Evaluating Deep Learning Techniques for Known-Plaintext Attacks on
the Complete Columnar Transposition Cipher

Nino Fiirthauer!”, Vasily Mikhalev?, Nils Kopal?,

Bernhard Esslinger?, Harald Lampesberger!, Eckehard Hermann

1

University of Applied Sciences Upper Austria, Hagenberg, Austria
ZUniversity of Siegen, Germany
*nino.fuerth@gmail.com

Abstract

This paper examines whether deep neu-
ral networks (DNN) can learn known-
plaintext attacks on plaintext-ciphertext-
pairs, that were created by encrypting
with complete columnar transposition. We
propose a new algorithm that extends
pure DNN-based prediction with addi-
tional post-processing steps to further en-
hance key prediction quality. Our ap-
proach is easily extensible and currently
supports key lengths from 2 to 20 char-
acters. Each key length has been em-
pirically evaluated with plain-/ciphertext-
pairs of different lengths. For plain- and
ciphertexts with a length of five times the
key length, our algorithm achieves a suc-
cess rate of 96% which is, to the best of
our knowledge, a new state of the art on
deep-learning-based known-plaintext at-
tacks against columnar transposition.

1 Introduction

The columnar transposition cipher is a historic
manual cipher, where the order of the characters
is changed instead of replacing characters by other
characters or symbols as in substitution ciphers. It
was one of the methods used by the Irish Repub-
lican Army (IRA) in the 1920s (Mahon and Gillo-
gly, 2008). As itis a very simple cipher, it has also
served as a building block for other more complex
ciphers like double transposition cipher or the Ger-
man ADFGVX cipher.

In the beginning of the 20th century, first
known-plaintext attacks (KPAs) were successfully
used by the British to break the German cipher
machine Enigma. Here, so called cribs”, parts
of known plaintext, were used in so-called Turing
bombs to find configurations (keys) to finally deci-
pher Enigma-encrypted ciphertexts. Today, mod-

ern cryptographic algorithms have to resist against
both, ciphertext-only and known-plaintext attacks.

As machine learning and more specifically deep
learning have made rapid advancements over the
last years, the question arises if that technology
can also be applied to cryptanalysis of classical
and historic ciphers. (Greydanus, 2017) shows
that recurrent neural networks are able to learn the
decryption function of several substitution ciphers.
For some of them, neural networks can support
known-plaintext attacks, at least when short keys
were used. Although there are several works fo-
cusing on substitution ciphers, there is only little
research on applying deep learning for cryptanal-
ysis of transposition ciphers.

The goal of this paper is to determine how mod-
ern deep learning architectures can assist in exe-
cuting known-plaintext attacks on a transposition
cipher. For testing and creating of a first proto-
type we started our initial research in this area
by applying well-known deep learning algorithms
on the complete columnar transposition cipher (all
rows of the encryption rectangle have the same
length (Lasry et al., 2016)). While we are fully
aware that breaking a complete columnar trans-
position cipher in a known-plaintext scenario is
a rather trivial problem, it serves as an ideal start
for evaluating different machine learning methods
for their suitability for attacking transposition ci-
phers. Our ongoing research and our here pre-
sented preliminary results will later be used to de-
velop extended methods for attacking the incom-
plete columnar transposition, which is the much
more difficult case. Furthermore, the presented
research here builds the basis for attacking other
classical and historical ciphers using deep learn-
ing techniques in planned future work.

The rest of this paper is structured as follows:
Section 2 discusses the state-of-the-art of deep
learning architectures for sequential data and its
usage for cryptanalysis of classical and historic ci-

phers. Also, we present previous works relating to
the columnar transposition cipher. Section 3 de-
scribes all steps of our proposed algorithm in de-
tail. Section 4 summarizes our evaluation results,
and Section 5 concludes this paper.

