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Preface

I am happy to present the Proceedings of this 2nd International Conference on Historical Cryp-
tology (HistoCrypt 2019) in the Mundaneum in Mons, Belgium.

HISTOCRYPT addresses all aspects of historical cryptology/cryptography including work in
closely related disciplines (such as history, history of ideas, computer science, AI, computational
linguistics, linguistics, or image processing) with relevance to historical ciphertexts and codes.
The subjects of the conference include, but are not limited to the use of cryptography in mili-
tary, diplomacy, business, and other areas, analysis of historical ciphers with the help of modern
computerized methods, unsolved historical cryptograms, the Enigma and other encryption ma-
chines, the history of modern (computer-based) cryptography, linguistic aspects of cryptology,
the influence of cryptography on the course of history, or teaching and promoting cryptology
in schools, universities, and the public. HISTOCRYPT represents a continuation of the friendly
events of European Historical Ciphers Colloquiums (EuroHCC) held in Heusenstamm (2012),
Kassel (2016), and Smolenice (2017) to discuss on-going research in historical cryptology in
Europe. Considering EuroHCC’s growing popularity among the crypto-historians and cryptog-
raphers and the established HICRYPT network on historical cryptology with over 100 members
from 20 countries around the world, our aim is to establish as an annual, world-wide event. The
first HISTOCRYPT in the series was organized in 2018 in Uppsala, Sweden. The second event
in the series takes place in 2019 at Mundaneum in Mons, Belgium.

The conference topics include:

• the use of cryptography in military, diplomacy, business, and other areas,

• analysis of historical ciphers with the help of modern computerized methods,

• unsolved historical cryptograms such as the Voynich manuscript,

• the Enigma and other encryption machines,

• the history of modern (computer-based) cryptography,

• linguistic aspects of cryptography,

• the influence of cryptography on the course of history,

• teaching and promoting cryptography in schools, universities, and the public.

The Program Committee has selected 23 papers out of 25 submissions for presentation (13
in the research track, 6 in the exposition track and 4 as poster/demo). Three papers accepted
were later withdrawn by the authors. Papers accepted for the research track are collected in
these Proceedings.

I would like to thank the Program Committee, Steering Committee and Local Organizers
for their hard work in establishing HISTOCRYPT 2019. Their dedication and invaluable input is
highly appreciated. The thanks also goes to all the reviewers, subreviewers, keynote speakers
and all authors without whom this conference would not have taken place.

Klaus Schmeh (Program Chair)
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Crypto Books

• Mauran Philippe:
Cyphers and Shadow Diplomacy in England During 17th Century: Prince of Condé Look-
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Hieronimo di Franceschi and Pietro Partenio:
Two Unknown Venetian Cryptologists

Paolo Bonavoglia
Former teacher of Mathematics and Computer Science

Mathesis Venezia c/o Convitto ”Marco Foscarini” Venezia
paolo.bonavoglia@liceofoscarini.it

Abstract

In 1596 the powerful Council of Ten, the
secret service of the Republic of Venice,
sent a message to the new Baylo in Con-
stantinople, warning him to use, for or-
dinary messages which needed to be en-
crypted, Pietro Partenio’s cipher, but for
questions of extraordinary importance to
use the Zifra delle caselle1 cipher invented
by Hieronimo di Franceschi. But who
were Partenio and Franceschi?
This paper is the report of the first re-
sults of a research in the State Archive of
Venice about these two unknown cryptol-
ogists, still in progress.

1 Two unknown cryptologists

Hieronimo2 di Franceschi, Pietro Partenio, who
were they?

If one searches the web with Google3 for these
names the result is a long list of results having
nothing to do with cryptology.

And still the State Archive of Venice has plenty
of documents about them, dispersed in several
funds and envelopes. And there is plenty of docu-
ments having to do with Franceschi and Partenio.

Let us start with a 1596 letter.
1The word zifra or ziffra is used in the XVI century for

cipher; beginning at the end of that century, cifra replaces
more and more zifra

2Hieronimo is a very common name in the XVI century;
towards the end of the century the Italian form Gerolamo or
Girolamo takes over.

3Google is today the most powerful tool for fast searches,
very useful also for serious researches, most notably Google
Books gives access to a huge library of old books otherwise
hard to find; so a Google negative result is meaningful. Of
course I had searched also the indexes of the most authorita-
tive cryptology books like (Kahn, 1967), (Bauer, 1997), and
the archives of Cryptologia, with the same negative result.
As far as I know Franceschi’s and Partenio’s names are men-
tioned in passing and without details only in (Pasini, 1872),
and (Preto, 1994). So the use of the adjective unknown seems
appropriate.

2 Two statements of the Council of Ten

Inside the archive there is an interesting letter.
dated 30 August 1596, written by the Chiefs of the
Council of Ten, 4 to the new baylo of Constantino-
ple.

The text translated into English is:

We recommend with the Chiefs of
the Council of X, that when it is neces-
sary to write in cipher you continue us-
ing the ordinary cipher, but, when treat-
ing affairs of extraordinary importance,
you will use the [Ziffra delle caselle] of
the cautious and most loyal secretary of
the Senate Hieronimo di Franceschi, ab-
staining from using those of the most
loyal Pietro Partenio, up to our new or-
der.

The message is signed by Piero Lando, and two
of the chiefs of CCX. Here Franceschi’s cipher is
seen ad better than Partenio’s.

But, as we will see in the following, in 1593
another document of CCX had stated just the con-
trary.

Now we will examine some of these ciphers of
Franceschi and Partenio. The most surprising as-
pect is that both of them used super-encryption as
a method to enforce security. But first I will give a
short description of a typical Venetian code.

3 A XVI century Venetian nomenclator

So to begin let us see a typical Venetian nomen-
clator5 used in the second half of the XVI cen-

4The Council of Ten was the secret service of the Repub-
lic of Venice, and was in charge for ciphers; in the follow-
ing I will use the two short forms used in the archive: CX
for Council of Ten; CCX for Chiefs of the Council of Ten;
and ASVE is the common acronym for Archivio di Stato di
Venezia.

5The words ”nomenclator” and ”code” are in some way
synonyms in the cryptographic lexicon; usually a nomencla-
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Figure 1: The zifra granda in the book of ciphers
1578-1587. ASVE Cifre, chiavi e scontri di cifra
... b.4, r.16. For no profit use only

tury. Hundreds of diplomatic messages encoded
this way are stored in the Venetian archives.

A good source is a book of ciphers6 having at
the first page a decree of the CX dated August 18,
1578 and at the last page another CX decree dated
August 26, 1587.

Both decree mention Hieronimo de Franceschi
as the reference person of the CX for ciphers. The
last page mentions a falso scontro (fake key) ci-
pher proposed by Franceschi, to be given to the
baylo of Constantinople for saving the keys even
in the case the Turks should seize the baylo and
his secretary and force them to handle the key. No
technical details are given about this cipher.

At the date of this paper, I couldn’t find any
other trace of this cipher; as we will see below, ci-
phers of the like were designed by Pietro Partenio
in the following years.

The book has many nomenclators approved by
the CX, among them is the Ziffra n. 147 found at
carta 77 of In the following figure we see the lista
per scriuer i.e. the encrypting list: As we see the
nomenclator has different parts:

- An alphabet, here with three homophones for
each letter.

tor is small, typically one or two sheets, while a code is larger,
a booklet at least; for obvious reasons in this paper I will use
the word nomenclator.

6ASVE, CX Cifra, chiavi e scontri di cifra con studi suc-
cessivi, busta 4, reg. 16. Calligraphy is very similar to that of
Franceschi, so it is very likely that the book was written by
his own hand .

7Copies of this cipher known also as Ziffra Granda, the
big cipher, are found on loose sheets in the Venetian archive

Figure 2: The syllabary of the ziffra granda the
ordered lists are clearly visible.

- An abacus, the ten digits encrypted with one
or more groups.

- A syllabary in group of 5, each with a differ-
ent vowel at the end, for instance ba, be, bi,
bo, bu.

- A dictionary with common words.

Every letter or group is encrypted with a cipher
made of one letter followed by a number of one
or two digits, often written like exponents, for in-
stance letter A is encrypted with three ciphers (ho-
mophones): o18t8u15 the syllable FA is encrypted
with r51, the word Guerra is encrypted with L54

and so on, for about five hundred ciphers. The
heart of this cipher is the syllabary, these signs are
the most used. Here is a more readable table; it
appears a strong regularity, syllable ending with A
always end with 1, syllable in B always end with 2
and so on. This is an obvious weakness, the enemy
will get great help in rebuilding the syllabary. This
cipher was also known as ziffra granda and it was
widely used by ambassadors in European capitals.
For not so important matters a smaller cipher was
used a ziffra piccola (small cipher). An example
in the same book is in figure 2.

This cipher has an alphabet with two homo-
phones for each letter, with the exception of H
who has only a cipher the number 20; the A has
two homophones 16 and 36, B has 13 and 33, C
has 1 and 21, strangely all homophones have a
difference of 20. There is also a small dictionary
of 60 words, all with two digits ciphers, from 40
to 99, for instance con encrypted with 50, Re di
Spagna with 73 and so on.

According to Pasini classification8 this cipher is
8Luigi Pasini, see also footnote 1, was the last archivist

to reorder the papers having to do with cryptography, and
classified ciphers using the cipher for the first letter: A
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Figure 3: The cifra piccola used as the base cipher
by the cifra delle caselle. ASVE CX Cifre, chiavi e
scontri di cifra ... b.4, r.16. For no profit use only

named A 16-36. Many copies of this cipher are
found inside the folders where Pasini collected the
ciphers and key sheets.

But the real importance of this small cipher, will
be seen in the next paragraph; a hint can be read
in the headline of the page. Sono per scriuer su la
grada cioè le caselle = They are for writing on the
grid, that is the boxes.

