of the hidden layers and must not be
too simple or too complicated. The statistics bias
and variance are mostly used to evaluate models.
Bias refers to errors due to relationships that have
not been learned. The variance is the sensitivity to
training data. A model that is too simple can be
recognized by a high bias and a low variance (un-
derfitting). A model that is too complicated gets
a low bias and a high variance (overfitting) due
to the irrelevant features of the data. (Tino et al.,
2019)

5Gradient descent error function:
https://towardsdatascience.com/an-overview-of-the-
gradient-descent-algorithm-8645c9e4de1e



Decision tree (DT) algorithms construct binary
trees from data for decision making. Each DT has
a root node, internal nodes and leaf nodes. Ulti-
mately, the decision always takes place in a leaf
node. DT are prone to overfitting and therefore
misclassification, which is why the structure of the
DT is built up in two phases: training and pruning.
During training, the tree is built with all the nodes.
The task of the pruning phase is to remove rarely
used nodes in order to improve the accuracy and
runtime of the DT. (Anyanwu and Shiva, 2009)

DT can be used in serial algorithms (e.g. C4.5
or CART) and in parallel algorithms (e.g. RF).
RF consist of multiple incomplete DT with ran-
domly selected features from the entire feature
map. These DT are called estimators.

Naı̈ve Bayes networks (NBN) are based on
the assumption that all attributes or features of
data are completely independent of one another.
NBN classifiers make decisions by using the max-
imum a posteriori estimation with the individual
attributes. (Huang and Li, 2011)

Depending on whether the classification prob-
lem requires one or more classes, a decision func-
tion must be implemented. In the case of clear
decision-making problems, in most cases the class
with the greatest probability is chosen. Classifica-
tion problems with multiple outcomes can be clas-
sified using a threshold method. Basically, a dis-
tinction can be made between Bernoulli and multi-
nomial NBN. Bernoulli NBN can only use binary
features. In contrast, multinomial NBN are able to
use discrete data for classification.

4 Empirical Evaluation

The best feature map combination from Ta-
ble 5, which consists of the 20 features SDD,
DIC, FREQ, HAS 0, HAS H, HAS J, HAS X,
HAS SP, IoC, LDI, LDI STATS, LR, BDI, PTX,
MKA, NIC, MIC, NOMOR, PHIC and ROD, led
to 80.24% accurracy with the FFNN classifier.

Simple decision trees (DT) achieved an accu-
racy of 61.68%. Random forest classifiers (RF)
achieved 71.15% accuracy with 1000 estimators
and a maximal depth of 30 without using the
LDI STATS feature. RF achieved good results
with a fraction of the training time and data. An
essential drawback of RF are the enormous mem-
ory requirements, which peaked at about 350 GB,
and a very large model to be saved. Therefore,

a small RF model with only 100 estimators and
setting the parameters minimal samples leaf and
split to 10 achieved 74.35% with only 6.4 GB
of space, using the LDI STATS feature. Naı̈ve
Bayes networks did not perform well for this spe-
cific problem with the provided features. They
only achieved 54.17% accuracy. Overall, FFNN
achieve the best results for feature engineering
classifiers.

Table 6 shows a comparison between all four
tested models and Nuhn’s work concerning ac-
curacy and memory requirements. All of these
models, excluding Nuhn’s, used 20 features and
a plaintext length of 100 for 56 ciphers. Nuhn’s
work has been selected to compare with, because
it is the most comparable work from Table 1 to this
one. The other authors from Table 1 used a much
smaller set of different cipher types.

Technology Accuracy in % Memory Usage in MB
Nuhn’s Vowpal Wabbit 58.50 N/A

FFNN 80.24 45
DT 61.68 300
RF 74.35 6,400

NBN 54.17 2

Table 6: Summarized results compared to Nuhn’s work

5 Conclusion

Random English plaintexts were encrypted with
56 different cipher types specified by the Ameri-
can Cryptogram Association. The task was to train
models which can be used to determine the ci-
pher type of given ciphertexts. In the feature test-
ing and hyperparameter optimization phases more
than 100 models were systematically trained, each
one having a computing time of about one day on
a Nvidia DGX-1 V100 deep learning machine. As
a result, the best configurations for different types
of machine learning models were found. In sum-
mary, feedforward neural networks (FFNN) pro-
vide the best models in terms of accuracy. Ran-
dom forest classifiers (RF) on the other side only
need small amounts of data with about 3 million
records to deliver good results in comparison to
200-250 million records with the FFNN.

Further work in this field could include training
models with texts from different languages or with
texts including errors, as these likely happened in
historical documents. Another related question
is, whether different features can help in finding



the key of a ciphertext and if feature engineer-
ing is the best approach for this problem. More
modern ciphers used in World War II can also be
implemented and tested with the existing classi-
fiers. This work can be further extended by testing
if feature-extracting neural networks can achieve
similar or even better results without engineering
and testing features. Another extension would be
to train and apply these classifiers for modern ci-
phers.
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