2 State of the Art and Related Work

Deep learning is a subdomain of artificial intel-
ligence and more specifically of machine learn-
ing that focuses on the study of “deep” models
(a model is the output of a training with a ma-
chine learning algorithm). Although the term is
widely used, there is no consensus on what depth
a model exactly requires to qualify as “deep”
(Goodfellow et al., 2016). A recurrent neural
network (RNN) is a neural network architecture
used in deep learning for sequential data (Le-
Cun et al., 2015). The term sequential data de-
scribes data where data points depend on other
data points. An example would be a sentence
where one word (= one data point) semantically
depends on the surrounding words. (Hochreiter
and Schmidhuber, 1997) introduce an improve-
ment of vanilla RNN called long short-term mem-
ory (LSTM), that is able to learn faster and handle
longer sequences. In (Cho et al., 2014), gated re-
current units (GRU) are proposed that, although
similar to LSTM, require less parameters and are
hence easier to compute. While newer attention-
based architectures like Transformer (Vaswani et
al., 2017) have success in many tasks involving
sequential data, LSTM- as well as GRU-based
RNN are still widely used. Furthermore, a com-
bination of LSTM and GRU can outperform stan-
dalone LSTM and GRU networks on certain tasks,
for example, (Ni and Cao, 2020) successfully ap-
ply that approach to sentiment analysis and (Is-
lam and Hossain, 2021) predict exchange currency
rates using a combined approach.

In recent years, deep learning approaches have
been used for several tasks related to historic cryp-
tography. (Greydanus, 2017) demonstrates that a
single LSTM cell can learn the decryption func-
tion of the three polyalphabetic ciphers Vigenere,
Autokey-Vigenere and Enigma. Furthermore, the
author shows that RNN are able to perform ba-
sic known-plaintext attacks at least on Vigenere
and Autokey-Vigenere ciphers, where accuracies
exceeding 99% (Vigenere) and 95% (Autokey-
Vigenere) have been achieved for keys ranging
from 1 to 6 characters. (Focardi and Luccio, 2018)

use neural networks for ciphertext-only attacks on
simple classical ciphers (Caesar and Vigenere),
while (Aldarrab and May, 2021) propose a mul-
tilingual Transformer model for decipherment of
simple substitution ciphers. Deep learning ap-
proaches have also shown promising results in ci-
pher type identification of classical ciphers based
on feature engineering (Leierzopf et al., 2021a)
as well as on feature learning (Leierzopf et al.,
2021b).

When it comes to non-machine-learning-based
attacks on columnar transposition, (Lasry et al.,
2016) present a method based on two-staged hill
climbing allowing the recovery of keys up to the
length of 1 000 elements. This is the currently best
known algorithm for attacking complete as well as
incomplete columnar transposition ciphers.

3 Our Method

Our proposed method has several processing steps
beside to the trained neural networks. A summary
of the algorithm can be seen in Figure 1.

3.1 Problem Setup

We consider the encryption function ¢ = Enc(m, k)
of a columnar transposition cipher! where c is the
ciphertext resulting of the encryption of plaintext
m with key k. As currently only complete colum-
nar transposition is supported, len(k) is a proper
divisor of len(m). The objective of neural net-
work training now is to approximate a function
f(c,m) =k, where f is in fact a known-plaintext
attack. It should be noted that in columnar trans-
position alphabetical keys just act as kind of a
mnemonic for the actual numerical key. For exam-
ple, the key BLUE would evaluate to the numeri-
cal key [1,3.,4,2], but so does DIME. As there are
many alphabetical keys that can be mapped to that
numerical key, it is impossible for a neural net-
work to predict the exact alphabetical key. How-
ever, this is not a problem as only the numerical
key is important for encryption.

3.2 Data Preparation

In a first attempt, an end-to-end network was im-
plemented, where the whole plaintext concate-
nated with the ciphertext would act as an input
to the neural network, but experiments showed
that even short keys up to the length of 9 char-
acters were not predicted reliably (accuracy was

Ioperation mode was write by rows, read by columns

External

Key k

Plaintext m

I

Ciphertext ¢

!