4 Hieronimo di Franceschi

Very little is known about this cryptologist; his
name is frequently mentioned in the CX papers,
in 1578 he is mentioned in a CX book of ciphers9

as a notary at the Doge’s chancellery; in 1587 he
is mentioned as a secretary of the Venetian Sen-
ate. His name appears in many deeds of the notary
Pietro Partenio between 1577 and 1596, acting as
an attorney for other people, or as a landlord rent-
ing flats. He was the reference person of the CX
for cryptography in those years, known above all
for his cifra delle caselle.
In the first page of the book there are these
Franceschi’s rules for scriuer ben la zifra (to write
well the cipher):

1. Use signs that mean words or syllables as
much as possible.

2. Having to use simple letters, the signs mean-
ing these letters must be changed, and espe-
cially the vowels.

3. When using the superfluous (nulls) put these
nulls in the middle between words, between

9See footnote 6, page 2.

consonants, and the vowels, and especially
behind the Q, behind the S, the T, L, P and
so on

5 The cifra delle caselle

Now let’s talk about this cifra delle caselle one
of the most interesting ciphers found in the State
Archives of Venice. A cipher which was used in
the real world for many years.10

First of all let us see a real message from the
archives, encrypted with the caselle.11

It is well visible the ordered and regular way
the two digits numbers were written down. This
immediately recalls the grids contained in one of
the book of ciphers found in the CCX envelope,
were four different grids are present.

Three grids have 24 columns, while the fourth,
the one for France, for some reason, is thinner hav-
ing only 21 columns.

But what is important is the perfect correspon-
dence between a grid and an encrypted text.

Above each window in the grid there are three
numbers in the range 0..19. What’s the purpose
of these numbers? The answer is in the ziffra pic-
cola seen in the previous chapter, which used num-
bers in the range 1..20 as ciphers. The reason for
those strange homophones differing by 20 is now
clear; it is just an escamotage to realize a modulo
20 arithmetic.12

The plaintext was first encrypted with this small
nomenclator, then the resulting encrypted text was
written inside the dedicated grids, and the grid
number were subtracted to the single ciphers giv-
ing the final cryptogram to be transmitted.

The reverse process of deciphering was just the
opposite, one had to add numbers of the cryp-
togram to those of the grid to recover the nomen-
clator ciphers.

This method of encrypting twice is best known,
as superencryption, a method which came in

10As previously stated, this cipher is mentioned in (Preto,
1994); Preto says only that Franceschi was known as the in-
ventor of this cipher, in fact he is just reporting news found
in the deeds of the CX and CCX archives.

11The complete method was recovered by the au-
thor in December 2018 and a detailed report about the
matter will be published on Cryptologia; The ”Cifra
delle Caselle”, a XVI century superencrypted cipher
(ID: 1609132 DOI:10.1080/01611194.2019.1609132). An
updated report is on the web, starting from page:
http://www.crittologia.eu/storia/cifraCaselle.html [in Italian]

12Modular arithmetic was formalized by Gauss in the XIX
century, so both Franceschi and Partenio had to invent com-
plicate procedures for this purpose,
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Figure 4: On the left a diplomatic message from
the Venetian ambassador in Prague dated 1578-10-
11, encrypted with the cifra delle caselle. On the
right one of the grids used for super-encrypting a
message; this is the one used by the ambassador
in Germany (Holy Roman Empire). ASVE Senato,
dispacci ambasciatori in Germania, f13, c142 and
ASVE CX Cifre, chiavi e scontri di cifra ... b.4. For
no profit use only

common use in the XIX century or immediately
before. So a superencryprion cipher is something
in advance of two centuries! As far as I know is
the oldest of this kind13 .

6 Pietro Partenio

Pietro Partenio was a notary active from 1563 to
1618 according to the register of notary deeds
stored in the Venetian archive.

As stated above there are several Partenio’s
deeds since the 1570s where Hieronimo de
Franceschi is named, a proof that Partenio and
Franceschi knew each other and had professional
links. Partenio is never mentioned in the book of
ciphers 1578-1587, so we can guess he became in-
terested in ciphers in the following years and de-
signed several interesting ones.

We find detailed descriptions of six ciphers in a
fine CCX parchment book (1592-93)14, other ci-
phers on loose sheets and finally a book of ciphers

13Update: the idea of combining two ciphers is rather
simple and goes back to the beginnings of cryptography, if
it is true that the well known Arab cryptologist Al-Kindi
in his IX century book wrote about something like super-
encryption, but gave no details or examples. As far as I know,
Franceschi’s cipher is the first super-encrypted cipher well
documented and used in the diplomatic messages of the real
world.

14ASVE CCX Raccordi 1 1593

Figure 5: The nomenclator of the second cipher.
ASVE CX Cifre, chiavi e scontri di cifra ... b.2,
f.23. For no profit use only

dated 1606 with six ciphers, some of them already
described in the CCX book.

Partenio divides his ciphers into two categories:
1) cifre sospette (suspicious ciphers): the suspi-
cious enemy easily recognizes them as encrypted
messages; 2) cifre di senso corrente (ciphers of
current sense) that is ciphers that produce mes-
sages of common language, a sort of steganogra-
phy. This paper is about the first kind, the second
deserves further research.

7 Partenio’s ciphers

Now we will describe and examine some of these
ciphers, from the 1592/93 CCX book and from the
1606 booklet. Let’s begin with a cipher of the lat-
ter, because it is the most similar to Franceschi’s
caselle.

7.1 Second cipher (1606)

This second cipher of the 1606 booklet is inter-
esting because Partenio explicitly mentions the
Franceschi’s cifra delle caselle boasting the supe-
riority of his own.

The base cipher is a 3-digit nomenclator shown
in the following figure.

The nomenclator is almost totally ordered; there
are exception, the syllables are ordered separately,
as seen in the alphabet and syllabary shown here.

But, of course, the most interesting part is
super-encryption: indeed the method is similar to
Franceschi’s cipher; one had to do a subtraction to
encrypt and an addition to decipher, here using a

6



Figure 6: Alphabet and syllabary of the second
cipher.

modulo 10 arithmetic, instead of the modulo 20 of
Franceschi.

Partenio, seeking as usual a key that could
be memorized without writing, uses a different
method to generate the obscuring sequence of
numbers.

He starts with a verse, from a poetry or other
text, and writes it on three rows. Let’s use his own
example, the verse is:

”Iam in me sperauit liber abacum protega me
um quontam c,” where the final c is a null, used
to fill the three rows schema. The verse has to
be written on three rows, and will be read per
columns:

iaminmesperauit

liberabacumprot

egameumquontamc

Now let us transform these letters in numbers us-
ing this table:

1 2 3 4 5 6 7 8 9 0
a b c d e f g h i l
m n o p q r s t u z

Now every letter of the verse is converted into
the number above, and the numbers are read per
columns forming group of three number to match
the ciphers of the nomenclator.

In this example the sequence is:
ile aig mba iem nre mau ebm ...

905 197 121 931 265 119 521 ...

The super-encrypting procedure is similar to the
caselle. The numbers of the single digits of the
nomenclator’s ciphers are subtracted modulo ten
by the numbers of the key.

For deciphering just do a sum instead of a sub-
traction.

Let us see the example of Partenio:
Ha questa Maestà intendimento con alcuni de cap-
itani in Corfù.
The following table shows the procedure; the first
row has nomenclator ciphers, the second has:

ha questa maestà inte ndi mento con ...
401 796 430 611 559 213 ...
905 197 121 951 265 119 ...
506 609 319 760 394 104 ...

So the cryptogram to send is:
506609319760394104 ...
To decipher just do an addition modulo 10.
Of course Partenio does not use the ”modulo

10” arithmetic, introduced by Gauss in the XIX
century, and has to write two pages of instructions
explaining how to subtract and sum this way.

7.2 A comparison with the caselle

At the end of the instructions Partenio makes a
comparison between his cipher, defined fortissima
(very strong) and quella del Franceschi (the one
of Franceschi), remarking his nomenclator may
reach 1000 among words, syllables and single let-
ters, while Franceschi’s nomenclator had only two
digits and only ”40 or 50 among syllables and
words”15

Partenio makes also an important remark: he is
afraid that secretaries may use his ciphers in a sim-
plified and easier manner, using only the nomen-
clator without the super encrypting tools.

This is exactly what did happen; in the XVII
century the most used ciphers were similar to
Partenio’s, 3-digit ciphers, ordered lists but super-
encryption was forgotten.

7.3 The false sense

Finally Partenio describes a complicate device to
give the cryptogram a false meaning to disguise
the enemy. For this he uses this Latin square of
numbers16 (On the left the original17, on the right
a more readable view):

Suppose you want to add this fake message:
Sarà guerra tra questa m.tà et Re di Polonia

15Indeed Franceschi’s small cipher has 20 letters and 60
words; it does not have syllables.

16Latin square is a square of n×n objects where every ob-
ject appears once and only once on each row and on each col-
umn. Mathematically this the Pythagorean table of a binary
operation that is invertible; the associated algebraic structure
is called quasi-group. For this reason the Latin squares have
been widely used in cryptography beginning with Trithemio,
Vigenère and so on. This one is peculiar being disordered.

17ASVE Cifre, chiavi, scontri di cifra ... busta 3

7



Figure 7: The latin square, original on the left,
more readable on the right. ASVE CX Cifre, chi-
avi e scontri di cifra ... b.2, libro Partenio. For no
profit use only

The first syllable of the fake message is sa; the
nomenclator has 901 as the cipher of it. Now you
apply the binary operation defined by the Latin
square to the digit of the fake text and the corre-
sponding digit of the cryptogram, as in the follow-
ing table,

sa Ra guerra tra questa m.tà et ...
901 801 364 006 796 311 ...
506 609 319 760 394 104 ...
856 855 963 699 515 820 ...

Finally we intercollegiate the numbers of the
true cryptogram with the fake one, so obtaining
the following fake cryptogram:

58056668059539169376690935984518044
Now the secretary receiving this cryptogram
knows that only the odd placed numbers are good
and will easily recover the plaintext.

