Evaluating Deep Learning Techniques for Known-Plaintext Attacks on the Complete Columnar Transposition Cipher
DOI:
https://doi.org/10.3384/ecp188394Keywords:
Deep Learning, Machine Learning, Deep Neural Networks, Recurrent Neural Networks, Columnar Transposition, Transposition Cipher, Known-Plaintext AttackAbstract
This paper examines whether deep neural networks (DNN) can learn knownplaintext attacks on plaintext-ciphertextpairs, that were created by encrypting with complete columnar transposition. We propose a new algorithm that extends pure DNN-based prediction with additional post-processing steps to further enhance key prediction quality. Our approach is easily extensible and currently supports key lengths from 2 to 20 characters. Each key length has been empirically evaluated with plain-/ciphertextpairs of different lengths. For plain- and ciphertexts with a length of five times the key length, our algorithm achieves a success rate of 96% which is, to the best of our knowledge, a new state of the art on deep-learning-based known-plaintext attacks against columnar transposition.Downloads
Published
2022-06-09
Issue
Section
Contents
License
Copyright (c) 2022 Nino Fürthauer, Vasily Mikhalev, Nils Kopal, Bernhard Esslinger, Harald Lampesberger, Eckehard Hermann
This work is licensed under a Creative Commons Attribution 4.0 International License.