Key Set

Prediction with '
Data Preparation RNN for Key Key Candidate 2 Error Correction Scoring Key Cg’l‘i’g:‘e 2+
Length 2

Final Key

Key Length
Check

Prediction with i
Data Preparation RNN for Key Key Candidate 20 Error Correction Scoring Key Ciagg;:te 0
Length 20

[Key Selection J—T

Figure 1: Flowchart of our algorithm. Key length check determines possible key lengths and for each of
those one prediction iteration is executed. Finally, the key with the highest score is selected out of the

proposed key set.

only 65%). Additionally, it became increasingly
difficult for the model to predict correct keys with
increasing plain- and ciphertext lengths. As a re-
sult, we focused on slicing the plain- and the ci-
phertext into blocks of equal length [/, where [
corresponds to the key length. Row x of the al-
ready resorted encryption rectangle is just a per-
mutation of the x'* [-characters long substring of
m effectively leading to M permutation pairs
of plaintext-substrings and encryption rows. All
these pairs share the same key for transposing
the plaintext-substring into the ciphertext part and
hence key prediction can be done on all of them.
Figure 2 shows a simple example with an encryp-
tion rectangle for m = MYSECRETTEXT and &
= BLUE ([1,3,4,2]). The resulting ciphertext ¢
is MCTETTYRESEX. According to the described
slicing method the three pairs [MYSE, MEYS],
[CRET, CTRE] and [TEXT, TTEX] are used for
key prediction. Finally, before feeding this set of
pairs into the neural network, character-wise one-
hot encoding is applied and both vector sequences
are concatenated. For each time step ¢ the input
vector represents a concatenation of the charac-
ter at position ¢ of the plaintext-substring and the
character at position ¢ of the corresponding en-
cryption row part.

3.3 Neural Networks

This section describes the details of the deep learn-
ing part of the algorithm.

Architecture Empirical evaluations of several
architectures suitable for handling sequential data
showed that a bidirectional GRU-LSTM-RNN

B|l|L|U|E B‘E‘L‘U
M| E Y]|s
_>

C|/R|E]|T C|IT|R|E

T|E|X|T TIT|E|X

Figure 2: Shown above is an example of an en-
cryption rectangle described in Section 3.2. The
pair [MYSE, MEYS] is colored (blue = plaintext
part of the pair, orange = ciphertext part) as this
pair is used as an example input in Figure 3 and
the colors should make it more clear how the input
was created.

achieved the best accuracy with relative few
required training samples. Other approaches
tested were standalone (stacked) LSTM, stan-
dalone (stacked) GRU, encoder-decoder architec-
tures with and without attention and Transformer,
but all of those resulted in less accuracy and/or
more required samples. Figure 3 shows the struc-
ture of our used model including a four time step
long data example (the arrows show the flow of in-
formation). Additionally, Listing 1 shows the used
Keras code, providing details of the employed ar-
chitecture.

Training Data For training we generated
datasets of 2 million samples of randomly
generated plaintexts and keys. All characters
were drawn from uppercase Latin alphabet with
uniform probability. Corresponding ciphertexts
were created by encrypting the plaintext with the
key. Length of plaintext (and thus ciphertext) was
always equal to key length [as a model’s objective

Listing 1: Used network (in this case for the model for 20 character long keys).

number of units
model = Sequential ()

model . add (Input(shape=(20,54)))
model .
model .
model .
model .

of GRU, LSTM and Dense depends on key length

add(Bidirectional (GRU(units=4096,return_sequences=True)))
add(Bidirectional (LSTM(units =4096,return_sequences=True)))
add (Dense (20, activation="softmax "))
compile(loss="categorical _crossentropy”,

optimizer=Adam(learning_rate =0.005),

metrics=["accuracy ”])

1 3 4 2
[Fully—connected layer Fully-connected layer Fully-connected layer Fully-connected Iayer]
f 1 ¢\ f
< < < le——
b — < < —
Bidirectional LSTM [~ Bidirectional LSTM [~ Bidirectional LSTM Bidirectional LSTM
— > '€ > >
—> > P, > Y, > —>
— —— T T
< < < < <
Bidirectional GRU Bidirectional GRU Bidirectional GRU Bidirectional GRU
—> > > > —>
M Y S E
t=1 t=2 t=3 t=4

Figure 3: Architecture of used RNN including a four time step long example from Figure 2. Blue letters
correspond to the same color plaintext substring in Figure 2, orange letters to the marked ciphertext

characters.