But, to use Partenio’s example, if the Baylo of
Constantinople or his secretary are forced by the
Turks to deliver ciphers and keys, they will give
them the nomenclator and the Latin square and
these false instructions: take the numbers in pairs,
follow the first number row until you find the sec-
ond and write the column number, group the num-
bers obtained by three and use the nomenclator to
retrieve the normal text. Due to the property of the
Latin square, the Turks will get the false message.
Try it and believe it.18

7.4 Remarks
This is an amazing cipher, undoubtedly. It has
also a pair of weakness: 1) violation of Knockoff’s

18Hint: take the first two numbers 5 and 8, look the 5 row
and find 8 under 9, 9 is the first digit; take 0 and 5 and in the 0
row find 5 under 0, the second digit is 0; take 6 and 6, look 6
row and find 6 under 1, the third digit is 1, so the first cipher
is 901, from the nomenclator you get ”sa”. And so on ...

Figure 8: The nomenclator of Partenio’s third ci-
pher. ASVE Cifre, chiavi e scontri di cifra ... b.2,
f. Partenio. For no profit use only

rule; if the enemy discovers the method, the fake
effect is lost. 2) the nomenclator is too regular, it
is almost a ordered list.

7.5 Third cipher (1592)

The following cipher is the third one of the 1592
CCX register19, and may be considered another
Partenio’s reply to Franceschi’s caselle. Instead
of a grid, we have a paperboard slider as a poly
alphabetic tool.

The base cipher, a nomenclator has about a
thousand signs formed by a letter from a 24 letters
alphabet (Italian with K X Y &) followed bay a
two digits number in the range 1..24. For instance
a is encrypted with A, DA with E12, Il Signor
Turco with K12, Galee with I15.

Let’s see the cipher procedure with the exam-
ple used by Partenio: the message to be encrypted
is. ”Il Signor Turco arma galee”20 . We find k12
as the cipher of ”Il Signor Turco”; now we have
to use a paperboard slider (see following figure)
made of a fixed part (top and bottom in the figure)
and a sliding part (middle in the figure).

We find copies of this strip with instructions in
several parts of the Venetian archive. The one
shown below is pasted on an instruction sheet
found in the Venetian Archives.

here is a more readable presentation:

We start with the slider in the aligned position,
as in the following figure:

19ASVE CCX Raccordi 1, 1592 p.28
20English: The Turkish Master is arming galleys
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Figure 9: Partenio’s strip pasted on a cipher sheet.
ASVE CX Cifre, chiavi e scontri di cifra ... b.2,
f.23. For no profit use only.

Now under k in the top row we find g, while
above 12 there is 8, so k12 becomes g8.

We find Arma has cipher b4; under the letter b
we find i, while above 4 there is 7. So, b4 is with
i7. In a similar way the cipher of Galee, i15 be-
comes t5. So the cryptogram for ”Il Signor Turco
arma galee” is:

g8 i7 t5

Partenio does not give detailed rules to when
and how to move the slider, changing the alpha-
bet. He writes this is something to be agreed be-
tween the two parts. As an example he proposes
to move the slider one step to the left, every one or
two lines.

The deciphering procedure is just the inverse of
the previous. In the above example to decrypt g8
i7 t5 we just look for g and 8 using the slider from
bottom to top, and finding k12. And so on with
the rest.

7.6 Remarks
Again, the weakness of this cipher is the base
cipher, too regular. A super-encryption with a
mono-alphabetic substitution could be enough to
overcome this weakness; the poly-alphabetic sub-
stitution is a plus giving a good level of safety for
the XVI century.

7.7 Sixth cipher
The sixth cipher of the book is basically a trans-
position cipher based on a long key. Partenio uses
this example: as a key-phrase take the Latin ”En
lex tua meditatio mea in corde meo”phrase as a
message to send: Vi sono in Brescia capi ribelli.

One writes down the key-phrase on a row, finds
the first letter, in the alphabetic order, here as in
most cases a, and writes 1 exactly under this a;
then find the second letter, another a and under it
writes 2 and so on until the end of the message.

Figure 10: The square of the sixth cipher.

Next, the plain text is written on a third row fol-
lowing the numbers order; when the text is over,
the remaining places are filled with random letters.

Then text resulting on the third row is the cryp-
togram to dispatch. Here is the example, step by
step:

So we have a cipher that does not require a writ-
ten sheet, may be taken by heart, that’s the main
goal of Partenio’s ciphers21.

7.8 The fake key
This is a device similar to the one seen in cipher 2,
for the same purpose; it is somehow easier to use.

Partenio’s idea is to add a fake cipher key (in
Italian a falso scontro) that the ambassador could
give to the enemy.

In the previous example, we could add this fake
message: Dalle sue parole io spero buona pace
of the same length, in a way the enemy, using the
fake key would get this fake meaning.

For this purpose Partenio proposes another
Latin square table, this time 20×20. The square is
regular but row labels are shifted and the column
labels scrambled according to a keyword.

The first letter of the encrypted message is i, the
first of the fake message is d, so we look on the
first column of the square for the i and look on this

21Three centuries after Auguste Kerckhoffs included a
similar principle as his rule number 3, see (Kerckhoffs, 1883).
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row until below the letter d. The number found is
10, and we write i10. The following letter of the
encrypted text is r, to get the second letter of the
fake message a we need to reach number 15, so
we write r15, and so on; finally the encrypted text
looks so:

i10r15c8n17b17i1z13u28a14b1n7c6s22...

a cryptogram who has the typical look of a
Venetian nomenclator encrypted message, a per-
fect fake.

So, in case of capture, the ambassador should
give up to the enemy the table square, with instruc-
tions leading to recover the fake messages instead
of the true ones.

7.9 Is this fake perfect?

Indeed the true cryptogram here is the sequence of
the letters, the numbers being only a fake leading
to the fake meaning. Only half of the cryptogram
is good, like in cipher 2. Indeed, the cipher is just
a transposition disguised as a nomenclator.

An enemy examining such a cryptogram could
at glance observe that the statistical distribution of
the letters resembles a plausible language distribu-
tion: many vowels, e, i, a the most frequent, and
could guess a transposition is the real cipher.

So far, the fake looks weaker than the one seen
in the second cipher.

And like cipher 2, this cipher does not satisfy
Kerckoffs principle; if the enemy discovers the
method, the whole contraption is unmasked.

On the other hand, a transposition for 30-40 let-
ters message is not so easy to break.

8 Were Partenio’s ciphers used in the
real world?

A difficult question; the 1596 CCX letter shown
at the beginning of this paper, explicitly refers
to Partenio’s ciphers as used before 1596 by the
Baylo; and still at the current date not a single such
message was found in the archives, of the Baylo or
other ambassador, to the Doge or to the Council of
Ten.22

22Last update: two paragraphs encrypted with a cipher
similar to Partenio’s n.2 were found at the beginning of two
messages of Piero Duodo, Venetian ambassador in France,
dated August 1595; in June 1595 the CX had recommended
the use of Partenio’s cipher, after learning from Giovanni
Mocenigo, the previous ambassador in France, that Francois
Viète, the well known French mathematician, boasted to be
able to decrypt Venetian ciphers. The cipher seems to have
been used for a very short period of time

9 Conclusion

From the above examples Franceschi and Partenio
have in common the use of super-encryption, but
have different priorities: Franceschi cares more
about safety, while Partenio, as already stated,
cares more about ease of use, and keys easy to
memorize.

Ease of use is important: a procedure too com-
plicated may induce bad behaviors of the cipher
operators; a classical example is a monoalpha-
betic cipher with homophones; the operator should
change homophone very often, as recommended
by Franceschi’s rules, but this is annoying and de-
manding, so an operator may memorize only one
cipher for letter going back to a simple monoal-
phabetic cipher; a secret letter by the CCX to the
governor of Candia, has reprimands about bad ci-
phering habits, and at the end tells: ”to use only
one alphabet would be like not writing in cipher at
all.”23. The reprimand had little effect and reduc-
ing an homophonic cipher to a trivial monoalpha-
betic remained a common practice.

On the other hand safety is important too: an
easy to use cipher may be also an easy to decrypt
one. A typical example: the use of an ordered list
in a nomenclator, a step in the direction of ease,
one just needs a single list, but also a big help for
the enemy, an ordered list nomenclator is much
easier to break than a disordered one. And yet
in the XVII century Venetian cryptography used
more and more ordered lists instead of the disor-
dered of the XV and XVI century.

Franceschi used a small but disordered list with
super-encryption; Partenio used ordered lists also
with super-encryption.

The followers used similar ordered lists but
without the burden of superencryption! Precisely
the fear expressed by Partenio in his postscript to
the second cipher. The golden age of Venetian
cryptography had come to an end.
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Abstract

Developed by L. S. Hill in 1929, the Hill ci-
pher is a polygraphic substitution cipher based
on matrix multiplication. This cipher has
been proved vulnerable to many attacks, espe-
cially the known-plaintext attack, while only
few ciphertext-only attacks have been devel-
oped. The aim of our work is to study a
new kind of ciphertext-only attack for the Hill
cipher which is based on a restricted search
over an explicit set of texts, called orbits,
and not on a search over the key-space; it is
called Orbit-Based Attack (OBA). To explain
in a convenient setting this approach, we make
use of basic notions from group action the-
ory; we present then in details an algorithm
for this attack and finally results from exper-
iments. We demonstrate experimentally that
this new method can be efficient in terms of
time-execution and can even be faster on av-
erage than the classical Brute-Force Attack in
the considered settings.

1 Introduction

The Hill cipher is a relatively old polygraphic substi-
tution cipher based on linear algebra and invented by
Lester S. Hill in 1929 (Hill, 1929; Hill, 1931). For a
plaintext of M characters composed of m blocks of n
characters in an alphabet with p elements, the Hill ci-
pher considers each block as an element of the vector
space (Zp)n and multiplies each of them by the same
n× n invertible matrix, called the secret key, to com-
pute in output the whole ciphertext.

Because of its linear nature, it suffers mainly from
the known-plaintext attack, i.e. attacker can obtain one
or more plaintexts and their corresponding ciphertexts,
as stated in (Stinson, 2002). This weakness has lead to
many modifications of the original version of this ci-
pher; see for instance (Ismail et al., 2006; Mahmoud
and Chefranov, 2009; Toorani and Falahati, 2009;
Toorani and Falahati, 2011). Regarding the ciphertext-
only attack, i.e. the attacker is assumed to have access
only to a set of ciphertexts, it is said in (Wagstaff, 2002;
Stinson, 2002) that performing a ciphertext-only attack
on the Hill cipher is “much harder” than performing

a known-plaintext one. Indeed it seems that only few
such attacks have been developed, all of them suppos-
ing an a priori knowledge on the language and making a
search over the key-space; we refer the reader to the pa-
pers (Bauer and Millward, 2007; Yum and Lee, 2009;
Leap et al., 2016; McDevitt et al., 2018).

Further it is known that, in the case of no restric-
tions on the considered language or alphabet, “the best
publicly known ciphertext-only attack on Hill cipher
requires full search over all possible secret keys”, as
stated in (Khazaei and Ahmadi, 2017). Note that this
paper indeed proposes a new attack but only in the case
of meaningful English texts with an alphabet of size 26.
In the case where p is a prime number, the Brute-Force
Attack tests almost pn2

matrices (Overbey et al., 2005,
Lemma 4.3).

In view of this, we propose in the present paper to
study another kind of ciphertext-only attack which is
not based on a search over the key-space but rather over
restricted regions of the text-space, regions called or-
bits. This attack, denoted Orbit-Based Attack (OBA),
lies on a partition into orbits of the text-space induced
by the Hill cipher. In this paper, we prove the existence
of this partition exploiting group action theory and we
make explicit the orbits by exploiting the property that
Hill preserves the linear combinations of blocks in a
given text. The ciphertext and the associated plaintext
being necessarily in the same orbit, our theoretical re-
sults assure that the size of their orbit, and hence the
maximal number of texts to test, is smaller than the
number of keys. To make clear the ideas of our ap-
proach and avoiding too technical computations, we
assume that the size of the alphabet is a prime num-
ber; similar results are expected to hold true in more
general settings.

An algorithm for the OBA is then proposed. Our aim
here is to show that this attack can be faster in terms
of time-execution on average over random texts than
the above mentioned Brute-Force Attack (BFA) in the
case where the only assumption is that the size of the
alphabet is a prime number. Even though the computa-
tional complexities are proved to be roughly the same,
we illustrate by means of numerous experiments that
the OBA permits to speed-up on average the runtime of
the decryption process as compared to the BFA.
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2 Preliminaries
In this section, we define rigorously the Hill cipher for
the sake of completeness and we introduce some no-
tations which will be used throughout the rest of this
paper.

2.1 The Hill cipher
We start by the definition of the Hill cipher we use in
this paper; we refer to (Hill, 1929) for the original one.

Definition 1 (Hill cipher). A plaintext string X of size
M = mn over an alphabet having p characters is de-
fined as a vector of size M over Zp using an arbitrary
bijection between the elements of the alphabet and the
elements of Zp. The plaintext X is splitted into m blocs
of size n such that X = X1X2 . . .Xm. An invertible n×n
matrix K over Zp, called the key-matrix, is then chosen.
Afterwards we construct a block diagonal matrix A of
size M×M over Zp whose main diagonal sub-matrices
are equal to K. The encryption is finally performed by
considering each Xi as a vector of (Zp)n and by com-
puting the ciphertext Y = Y1Y2 . . .Ym as follows:

Y = AX (mod p) ,

which is equivalent to Yi = KXi (mod p), for all i ∈
{1, . . . ,m}. Thanks to the invertible nature of K, A is
invertible as well and the decryption is performed by
computing:

X = A−1Y (mod p) .

Throughout the rest of this paper, we choose p as a
prime number for the sake of simplicity. This implies in
particular that the set Zp is the field of p elements and
so the division is well-defined, making the arguments
and computations easier. However, one may plan to
generalise the present results to the case where no as-
sumption on p is made, covering hence more realistic
cases.

We define now the set of invertible block diagonal
matrices.

Definition 2. Let GLn(Zp) be the set of invertible ma-
trices of size n× n over Zp. A matrix A of size M ×M
over Zp belongs to GM,n if and only if there exists
K ∈GLn(Zp) such that

A =



K
K

. . .

K


.

We note that GLn(Zp) and GM,n are clearly in bijection.
We are now in position to define the Hill cipher map,

which will be proved to be a group action in the follow-
ing section.

Definition 3 (Hill cipher map). Let H : GM,n ×
(Zp)M −→ (Zp)M be the map defined by

∀ (A,X) ∈ GM,n× (Zp)M H(A,X) := AX .

2.2 Group action theory
Group action theory offers a convenient setting to de-
scribe the attack proposed in this paper. While the re-
sults can be actually proved without invoking this the-
ory, the latter may be helpful to make clear the effects
of Hill on the texts. Consequently, we recall some ab-
stract results from group action theory for the sake of
completeness; their proofs can be found for instance in
(Smith, 2008, Chapter 10).

In the rest of the present section, the notation G will
refer to a group whose group law and identity element
are respectively represented by · and e. We start by
recalling the notion of a (left) group action on a set.

Definition 4 (Group action). Let G and S be respec-
tively a group and a set. A map ϕ : G×S −→ S is said
to be a group action of G on S if and only if it satisfies
the two following properties:

• Identity: for all s ∈ S , we have

ϕ(e, s) = s ;

• Compatibility: for all g,h ∈G and s ∈ S , we have

ϕ(g ·h, s) = ϕ
(
g,ϕ(h, s)

)
.

We define now the orbit and the stabiliser of an ele-
ment s ∈ S : the orbit of s is the set of elements of S to
which s can be sent by the elements of G, while the sta-
biliser of s is the set of elements of the group G which
do not move s. Let us emphasise that an element s ∈ S
can not be sent outside its orbit by definition.

Definition 5 (Orbit and stabiliser). Let ϕ : G×S −→ S
be a group action of a group G on a set S and let s ∈ S .

1. The orbit Orbϕ(s) of s is defined as follows:

Orbϕ(s) =
{
y ∈ S

∣∣∣ ∃g ∈G y = ϕ(g, s)
}
.

2. The stabiliser S tabϕ(s) of s is defined as follows:

S tabϕ(s) =
{
g ∈G

∣∣∣ ϕ(g, s) = s
}
.

These two notions are closely related: it is shown
that the orbit of an element s ∈ S is isomorphic to the
quotient of the group G by the stabiliser of s. Roughly
speaking, this means that it is sufficient to move s by
all the elements of the group G which do not fix s to
recover the whole orbit of s. In the finite group case,
this permits to compute the cardinal of the orbit of a
given element s ∈ S :

Corollary 1. Let ϕ : G×S −→ S be a group action of
a finite group G on a set S and let s ∈ S . Then we have

∣∣∣Orbϕ(s)
∣∣∣ =

∣∣∣G
∣∣∣

∣∣∣S tabϕ(s)
∣∣∣
,

where |Z| denotes the cardinal of a given set Z.
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To conclude this subsection, we mention that an ac-
tion of a group G on a set S defines an equivalence re-
lation on S whose equivalence classes are given by the
orbits. Since two equivalence classes are either equal
or disjoint, the set of the orbits under the action of G
forms a partition of S ; this is recalled in the following
result:

Theorem 1. Let ϕ : G×S −→ S be a group action of a
group G on a set S .

1. Let s, t ∈ S . Then we have either

Orbϕ(s) = Orbϕ(t)

or
Orbϕ(s)∩Orbϕ(t) = ∅ .

2. Let R ⊆ S be a set of orbit representatives, in
other words a subset of S which contains exactly
one element from each orbit. Then the family{
Orbϕ(s)

}
s∈R forms a partition of S .

An illustration of Theorem 1 is given in Figure 1.

Orbϕ(s1)

Orbϕ(s2)

Orbϕ(s3)

Orbϕ(s4)

Orbϕ(s5)

s1

ϕ(g, s1)

ϕ(g′ ·g, s1)

S

g

g′

Figure 1: Illustration of a partition of S created by the
group action ϕ

3 Group Action Theory for Hill Cipher
We start this section by proving the following property
of Hill inherited from its linear nature: it preserves the
linear combinations of any given text. This is stated in
the following proposition:

Proposition 1. Let X = X1 . . .Xm ∈ (Zp)M be a plain-
text. Suppose that the block Xi is a linear combination
of q other blocks Xi1 , . . . ,Xiq , i.e.,

∃λ(i)
1 , . . . ,λ

(i)
q ∈ Zp Xi =

q∑

k=1

λ(i)
k Xik . (1)

Then the i-th block of the ciphertext Y =H(A,X), with
A an element of GM,n associated with a key-matrix K ∈
GLn(Zp), satisfies

Yi =

q∑

k=1

λ(i)
k Yik .

Proof. Since we have Yi = KXi ∀i ∈ {1, . . . ,m}, it is suf-
ficient to multiply equality (1) by K to obtain the re-
sult. �

Our goal in the present section is to study some con-
sequences of this property. Especially, we shall prove
the existence of a partition of the text-space due to the
Hill cipher map. To do so, we shall exploit group ac-
tion theory, whose principles will be illustrated in the
setting of Hill, to structure our arguments. The results
obtained here are at the root of the Orbit-Based Attack
presented in the next section. Further, we mention that
our work seems to formalise the principle of the ap-
proach developed in (McDevitt et al., 2018).

It is important to note that, the Hill cipher being a
symmetric-key cipher, the results presented here can
be interpreted in two ways: the relation Y = H(A,X)
can describe either the cipher of the plaintext X lead-
ing to the ciphertext Y , or the decipher of a ciphertext
X leading to the plaintext Y . Therefore an input text X
can be interpreted as a plaintext (resp. ciphertext) and
the output text Y as a ciphertext (resp. plaintext) if we
consider a cipher (resp. decipher).

We start our study by showing that the Hill cipher
map given in Definition 3 is actually a group action.

Theorem 2. The Hill cipher map given in Definition 3
is a group action.

Proof. It is easy to show that the set GM,n is actually
a subgroup of GLM(Zp), so it is itself a group. Further
the Identity and Compatibility points of Definition 5 are
satisfied thanks to the basic properties of matrix multi-
plication (multiplication by the identity matrix and as-
sociativity). �

From this theorem, it follows that the text-space is
split into orbits which are stable under the Hill cipher
map; in other words, if we choose an input text and we
apply the Hill cipher map to it, then the resulting output
text is necessarily inside the orbit of the input text, as
illustrated in Figure 1 in an abstract setting.