is to predict keys on the string pairs described in
Section 3.2 and not on a whole plain-/ciphertext
combination. Training on sequences of characters
randomly drawn from a uniform distribution has
the advantage that resulting models cannot learn
some kind of a language model and hence work
regardless of the language used in the plaintext
(as long as the used language is based on the
Latin alphabet). The models therefore have to
focus solely on learning the KPA function. If
instead real-world text samples with their highly
skewed frequency distributions were used, it
could not be ruled out that the models additionally
learned the statistical distributions of the used
language, instead of merely the KPA function.
It is important for the chosen approach, that
the objective of our work is to analyze if it is
technically possible that neural networks learn the
KPA function of columnar transposition itself.
As unwanted behavior could distort our results,
the possibility of such has to be ruled out. This
should make the result more robust, but on the
other hand, this requirement gives away some

information which was used in classical attack
scenarios like in (Lasry et al., 2016).

Hyperparameters Unit sizes of GRU and
LSTM cells were always equal but varied depend-
ing on key length [(2 </ < 4: 512 units, 4 </ < 6:
1 024 units, 6 <[< 10: 2 048 units and for
[> 10: 4 096 units). In general it is advisable to
keep unit size as low as possible as this decreases
training time, memory consumption and storage
space?, but if a unit size is too small the model
does not converge. In training we employ mini-
batch stochastic gradient descent with a batch size
of 100 and Adam, which is a very commonly used
optimization algorithm, with a learning rate 1 of
1-1073. Categorical cross entropy is chosen as
loss function.

Models Trials of a single universal model sup-
porting all key lengths from 2 to 20 characters
first showed promising results (accuracy was at
ca. 78%), but upon closer examination it became

2512 units need 96.6 MB, 1 024 units 382 MB, 2 048

units 1.52 GB and 4 096 units 6.06 GB disk space to store
the weights.

Model | Accuracy Model | Accuracy
2 92.83% 12 82.58%
3 96.07% 13 80.27%
4 90.40% 14 79.711%
5 91.40% 15 78.01%
6 90.03% 16 76.20%
7 89.55% 17 74.68%
8 87.67% 18 74.76%
9 86.40% 19 72.32%
10 84.60% 20 70.53%
11 82.88%

Table 1: Individual evaluations of models. The
number on the left corresponds to the key length
supported by the respective model.

clear that only key predictions of shorter keys were
good enough for using them in our algorithm. The
longer the key became, the worse was the predic-
tion and hence we switched to key-length-specific
models. Even though individual per model eval-
uations® show that accuracy still is decreasing for
longer keys (see Table 1), final evaluations of the
whole algorithm (see Section 4) proof that predic-
tions are reliable enough for the following post-
processing steps to calculate the correct key with
high probability. Another drawback of a universal
model for all key lengths is that it is not as eas-
ily extensible. If support for longer keys should
be added, the universal model has to be retrained
from scratch, while with specific models further
models can be added at any time. In total, the
algorithm in its current state employs 19 specific
models, which requires about 74 GB disk space
to store the weights. All models were trained on
three Nvidia A100 40 GB GPUs resulting in train-
ing times of up to three hours per model.

Inference In deep learning, inference describes
using a trained model to make predictions on live
data. In inference, prediction is done on CPU so
that the models are loaded into main memory in-
stead of GPU VRAM. This is necessary as there
is usually not enough VRAM to accommodate all
models. For every string pair of the set provided
by the data preparation step the model for the cur-

rent key length makes one key prediction which
leads to M key proposals. For example, the

3For each model the evaluation was done with 1500 sam-
ples of corresponding length. The samples were created
with the same method that was used for creating the training
datasets mentioned in the paragraph “Training Data”.

plain- and ciphertext from Figure 2 would lead to
three key proposals. This set of proposals is then
further processed in the following post-processing
steps.

3.4 Majority Decision

To compress the set of key proposals for a particu-
lar key length into one key candidate, a column-
wise majority decision is applied. Due to the
possible multiple occurrences of a character in a
plaintext-substring, it is often the case that there
are multiple fitting keys. The longer the plain-
/ciphertext becomes, the smaller is the number of
those possible keys as more rows become avail-
able to the majority decision which means that di-
vergent integers of single rows can be corrected
better. Evaluations have shown that this proce-
dure significantly improves the probability of get-
ting the correct key (see Section 4 for details). An
exception is the case where only one key proposal
is returned by the neural network (which happens
when the length of m equals /). In such a case there
is no need for compressing multiple key proposals
into one key and the majority decision is skipped.