Corollary 2. 1. Let X,X′ ∈ (Zp)M . Then we
have either OrbH (X) = OrbH (X′) or OrbH (X)∩
OrbH (X′) = ∅.

2. Let X ⊆ (Zp)M be a set of orbit representatives, in
other words a subset of texts which contains ex-
actly one text from each orbit. Then the family{
OrbH (X)

}
X∈X forms a partition of (Zp)M .

3. For all X ∈ (Zp)M , we have

∣∣∣OrbH (X)
∣∣∣ =

∣∣∣GLn(Zp)
∣∣∣

∣∣∣S tabH (X)
∣∣∣
.

Proof. Simple application of Theorem 1 and Corollary
1. �
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According to Corollary 2, the number of elements of
an orbit given by an input text X depends on the cardi-
nal of the stabiliser of X. In the following proposition,
we describe explicitly the stabiliser of any input text X
by exploiting the property that the Hill cipher preserves
linear combinations (see Proposition 1); in particular,
this will permit to derive the cardinal of the orbit of X
in Corollary 3. Further let us mention that we do not
treat the case of the input text given by 0(Zp)M since
any matrix belonging to GM,n is in its stabiliser.
Proposition 2. Let X = X1 . . .Xm ∈ (Zp)M \ {0(Zp)M

}
.

Suppose that there exist 1 6 q 6 n and i1, . . . , iq ∈
{1, . . . ,m} such that Xi1 , . . . ,Xiq are linearly independent
and, for each i < {i1, . . . , iq}, Xi is a linear combination
of Xi1 , . . . ,Xiq . Then A ∈ S tabH (X) if and only if

A =



PK̃P−1

PK̃P−1

. . .

PK̃P−1


,

with

• P =
(
Xi1

∣∣∣ . . .
∣∣∣Xiq

∣∣∣Vq+1
∣∣∣ . . .

∣∣∣Vn
) ∈ GLn(Zp) where

Vq+1, . . . ,Vn are vectors of (Zp)n such that{
Xi1 , . . . ,Xiq ,Vq+1, . . . ,Vn

}
is a basis of (Zp)n;

• K̃ ∈GLn(Zp) is of the form


1 0 . . . 0 k̃1,q+1 . . . k̃1,n

0 1
. . . 0 k̃2,q+1 . . . k̃2,n

...
. . .

. . .
...

...
...

0 . . . 0 1 k̃q,q+1 . . . k̃q,n
0 . . . . . . 0 k̃q+1,q+1 . . . k̃q+1,n
...

...
...

...
0 . . . . . . 0 k̃n,q+1 . . . k̃n,n



. (2)

If q = n then S tabH (X) = {IM}, where IM is the identity
matrix of size M.

Proof. Choose X = X1 . . .Xm ∈ (Zp)M \ {0(Zp)M
}

and as-
sume that Xi1 , . . . ,Xiq are linearly independent, where
1 6 q 6 n and i1, . . . , iq ∈ {1, . . . ,m}, and that

∃λ(i)
1 , . . . ,λ

(i)
q ∈ Zp Xi =

q∑

k=1

λ(i)
k Xik ,

for all i < {i1, . . . , iq}. If q , n, choose Vq+1, . . . ,Vn ∈
(Zp)n such that the family

{
Xi1 , . . . ,Xiq ,Vq+1, . . . ,Vn

}
is

a basis of (Zp)n; let us mention that such vectors ex-
ist according to the incomplete basis theorem (Artin,
2011, Proposition 3.15). Hence the matrix P defined in
the statement of Proposition 2 is invertible and satisfies
for all k ∈ {1, . . . ,q},

PEk = Xik ⇐⇒ P−1Xik = Ek , (3)

where Ek is the k-th vector of the canonical basis of
(Zp)n. Furthermore, for a given matrix K̃ of the form
(2), the following relation is true for each k ∈ {1, . . . ,q},

PK̃P−1Xik = PK̃Ek = PEk = Xik . (4)

Then we deduce that, for all i < {i1, . . . , iq},

PK̃P−1Xi = PK̃P−1


q∑

k=1

λ(i)
k Xik



=

q∑

k=1

λ(i)
k PK̃P−1Xik =

q∑

k=1

λ(i)
k Xik

= Xi . (5)

We are now in position to prove the equivalence stated
in Proposition 2.2.

⇐ If a matrix A ∈ GM,n is given by

A =



PK̃P−1

PK̃P−1

. . .

PK̃P−1


,

where K̃ is an invertible matrix of the form (2),
then A satisfies

AX =



PK̃P−1X1

PK̃P−1X2
...

PK̃P−1Xm


=



X1
X2
...

Xm


= X ,

according to the relations (4) and (5). This proves
that A ∈ S tabH (X).

⇒ Let A ∈ GM,n be an element of the stabiliser of X.
It follows

∀k ∈ {1, . . . ,q} KXik = Xik ,

where K ∈ GLn(Zp) is the key-matrix. By using
relation (3), we obtain

∀k ∈ {1, . . . ,q} P−1KPEk = Ek .

We observe then that the matrix K̃ := P−1KP is of
the form (2) and is invertible since it is similar to
K ∈GLn(Zp). This finally proves that

A =



PK̃P−1

PK̃P−1

. . .

PK̃P−1


.

�

As a consequence of the preceding result, we are
able to give the cardinal of the orbit of any input text,
i.e. the number of texts which can be attained from this
input. We note that this cardinal depends only on the
number q of linearly independent blocks within the in-
put text.
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Corollary 3. Let X = X1 . . .Xm ∈ (Zp)M \ {0(Zp)M
}
. Sup-

pose that there exist 1 6 q 6 n and i1, . . . , iq ∈ {1, . . . ,m}
such that Xi1 , . . . ,Xiq are linearly independent and,
for each i < {i1, . . . , iq}, Xi is a linear combination of
Xi1 , . . . ,Xiq . Then we have

∣∣∣OrbH (X)
∣∣∣ =

q−1∏

k=0

(
pn− pk) .

Proof. First of all, we recall from (Rotman, 1965, The-
orem 8.13) that the cardinal of GLn(Zp) is given by

∣∣∣GLn(Zp)
∣∣∣ =

n−1∏

k=0

(
pn− pk) .

Let us now compute the cardinal of S tabH (X). Ac-
cording to Proposition 2, this is actually equal to the
number of invertible matrices of the form (2), namely


Iq K̃1,2

0 K̃2,2

 .

Such a matrix being invertible, the sub-matrix K̃2,2 is
invertible as well; hence we have

n−q−1∏

k=0

(
pn−q− pk)

choices for the sub-matrix K̃2,2. Once this sub-matrix
is fixed, it remains to choose K̃1,2, which does not have
any restriction: thus there are pq(n−q) choices for the
sub-matrix K̃1,2. Consequently, we obtain

∣∣∣S tabH (X)
∣∣∣ = pq(n−q)

n−q−1∏

k=0

(
pn−q− pk)

=

n−1∏

k=q

(
pn− pk) .

Finally, by using Corollary 2.3, it follows

∣∣∣OrbH (X)
∣∣∣ =

n−1∏

k=0

(
pn− pk)

n−1∏

k=q

(
pn− pk)

=

q−1∏

k=0

(
pn− pk) .

�

The previous corollary shows that the number of el-
ements of an orbit given by an input text is always
smaller or equal to the number of elements in the key-
space GLn(Zp). Theoretically this means that if we
consider an oracle able to answer in O(1) whether a
matrix is the key or whether a text is the correspond-
ing plaintext of the ciphertext of interest, then perform-
ing an exhaustive search on the key-space would be in
O(∏n−1

k=0(pn− pk)
)

and on the orbit of the ciphertext in

O(∏q−1
k=0(pn− pk)

)
with q 6 n (q being the number of

linearly independent blocks in the ciphertext). Since
in most of the cases q = n, this assures that these two
kinds of search share the same worst-case complexity.
The key idea of the OBA lying on a search on the orbit
of the ciphertext, the preceding remark assures that it
will be theoretically at worst as efficient as the BFA.

It remains to make practicable such a ciphertext-only
attack. To do so, we have to describe explicitly the orbit
of any given text. This is provided in the following
theorem whose proof exploits once again the property
that the Hill cipher preserves linear combinations; see
Proposition 1.

As previously, we do not treat the case of the input
text given by 0(Zp)M since its orbit is equal to the sin-
gleton {0(Zp)M }.
Theorem 3. Let X = X1 . . .Xm ∈ (Zp)M \ {0(Zp)M

}
. Sup-

pose that there exist 1 6 q 6 n and i1, . . . , iq ∈ {1, . . . ,m}
such that Xi1 , . . . ,Xiq are linearly independent and

∃λ(i)
1 , . . . ,λ

(i)
q ∈ Zp Xi =

q∑

k=1

λ(i)
k Xik ,

for all i < {i1, . . . , iq}. Then Y = Y1 . . .Ym ∈ (Zp)M be-
longs to OrbH (X) if and only if Yi1 , . . . ,Yiq are linearly
independent and

∀ i < {i1, . . . , iq} Yi =

q∑

k=1

λ(i)
k Yik .

Proof. Choose X = X1 . . .Xm ∈ (Zp)M \ {0(Zp)M
}

and
suppose that there exist 1 6 q 6 n and i1, . . . , iq ∈
{1, . . . ,m} such that Xi1 , . . . ,Xiq are linearly independent
and

∃λ(i)
1 , . . . ,λ

(i)
q ∈ Zp Xi =

q∑

k=1

λ(i)
k Xik ,

for all i < {i1, . . . , iq}. Define now the set Eq(X) as fol-
lows: Y = Y1 . . .Ym ∈ (Zp)M belongs to Eq(X) if and
only if it satisfies



Yi1 , . . . ,Yiq are linearly independent

∀ i < {i1, . . . , iq} Yi =

q∑

k=1

λ(i)
k Yik

.

Hence we have to show OrbH (X) = Eq(X). To do so,
we prove an inclusion and the equality between the two
cardinals.