3.5 Error Correction

As a result of the majority decision predicted key,
integers may occur multiple times which engen-
ders invalid keys. To correct such errors an er-
ror correction mechanism (ECM) has been intro-
duced. It works as follows:

1. As for every multiple occurrence of an inte-
ger another one has to be missing, create an
internal list with all error-causing and miss-
ing integers.

2. Distribute the elements of that list across
positions where multiple occurring integers
were found. The result is a valid key.

3. Calculate the ciphertext similarity score
(CSS) for that key (see Section 3.6). If score
is 1.0, return the found key, otherwise try a
permutation of the list, and start again at step
2.

If no correct key with a CSS of 1.0 is found, the
key with highest CSS is returned.

ECM is able to correct up to € errors (i.e. miss-
ing integers). If more errors occur, the key candi-
date is considered to be predicted incorrectly. The
choice of € decides how many permutations are

tried and hence is a decisive factor in algorithm
runtime. At worst the evaluation of key candidates
requires O(€!) time, possibly making a single key
prediction very slow if € is too high. At the same
time a rather big € increases the chance of finding
a key with a CSS of 1.0. We found that a value of
5 is a good trade-off between speed and accuracy.

3.6 Ciphertext Similarity Score

As mentioned above, a metric for estimating key
quality is needed for selecting the best fitting key
in ECM. Additionally, this selection also applies to
the end of the algorithm when multiple key lengths
are possible for a given plaintext m. We propose
a simple score called ciphertext similarity score
(CSS) that is calculated for a key candidate k ac-
cording to the following equations:

¢=E (1)

if c; =¢;
match(c;, é;) 2)

0 otherwise
me](match(c;, é;)
len(c)

In Equation 1 the key candidate is used for en-
crypting the plaintext m which results in an al-
ternative ciphertext . ¢ and ¢ are then com-
pared character-wise for equal characters (Equa-
tions 2 and 3). Finally, the number of equal char-
acters is divided by the length of ¢ resulting in a
ratio of how many positions match between ¢ and
¢ (Equation 3). A CSS of 1.0 means that ¢ and
¢ are completely the same which indicates that a
correct key has been found. Even if CSS is high
but below 1.0, the key candidate might be useful
for the cryptanalyst as a manual transposition of a
few columns could be enough to produce the right
key.

The concept of CSS is directly related to the
Hamming distance (Hamming, 1950), which is de-
fined as

CSS(c,é) = 3)

len(c)
Hamming(c,¢) = (1 —match(ci,¢;)). (4)

i

l
_

The more characters that do not match, the big-
ger the Hamming distance becomes, which is why
a Hamming distance of 0 means that a correct key
has been found. We chose CSS over Hamming
distance because it can also be interpreted as a per-
centage, which makes interpretation of the metric

easier. Nonetheless, CSS can easily be converted
to Hamming distance:

Hamming = len(c) —len(c) - CSS. 5)

3.7 Handling Unknown Key Lengths

Beginning with the first step of the algorithm,
the data preparation, the unknown key length is
needed. We experimented with a two-staged ap-
proach where an additional neural network is used
to predict the key length, but only 60% accuracy,
even with a limited key length range of up to 12
characters, was too low to support the remaining
algorithm. Consequently, key lengths are tried ex-
haustively, although some lengths can be skipped
as only complete columnar transposition is sup-
ported at the moment. All key lengths that are not
proper divisors of len(m) can be skipped which
speeds up key prediction.

To sum up, a concatenation of a plaintext m
and a ciphertext ¢ acts as the input for our al-
gorithm. Depending on len(m) the steps of Sec-
tions 3.2 to 3.6 are repeated for every possible key
length. The output of each iteration is a single key
candidate with an associated CSS. Out of these
candidates the key with the highest CSS is selected
as the final result of the KPA.