⊆ Let Y = Y1 . . .Ym ∈ (Zp)M be an element of
OrbH (X). Then, by definition, there exists A ∈
GM,n such that Y = AX, i.e.,

∀ i ∈ {1, . . . ,m} Yi = KXi ,

where K is the key-matrix. As an immedi-
ate consequence of the linear independence of
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Xi1 , . . . ,Xiq , the vectors Yi1 , . . . ,Yiq are linearly in-
dependent, and by Proposition 1, we have

∀ i < {i1, . . . , iq} Yi =

q∑

k=1

λ(i)
k Yik .

This shows that OrbH (X) is included in Eq(X).

= The cardinal of the set Eq(X) is given by the num-
ber of linearly independent families of q vectors
belonging to (Zp)n, that is to say

q−1∏

k=0

(
pn− pk) .

We employ then Corollary 3 which shows that
OrbH (X) and Eq(X) have the same cardinal.

This finally proves OrbH (X) = Eq(X). �

The benefit of this result lies on the fact that it enu-
merates all the possible output texts from any given in-
put text via the Hill cipher map: this permits to de-
velop an algorithm for the OBA decrypting Hill cipher
without studying the key-space. Moreover, even if it
is unlikely in practice that the number q of linear inde-
pendent blocks is strictly smaller than n, we expect an
efficiency gain for the OBA in this case.

4 Algorithm and computational
complexity of the Orbit-Based Attack

The preceding theoretical results provide all the ingre-
dients to create an algorithm for the Orbit-Based At-
tack, which consists in making a search in the orbit of
the ciphertext of interest, and to determine its compu-
tational complexity. We emphasise that the algorithm
proposed here is not intended to be optimised and some
steps could be refined. The reader can find information
on computational complexity in (Papadimitriou, 1994).

Throughout the rest of this section, we consider a ci-
phertext C of m blocks, each block having a size of n
characters (with n ≤ m) in an alphabet of size p. More-
over we assume that the ciphertext has q linearly inde-
pendent blocks (with q≤ n), thus m−q dependent ones.
The only condition we put here is that p is a prime num-
ber.

The main idea of the algorithm is to build sequen-
tially the elements of the orbit of C by exploiting The-
orem 3 until the plaintext associated with C is found.
From a practical point of view, this can be achieved by
placing firstly C in a n×m matrix over Zp, called Cq
and such that its k-th column corresponds to the k-th
block of C, and by applying then the three following
steps:

1. Performing a Gaussian elimination (Golub and
Van Loan, 2012) column by column on Cq to
make explicit the linear combinations of the
blocks within C; the same computations are

Algorithm 1: LU-type decomposition of Cq

Data: Cq the matrix storing the ciphertext, Id the
identity matrix of size m×m

Result: Cq is lower triangular, LC contains the
indices of the linearly independent blocks
and the coefficient of the linear
combinations

1 for (k=1, k ≤ n, k++) do
2 j← firstNotNull(Cq[k,i],1 ≤ i ≤ n);
3 if (Cq[k,j] , 0) then
4 divide column j by Cq[k,j] in Cq and in Id;
5 swap columns j and k in Cq and Id;
6 for (i=k+1, i ≤ m, i++) do
7 substract to column i the column k

multiplied by Cq[k,i] in Cq and in Id;
8 end
9 end

10 end
11 LC = Id;

made on an identity matrix of size m × m to
store the indices and coefficients of the linear
combinations.

2. Extracting the indices of the q independent
blocks and the coefficients giving the m−q linear
combinations.

3. Building the elements of the orbit of C in a
random manner until the right plaintext is found.
To do so, each element is built by first choosing
randomly q independent blocks and the m − q
remaining blocks are then deduced by using
the linear combinations determined in the two
preceding steps.

Lower-Upper decomposition of Cq

Lower–upper (LU) decomposition or factorisation fac-
tors a matrix as the product of a lower triangular ma-
trix and an upper triangular matrix. It can be obtained
by the Gaussian elimination and the factors contain the
information on the linear dependencies of the columns.
Let us specify step 1. with Algorithm 1 which performs
an LU decomposition on the matrix Cq.

Let us determine the complexity of this initialisation
step. Roughly speaking, at the k-th step, we search for
a non-zero element on the k-th row (this step is omit-
ted in the complexity computation), then we multiply
the chosen column of size n− k + 1 by the inverse of
its non-zero element on the k-th row (such a compu-
tation is supposed to be cost-less) and we swap two
columns if necessary, and we multiply the m − k re-
maining columns by scalars and make m− k additions.
Furthermore, the same operations are made on the ma-
trix Id: at the k-step, we work with columns of size k.
We repeat these operations q times since the rank of Cq
is equal to q. Adding the computational complexity of
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each operation up gives:

C1(m,n,q)

=

q∑

k=1

(
(m− k + 1)(n− k + 1) + (m− k)(n− k + 1)

)

+

q∑

k=1

(
(m− k + 1)k + (m− k)k

)

= 2(n + 1)
q∑

k=1

(m− k) + (n + 1)
q∑

k=1

1

= 2(n + 1)
(
mq− q(q + 1)

2

)
+ (n + 1)q

= 2nmq + 2mq−nq2−q2 .

Obtaining the linear combinations within Cq

In the second step, we search in the output matrix LC
the indices of the linearly independent blocks of the
ciphertext C and the coefficients of the linear combi-
nations. In view of the construction of the matrix LC in
Algorithm 1, it is an upper triangular matrix up to a per-
mutation if columns have been swapped. We note that
q rows have been filled, corresponding to the q steps to
make lower triangular Cq; moreover, if the k-th column
of the lower triangular matrix Cq is zero, then the k-th
column of LC gives the coefficients of one of the m−q
linear combinations within C. Hence determining the
indices of the independent blocks of C consists in mak-
ing searches in Id, such operations are supposed to be
negligible in terms of computational complexity. Thus
this second step is cost-less.

The algorithm that can perform this search is de-
picted in Algorithm 2.

Recovering gradually the orbit of C

The two preceding steps combined to Theorem 3 per-
mit to build all the elements of the orbit of the cipher-
text C. Here we do not aim at recovering the whole
orbit but rather to build element by element and to test
whether the right plaintext is obtained. To do so, for
each text to build, we choose randomly q linearly inde-
pendent blocks of size n and we put them in the text in
such a way that their indices are given by the matrix LC
from the second step; this generation is supposed to be
negligible. Then we compute the m− q associated lin-
early dependant blocks of size n from the q independent
blocks by using once again the information contained
in LC. This computation is depicted in Algorithm 3.

We observe that, for each linearly dependent block,
we multiply the q independent blocks of size n by co-
efficients contained in LC and we add these q resulting
blocks up to find the linearly dependent block. Suppos-
ing from now now that τ1 tries are necessary to find the
q right independent blocks of the plaintext P, we obtain
then the computational complexity for the third step:

C3(m,n,q, τ1) = τ1(m−q)
(
qn + (q−1)n

)

= 2τ1mnq−τ1mn−2τ1q2n +τ1nq .

Algorithm 2: Get the linear combinations
Data: LC the matrix storing the different linear

combinations, Cq the lower triangulated
Result: the indices of the free columns and the

coefficient of the linear combinations.
1 size = 0;
2 ind = ∅;
3 for (i=1, i ≤ Cq.nbLines(), i++) do
4 if (Cq[i][i] , 0) then size = size +1 ;
5 end
6 for (i=1, i ≤ LC.nbLines(), i++) do
7 if (ind.size() == size) then return ind;
8 for (j=1, j ≤ size, j++) do
9 if (LC[i][j] , 0) then ind.add(i) ;

10 end
11 end
12 for (col=ind.size(), col ≤ LC.nbCols(), col++) do
13 for (line=1, line ≤ LC.nbLines(), line++) do
14 lineOK = true;
15 for (k=1, k ≤ ind.size(), k++) do
16 if (ind[k] == line) then lineOK =

false ;
17 end
18 if (lineOk∧LC[line][col] , 0) then
19 result[0][col-ind.size()] = line;
20 end
21 end
22 end
23 for (i=1, i ≤ ind.size(), i++) do
24 for (col=ind.size(), col ≤ LC.nbCols(), col++)

do
25 result[i+1][col-ind.size()] =

-LC[ind[i]][col];
26 end
27 end
28 return result;

Note that τ1 is bounded by the number of families hav-
ing q linearly independent blocks of size n, namely,

q−1∏

k=0

(
pn− pk) ≤ pnq , (6)

which can be very large. Nevertheless, we emphasise
that if some prior knowledge on the text are available,
such as the language, then the mean number τ1 of tries
can drastically diminish, reducing the computational
complexity of this step.

Finally, the final cost of the Orbit-Based Attack
(OBA) is:

COBA(m,n,q, τ1) = C1(m,n,q) +C3(m,n,q, τ1)
= 2(1 +τ1)mnq + 2mq

+τ1nq− (1 + 2τ1)nq2

−τ1mn−q2 .
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Algorithm 3: Re-build the linearly dependent
blocks

Data: res: a randomly initialised matrix, LC the
matrix storing the different linear
combinations

Result: a potential plaintext where each linearly
dependant block has been computed

1 for (c=1, c ≤ LC.nbCols(), c++) do
2 col = LC[0][c];
3 for (line=1, line ≤ LC.nbLines(), line++) do
4 res[line][col] = 0;
5 for (k=1, k ≤ ind.size(), k++) do
6 res[line][col] = res[line][col] +

(res[line][ind[k]] × LC[k+1][c])
7 end
8 end
9 end

10 return decrypt(res);

Soundness, completeness and termination of the
OBA

The Orbit-Based Attack to decrypt the Hill cipher is
depicted in Algorithm 4. Note that the line 10 works as
an odometer, meaning that if the loop does not stop, all
the matrices will be generated.

Algorithm 4: Orbit-Based Attack
Data: cipher: the ciphertext that we want to

decipher
Result: the corresponding plaintext

1 〈in,LC〉 = Algorithm_1(cipher,Id);
2 ind = Algorithm_2(LC,in);
3 for (c=1, c ≤ LC.nbCols(), c++) do
4 for (l=1, l ≤ LC.nbLines(), l++) do
5 guess[l][c] = random() % (p);
6 end
7 end
8 guessMessage = Algorithm_3(guess,LC);
9 while (¬ f indWord(guessMessage)) do

10 guess = guess + 1;
11 guessMessage = Algorithm_3(guess,LC);
12 end
13 return guessMessage;

We prove now that Algorithm 4 satisfies the sound-
ness, the completeness and the termination, which are
the three main characteristics of an algorithm.
First let us prove the soundness, which means that if
the algorithm gives an answer, then it is the expected
one.

Proposition 3. Algorithm 4 is sound.

Proof. The soundness is a direct consequence of the
use of the oracle “findWord”. Indeed, since the only
way to return a solution is to exit the while-loop which

is possible only if “findWord” returns true. The solu-
tion is thus necessarily the corresponding plaintext. �

Now let us prove the completeness, meaning that the
algorithm gives an answer for any input.

Proposition 4. Algorithm 4 is complete.

Proof. By having a look at the line 10 of Algorithm
4, we can see that each time we did not find the corre-
sponding plaintext, we increment one value in the guess
matrix, in the same way as in an odometer. By search-
ing in such way all the matrices present in the orbit
text for any ciphertext, we will perform an exhaustive
search over its orbit, guaranteeing in such way the com-
pleteness of the algorithm. �

Finally let us prove the termination, stating that the
time needed by the algorithm to terminate is finite.

Proposition 5. Algorithm 4 terminates.

Proof. The proof of termination is straightforward.
There is no choose, nor backtrack in the algorithm.
Moreover each loop iterates over finite domains: the
columns or rows in matrices for Algorithms 1, 2 and 3,
and the texts belonging to the orbit of the ciphertext for
Algorithm 4. Therefore Algorithm 4, based on Algo-
rithms 1, 2 and 3, terminates. �

5 Experiments

In this section, we present and comment on results from
numerous experiments. Our aim here is to compare the
new Orbit-Based Attack with the classical Brute-Force
Attack, which is the only efficient ciphertext-only at-
tack for the Hill cipher in case where no information
on the text is available (Khazaei and Ahmadi, 2017).

Computational complexity of the Brute-Force
Attack

Before commenting on the experiments, let us talk
about the Brute-Force Attack (BFA). We recall that it
consists in testing all the invertible matrices of size n×n
over Zp until the right key is found.

Here we propose an algorithm for the Brute-Force
Attack (BFA). For the sake of completeness, we inform
the reader that our implementation of the BFA is quite
naive. However, no matter the implementation, the em-
pirical results should remain the same. Indeed, both
approaches being mainly based on the same basic ma-
trix operations, an optimisation for the BFA would also
be an optimisation for the OBA as a side-effect. The
Brute-Force Attack (BFA) is working as follows: we
pick randomly a matrix of size n× n, this generation
being supposed negligible as previously. Such a ran-
dom matrix has a high probability to be invertible, as
stated in (Overbey et al., 2005). Moreover we suppose
that we need τ2 tries on average to find the correct ma-
trix. It remains to multiply each m block of size n by

20



the chosen matrix of size n×n. For each m block, it cor-
responds to make n multiplications and n−1 additions
of columns of size n. We thus have:

CBFA(m,n,q, τ2) = τ2mn(n + n−1)

= 2τ2mn2−τ2mn .

Let us now remark that the quantity τ2 is bounded
by the number given in (6) with q = n and we have
τ1 = τ2 without any prior knowledge on the corre-
sponding plaintext or on the key-matrix. In this set-
ting, one can conclude that both the Orbit-Based At-
tack and the Brute-Force Attack are in O(pn2

). Never-
theless these results are mainly theoretical and, in prac-
tice, one or the other attack may be faster in terms of
time-execution, motivating the following subsections.

Empirical results for the Orbit-Based and
Brute-Force Attacks
In this section, we present empirical results generated
on a cluster of Xeon, 4 cores, 3.3 GHz with CentOS
7.0 with a memory limit of 32GB and a runtime limit
of 9,000 seconds per text per attack. Each text is uni-
formly randomly generated to avoid any statistical bias.
The size of the text is given by n×m, where m is the
number of blocks and n the number of characters in
each block, and we select randomly each character with
a probability of 1

p , where p is the size of the alphabet.
Here is our experimental protocol: p ∈

{5,7,11,13,17,19,23,29}, m = 100 : n = {1,2,3,4,5,6},
m = 200 : n = {2,4,6,8,10,12}, . . . , m = 900 : n =

{9,18,27,36,45,54}
For each triplet {p,m,n}, we generate 300 different

random texts. Thus we consider 129,600 different ran-
dom texts, each of them is enciphered via the Hill ci-
pher with random key-matrices. To compare properly
the OBA and the BFA, we decipher each ciphertext
with the two attacks; therefore 259,200 experiments are
conducted with a time-out of 9,000 seconds, represent-
ing 73 years of computations in the worst-case.

First of all let us give the ratio of how many times the
OBA has been faster than the BFA over the 129,600 dif-
ferent texts: it is equal to 99.91%. This shows that the
OBA is faster in most of the cases considered here than
the BFA. This first result shows that the OBA seems to
furnish an attack for the Hill cipher more efficient than
the classical OBA on the set of considered parameters.

To access the results, we redirect the reader to the
following external link: https://bit.ly/2QeYhH2.
They permit to compare the time-executions for the
two attacks: in each sub-figure, each point represents a
text whose x-coordinate and y-coordinates are respec-
tively the time needed by the BFA and OBA. A point
localised below the diagonal means that the OBA has
been faster than the BFA. The first part of the Figures
focuses on the parameters p and m (the different values
for n are not distinguished) while the second part fo-
cuses on p and n (the different values for m are not dis-
tinguished). Basically, these Figures demonstrate that
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Figure 2: Scatter-plots of BFA vs OBA. Each dot cor-
responds to a random text where there is, at least, one
block which is a linear combination of the others.

the time-execution tends to increase when m or n be-
come large: this is logical since, in these cases, the text
contains more characters and requires hence more com-
putations to be decrypted. We also observe a small im-
pact of the parameter p on the gain: the larger p is, the
larger the number of points below the diagonal seems
to be. This means that the OBA seems to be more effi-
cient than the BFA when one studies ciphertexts in rich
alphabets.

Impact of the number of independent blocks

As explained in Section 2.2, the size of the orbit of a ci-
phertext C, whose influence on the computational com-
plexity of the OBA can be seen through τ1, depends on
the number q of linearly independent blocks within C;
by standard linear algebra arguments, we have q ≤ n.
Obviously the number of possible key-matrix does not
depend on this parameter q and so, whatever the value
of q is, the complexity of the BFA remains the same.
Hence one expects the OBA deciphers faster on aver-
age ciphertexts having q < n independent blocks than
the BFA does. Our aim here is to illustrate this fact in
practice by using our experiments.

Min 1st Qu. Median Mean 3rd Qu. Max

0.973 0.987 0.993 0.995 0.999 1.00

Table 1: Summary of q
n over all our examples.

For the sake of completeness, a simple statistical
study of the ratio q

n over our 129,600 texts is given in
Table 1. As expected, this ratio is generally close to
1 for our random texts, as expected, only few texts do
not have the maximum number of independent blocks.
One interesting issue would be to make the same sim-
ple study for meaningful texts in a given language.

In Figure 2, we observe the distribution of the time-
executions but with respect to the ratio q

n ; note that the
plot starts at 2,000 seconds. It is clear that the percent-
age of independent blocks impacts strongly the time-
execution of the OBA: the fewer independent blocks
the ciphertext has, the faster the decryption via OBA
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is. While such texts are rare according to the above ta-
ble, the OBA takes a huge advantage against the BFA
in such cases, even in the case where the ratio is close
(but different) to 1.

6 Conclusion
In this paper, we formalised the Orbit-Based Attack,
whose principle has been firstly introduced in (McDe-
vitt et al., 2018), by applying basic notions from group
action theory; this provides a new type of ciphertext-
only attack for Hill. This attack is based on the fact that
Hill can not cipher an input text to any output one: the
latter belongs necessarily to an explicit set associated
to the former, namely its orbit, whose size is proved to
be smaller than the one of the key-space. This attack
consists then in making a search over only the orbit of
the ciphertext.

We focused then on the computational complexity
and time-execution of an algorithm for the OBA. Even
if this algorithm has the same complexity as the one of
the classical Brute-Force Attack (consisting in testing
all the invertible matrices) in the worst case, our ex-
periments show that this algorithm is faster on average
than the Brute-Force Attack in practice. Discussions
on the influences of some parameters of the text on the
gain in terms of runtime of the OBA over the BFA are
given. In particular, our theoretical and experimental
results exhibit an interesting gain in the particular sit-
uation where the text has not the maximal number of
linearly independent blocks.

We finish by discussing on the outlook. Consider-
ing ciphertexts for which some prior knowledge on the
language are available is an interesting issue, reducing
potentially the computational complexity of the OBA
by using relevant statistical tools. A hope would be to
refine the results obtained in (McDevitt et al., 2018)
thanks our formalisation. A comparison with the Row-
By-Row Attack from (Bauer and Millward, 2007; Yum
and Lee, 2009; Leap et al., 2016) would be interesting
as well.

We mention that some steps of the algorithm could
be refined in view of optimisation of the attack. More-
over, except the LU-type decomposition, the rest of the
algorithm can be parallelized, reducing potentially the
runtime of the OBA. An empirical evaluation could be
then performed as future works.

A last interesting issue would be to study whether
the principle of the Orbit-Based Attack can be applied
to other polygraphic substitution ciphers.
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Abstract

We explore the up-to now unknown de-
tails of the history of cryptology in Slo-
vakia found in Slovak archives. This con-
tribution focuses on cryptology of the Slo-
vak State, which was a German puppet
state during WW2. We identify three
main types of ciphers in use. Firstly,
ciphers from the former Czechoslovakia
were adopted. During main military cam-
paigns, the ciphers were mostly dictated
by Germany. Finally, we describe a series
of hand ciphers A-x specifically designed
in Slovakia, mostly for internal use.