4 Evaluation

Five evaluations with different plain- and cipher-
text lengths were conducted for each supported
key length (2 to 20 characters) using the whole
proposed algorithm. In every iteration the length
of the plain- and ciphertext was increased by key
length / resulting in text lengths of / to 5-1. As
every increase of / characters means an additional
row for the majority decision we therefore tested
the algorithm with inputs ranging from 1 to 5 input
pairs. Every evaluation dataset consisted of 100
samples with randomly generated plaintexts and
keys, the corresponding ciphertexts were again
created by encrypting the plaintexts with the keys.
The advantage of individual datasets for each key
length in comparison to one big mixed dataset is
that it allows us to monitor the algorithm’s perfor-
mance in more detail. As a result, the influence of
longer keys on the algorithm becomes well visible.

As a target metric we again used CSS, but be-
cause scores slightly below 1.0 can also indicate
key proposals where only small manual changes
can lead to the correct key, we introduce three key

Kevl h 1row 2 rows 3 rows 4 rows 5 rows

eylengt Perfect | Good | Accept. | Perfect | Good | Accept. | Perfect | Good | Accept. | Perfect | Goodl Accept. | Perfect | Goodl Accept.
2 96% 96% 96%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%
3 70% 70% 70%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%
4 94% 94% 94%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%
5 98% 98% 98%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%
6 100% 100% 100%| 100% 100% 100%| 100% 100% 100% 99% 99% 100%| 100% 100% 100%
7 100% 100% 100%| 100% 100% 100% 99% 100% 100% 99% 99% 100%| 100% 100% 100%
8 100% 100% 100% 99% 99% 100%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%
9 100% 100% 100% 99% 99% 100% 97% 99% 100% 97% 97% 100%| 100% 100% 100%
10 100% 100% 100% 95% 98% 100% 9% 97% 100%| 100% 100% 100%| 100% 100% 100%)
11 100% 100% 100% 65% 95% 98% 94% 96% 100% 99% 99% 100% 99% 99% 100%
12 100% 100% 100%| 62% 93% 99%| 91% 94% 100%| 99% 100% 100%| 99% 100% 100%
13 100% 100% 100%| 68% 93% 99%| 88% 91% 100%| 97% 100% 100%| 100% 100% 100%
14 99% 99% 100%| 44% 86% 99%| 90% 99% 100%| 97% 99% 100%| 100% 100% 100%
15 100% 100% 100%| 51% 90% 99%| 89% 100% 100%| 96% 100% 100%| 100% 100% 100%
16 100% 100% 100%| 40% 87% 98%| 89% 99% 100%| 94% 99% 100%| 100% 100% 100%
17 96% 96% 96% 52% 87% 97% 77% 99% 100% 92% 100% 100% 98% 100% 100%)
18 98% 98% 98% 31% 74% 97% 74% 99% 100% 89% 98% 100% 97% 100% 100%)
19 95% 95% 95% 29% 61% 95% 75% 95% 99% 85% 100% 100% 97% 100% 100%)
20 83% 87% 87%| 23% 71% 85%| 75% 95% 98%| 90% 99% 100%] 96% 100% 100%

Table 2: Results of evaluations with ciphertext similarity score (CSS)

Kevl h 1 row 2 rows 3 rows 4 rows 5 rows

eylengt Perfect | Good | Accept. | Perfect | Good | Accept. | Perfect | Good | Accept. | Perfect | Good| Accept. | Perfect | Good | Accept.
2 95% 95% 95% 97% 97% 97%| 100% 100% 100% 98% 98% 98%| 100% 100% 100%
3 65% 65% 65% 63% 63% 63% 69% 69% 69%) 66% 66% 66% 66% 66% 66%
4 79% 79% 79% 95% 95% 95% 99% 99% 99%| 100% 100% 100%| 100% 100% 100%
5 82% 82% 82% 90% 90% 90%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%
6 67% 67% 67% 85% 85% 85% 99% 99% 99% 99% 99% 99%| 100% 100% 100%
7 59% 59% 59% 85% 85% 85% 99% 99% 99% 99% 99% 99%| 100% 100% 100%
8 56% 56% 56% 82% 82% 82%| 100% 100% 100%| 100% 100% 100%| 100% 100% 100%
9 57% 57% 57% 69% 69% 69% 97% 97% 97% 97% 97% 97%| 100% 100% 100%
10 41% 41% 83% 70% 70% 78% 96% 96% 99%| 100% 100% 100%| 100% 100% 100%
11 33% 33% 71% 64% 64% 95% 94% 94% 100% 99% 99% 100% 99% 99% 100%
12 30% 30% 75% 58% 58% 93% 91% 91% 100% 99% 99% 100% 99% 99% 100%
13 20% 20% 63% 62% 62% 92% 88% 88% 99% 97% 97% 100%| 100% 100% 100%
14 22% 22% 51% 42% 42% 83% 90% 90% 99% 97% 97% 100%| 100% 100% 100%
15 8% 8% 41% 48% 48% 88% 89% 89% 100% 9% 96% 100%| 100% 100% 100%
16 10% 10% 35% 37% 37% 83% 88% 88% 99% 94% 94% 99%| 100% 100% 100%
17 7% 7% 26% 44% 44% 84% 77% 77% 99% 92% 92% 100% 98% 98% 100%
18 6% 6% 30% 26% 26% 72% 74% 74% 99% 89% 89% 98% 97% 97% 100%
19 1% 1% 21% 27% 27% 57% 75% 75% 95% 85% 85% 100% 97% 97% 100%
20 2% 11% 28% 20% 48% 74% 75% 95% 98% 90% 99% 100% 96% 100% 100%)

Table 3: Results of evaluations with key similarity score (KSS)

quality categories:
e Perfect: Score = 1.0
¢ Good: Score > 0.9
* Acceptable: Score > 0.8

Table 2 shows the results of the evaluation. It
can be seen clearly that with increasing key length,
2 rows become too few to reliably predict a correct
(“perfect”) key. This is not surprising as there can
be no majority decision based on two values. If
only one row is added, the number of predicted
keys with CSS 1.0 increases significantly. In gen-
eral, with increasing plain- and ciphertext lengths,

the algorithm works better. For example, when 5
rows are provided, probability for predictions with
aCSS of 1.0 is at least 96%, even for long keys like
20-character long ones.

In the case where the ciphertext had the same
size as the used key (columns “1 row”) there
were some unexpected results. Partially (mainly
for short keys) having higher perfect values than
plain- and ciphertexts of four times the length, we
hypothesized that for such short plain-/ciphertext-
combinations there are multiple fitting keys thus
the transposition is not unique. To test this, we in-
troduced another metric called key similarity score
(KSS). This score is virtually the same as CSS,

only that this time not two ciphertexts are com-
pared for similarity, but the predicted and the real
key. KSS therefore measures how many positions
of the predicted key match with the key that was
used for creating the ciphertext. To illustrate the
difference between CSS and KSS, we consider m
= HELL and ¢ = EHLL. The originally used key
is k =[2,1,4,3] . When the algorithm predicts the
also suitable key k= [2,1,3.4], CSS is 1.0 although
it is not the original key. However, KSS is as low
as 0.5 as only half of the key integers match bet-
ween k and k. The evaluation described above
was repeated with this new metric and then results
were compared (see Table 3). For reasons of effi-
ciency, the three categories remained the same, but
the perfect classification was of special interest for
this experiment. The idea was that if fewer key
predictions with score 1.0 occur with KSS than
with CSS, there have to be multiple fitting keys.
The comparison of Table 2 and Table 3 clearly
shows that with increasing key length only a de-
creasing fraction of the predicted keys with score
1.0 equals to the actually used keys, which con-
firms our hypothesis of multiple fitting keys.

5 Conclusion

This paper proposes a deep-learning-based algo-
rithm for known-plaintext attacks on complete
columnar transposition. Using a GRU-LSTM-
hybrid architecture and additional post-processing
steps, we achieved a high accuracy of at least 96%
in predicting keys up to the length of 20 characters
when plain-/ciphertexts of length 5 -/, where [is
the used key length, are given. For shorter plain-
/ciphertexts the accuracy is lower, but even then,
predicted keys, if at all, suffer from few mistakes
in the predicted key that can be corrected by an
experienced cryptanalyst. To take full advantage
of all capabilities of our algorithm, the provided
plain-/ciphertext length should be at least 3 -/ as
this results in the minimum of required rows to
make a majority decision.

Currently our prototype is limited to a max-
imum key length of 20 characters, but the al-
gorithm itself is easily extensible as only more
trained models have to be added to cover longer
keys. Capabilities of current RNN architectures
are the only limiting factor when it comes to key
length. We have also tested our architecture for
keys of size 25, but accuracy was too poor for us-
ing the predictions for the further algorithm. In

future work it should be evaluated if it is pos-
sible to tweak the GRU-LSTM-hybrid architec-
ture so that it can also be applied to 20+-character
long keys or if an even better architecture can be
used. Advancements in deep learning have been
tremendous over the last years, so we think that it
is not unlikely that with more powerful networks
and hardware our approach can be extended to far
longer keys in the years to come. The main draw-
back of loading more models into the algorithm
is that memory requirements increase even more.
This could be avoided if the key length predictor
mentioned in Section 3.7 can be refined so that it
achieves very high accuracy. Almost perfect accu-
racy is critical in such a multi-staged approach as
a mistake in the first stage renders the rest of the
algorithm useless.

This evaluation worked only with random plain-
text. Using normal text from different languages
would train models for real-world examples. It
would be interesting how much this improves the
accuracy. Another constraint is the limitation on
complete columnar transposition. Further work
should aim to overcome this limitation to make
the algorithm more applicable in real-world text
samples which are encrypted using the incomplete
columnar transposition cipher.

Acknowledgments

This work has been supported by the Swedish Re-
search Council (grant 2018-06074, DECRYPT -
Decryption of historical manuscripts) and the Uni-
versity of Applied Sciences Upper Austria for pro-
viding access to a Nvidia DGX A100 server.

References

Nada Aldarrab and Jonathan May. 2021. Can
Sequence-to-Sequence Models Crack Substitution
Ciphers? arXiv preprint arXiv:2012.15229.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations Using RNN Encoder-
Decoder for Statistical Machine Translation. arXiv
preprint arXiv:1406.1078.

Riccardo Focardi and Flaminia L. Luccio. 2018. Neu-
ral Cryptanalysis of Classical Ciphers. In ICTCS.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT press.

Sam Greydanus. 2017. Learning the Enigma
with Recurrent Neural Networks. arXiv preprint
arXiv:1708.07576.

Richard W. Hamming. 1950. Error detecting and error
correcting codes. The Bell System Technical Jour-
nal, 29(2):147-160.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long Short-Term Memory. Neural computation,
9(8):1735-1780.

Md Saiful Islam and Emam Hossain. 2021. Foreign
Exchange Currency Rate Prediction Using a GRU-
LSTM Hybrid Network. Soft Computing Letters,
3:100009.

George Lasry, Nils Kopal, and Arno Wacker. 2016.
Cryptanalysis of columnar transposition cipher with
long keys. Cryptologia, 40(4):374-398.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep Learning. nature, 521(7553):436-444.

Ernst Leierzopf, Nils Kopal, Bernhard Esslinger, Har-
ald Lampesberger, and Eckehard Hermann. 2021a.

A Massive Machine-Learning Approach for Clas-
sical Cipher Type Detection Using Feature Engi-
neering. In International Conference on Historical
Cryptology, pages 111-120.

Ernst Leierzopf, Vasily Mikhalev, Nils Kopal, Bern-
hard Esslinger, Harald Lampesberger, and Eckehard
Hermann. 2021b. Detection of Classical Cipher
Types with Feature-Learning Approaches. In Aus-
tralasian Conference on Data Mining, pages 152—
164. Springer.

Thomas Mahon and James Gillogly. 2008. Decoding
the IRA. Mercier Press Ltd.

Ru Ni and Huan Cao. 2020. Sentiment Analysis Based
on GloVe and LSTM-GRU. In 2020 39th Chi-
nese Control Conference (CCC), pages 7492—7497.
IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Advances in Neural Information Pro-
cessing Systems, pages 5998—6008.