1 Introduction

The territory of modern Slovakia was for a long
time a part of the Kingdom of Hungary. After the
proclamation of the first Czechoslovak Republic
on October 28, 1918, it has become a part of the
new republic. A good overview of the situation of
cryptology in the former Czechoslovakia is given
by Š. Porubský in (Porubský, 2017).

On March 14, 1939, a separate Slovak State
was created as a puppet state of the Nazi Ger-
many. Czech territory was directly absorbed by
Germany as a Protectorate. Former representa-
tives of Czechoslovakia escaped to France, and
later to the UK, to form the foreign resistance.
Top intelligence officers of Czechoslovakia man-
aged to escape to London along with intelligence
files. However, the cryptology in Czechoslovakia,
and later in London resistance movement was very
weak, as it is demonstrated in books written by J.
Janeček (Janeček, 1998; Janeček, 2001; Janeček,
2008), as well as in Cigáň’s manuscript analysed
by Š. Porubský (Porubský, 2017). Communica-
tions with the exile movement played an important
role during the anti-nazi Slovak National Uprising
that started in August 1944. The situation with

exile movement was complicated by cooperation
with communist exile, which was connected to the
Soviet Union, and partisan movement.

While the state of cryptology and secret
communications of the exile government of
Czechoslovakia are relatively well-known, as far
as we know, the situation of the cryptography dur-
ing the Slovak State was not studied in details yet.
As mentioned, the Slovak State was a puppet state,
and ally of Nazi Germany. The Slovak State de-
clared war against German enemies, including the
USA (curiously, there was never a peace treaty
signed, because the Slovak State was not recog-
nized in the aftermath of war). Slovak Army par-
ticipated in military campaigns against Poland in
1939, and against the Soviet Union. In June 1944
remnants of the two Slovak divisions were dis-
armed due to low morale, and possibly due to mis-
trust by German command.

In our contribution we present some of cryp-
tologic facts uncovered in the Military History
Archive (part of the Institute of Military History
established by the Ministry of Defence of the Slo-
vak Republic). We want to clear a common mis-
conception that the Slovak State cryptology was
only directly dictated by Germany. We show
some of the means of the cryptologic cooperation
between German and Slovak armies, as well as
some specific ciphers developed in Slovakia dur-
ing WWII.

2 At the beginning of the war

In June 1939, the MNO - ”Ministerstvo národnej
obrany” (Ministry of National Defence) ordered
the subordinate headquarters to report the list of
officers with a cryptologic training. One month
later it was ordered to report all the available ci-
phers and cryptographic directives. The goal of
the ministry was to review the current state of se-
crecy in the newly established Slovak State.

From these reports we can conclude that the
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available ciphers (and codes) belong to the pre-war
era, namely:

• code ”ZSD”,

• hand-cipher ”Q” (also called as key ”Q”),

• cipher-machine (without any name in the
archival documents).

All these ciphers (and codes) have been used be-
fore the war by the Czechoslovakian army1. We
were unable to find any document mentioning
the cipher-machine’s name, but based on (Šklı́ba,
2007- 5; Šklı́ba, 2007- 7/8), only the ŠTOLBA
cipher-machine was in use before 19382.

The encryption service was reopened on 15th
of July, 1939 - reusing the available ciphers. The
hand-cipher ”Q” was selected as the main cipher
system. The document ”Spojovacı́ rozkaz č. 1”
(Communication directive no. 1) from August
19393 was an order to encrypt all internal radio-
telegraphic messages using this cipher. In the
same month, on the 15th of August, 1939, the use
of available cipher-machines was also (re)started.
Document called G-VII-8 named ”šifrovánı́” (en-
cryption) was the main cryptographic directive in
use with attachments describing the cipher sys-
tems such as the key ”Q”.

The available materials and directives show
only internal use of these ciphers. Unfortunately
it’s not known, whether these ciphers were also
used in a communication with the allies. This
hand-cipher ”Q” with the cipher-machine was still
in use in December 1942, and the keys and pass-
words were distributed at least up to April 19434.
The daily keys for the cipher-machine were dis-
tributed for the whole year of 1943.

The G-VII-8 was extended in 1943 with direc-
tives from Germany (without changing the name
of the document). At this time the Slovak State
also adapted some German ciphers including the
Enigma - as described in the next section.

1Document 20.800/Taj.3.odd.1939 in (Military History
Archive in Bratislava, 2019), fund KVV, box n. 2.

2ŠTOLBA is a cipher-machine with 6 main rotors and
with 3 rotors controlling the rotor stepping. The daily keys
distributed in 1939 for the ”cipher-machine” also contains a
3 letter word and a 6 letter word.

3Document k. ć. 77/39/Taj.3.odd.1939 in (Military His-
tory Archive in Bratislava, 2019), fund MNO tajné, box n.
2.

4Document 404621/Taj.obr.1942 in (Military History
Archive in Bratislava, 2019), fund 53 (53-88/1-19).

3 Ciphers from Germany

“...The encryption is performed by the
commander of the division using a
cipher-machine. ... The cipher-machine
is a box of dimension appr. 40x50 cm.
The machine has keys like the type-
writer and letters that lights during the
encryption. The encryption is enabled
by a 3-wheel system...
Created in Germany (Berlin).”5

In September 1942 Ján Morvic completed a sig-
nal corps training in Germany (Nachrichtenschule,
Halle). One part of the course was about secrecy,
describing the German Enigma (without mention-
ing the name of equipment in the report).

In March 1943, an encryption training was de-
signed6 to learn the German hand-ciphers and the
cipher-machine.

In April 1943, a new document called ”návod k
šifrovaniu” (manual of encryption) was created7.
This document contained a description and in-
structions for two German hand-ciphers NS428

and TS42a9 - introducing the German ciphers to
the Slovak State departments.

Germany also gave an order10 to unify the en-
cryption among the allies. The Slovak State re-
ceived directives for translation, extending the ex-
isting crypto-directive G-VII-8. The new directive
consisted of four parts:

• general encryption rules (H.Dv.g.7) as G-
VII-8-a,

• instructions to the ”Enigma” (H.Dv.g.13,
H.Dv.g.14) as G-VII-8-b,

• instructions to NS42 as G-VII-8-d,

• instructions to TS42a as G-VII-8-c.

When the German ciphers were in use, the daily
keys were distributed monthly. There were 2 types
of Enigma keys:

5Document 83375/spoj.2.1942 in (Military History
Archive in Bratislava, 2019), fund MNO tajné, box n. 18.

6Telegram from 24. III. 1944 as an attachment
to 2879/Dov.3./6.1944 in (Military History Archive in
Bratislava, 2019), fund MNO dôverné, box n. 475.

7Document 7.632/Taj.3.odd.1943 in (Military History
Archive in Bratislava, 2019), fund RD, box n. 45.

8Gen.StdH/Chef HNW IV.89 b 30 Nr.7.370/42.
9Gen.StdH/Chef HNW IV.89 b 30 Nr.7.360/42.

10Höherer Wehrmacht - Nachrichtenführer Mittelost Nr.
2241/geh.1942 referring to Gen.StdH/Chef HNW IV Nr.
8537/42.g.v.10.1942.
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• marked as ”Slovensko” (Slovakia) - to be
used in the country,

• to be used with the allies.

The NS42 keys were distributed alongside with the
TS42a, where the TS42a was designed to replace
the NS42 in case of offensive army movement.

The knowledge of German ciphers among the
Slovak signal corps officers wasn’t on the required
level, so there was an effort to train the staff to use
these ciphers11.

4 Design of a Slovak cipher

The Slovak State started the war with the available
Czechoslovakian ciphers. Before adapting Ger-
man ciphers and directives, the Slovak State devel-
oped own ciphers (called ”A-2”) for internal use.
Note, that the cipher development was still over-
seen by Germany.

A new cipher called ”A-2” was firstly intro-
duced in May 1940. The cipher was described
as a complicated transposition designed to encrypt
50− 600 letters in a case of less-important radio-
grams. After the first distribution, all headquar-
ters were asked to encrypt some radiograms with
this cipher, and to send them to a corresponding
place for the analysis12. The received reports de-
scribe the cipher as a practical, fast and secure
enough13. It was also tested by the OKW Berlin.
OKW Berlin allowed to use (see Figure 1, the
stamp ”Tajné” means ”Secret”) this cipher.

But the use of this cipher wasn’t always without
problems. Due to a large amount of errors made
by encryption officers, it was ordered to re-train
the use of the ”A-2” cipher.

In 1941 a new directive for the encrypted com-
munication was implemented replacing the previ-
ous one. Based on the directive, it was allowed
to use only ”A-2”, the cipher-machine and the
”ZSD” code. Most of the departments and battal-
ions were allowed to use the ”A-2” cipher only14.

Later on, in 1943, after the German ciphers
were adapted, the Slovak one was still in use and

11Document 2823/dov.spoj.1944 in (Military History
Archive in Bratislava, 2019), fund MNO dôverné, box n. 475.

12Document 156.458/9.1940 in (Military History Archive
in Bratislava, 2019), fund MNO dôverné, box n. 34.

13Document 135.992-II/9.Taj.1940 in (Military History
Archive in Bratislava, 2019), fund MNO dôverné, box n. 34.

14Document 30.196/Taj.spoj.1941 in (Military History
Archive in Bratislava, 2019), fund 55 (55-27-5).

trained alongside with the German hand-ciphers
and the cipher-machine15.

During the WW2 years, several up-
grades/versions were created, the known versions
are from ”A-2” up to ”A-5”. The main contributor
on the development was Michal Kmet’o-Dovina16.

4.1 M. Kmet’o-Dovina

Michal Kmet’o-Dovina was the commander of
the ”hlavná voj. radiostanica MNO” (the main
military radio-station of the Ministry of National
Defence) and later on from 1943 worked as an
encryption officer of second department of the
Ministry of National Defence (VHU, 2013). He
completed a cryptographic course ”Pı́semné kursy
kryptografie”17 before WWII in 1938 - with a
good score.

Due to a lack of officers experienced with en-
cryption, in 1940, a creation of an encryption
course was ordered. One of the instructors from
this course was Michal Kmet’o-Dovina18.

During the Slovak National Uprising (SNP),
Kmet’o-Dovina was helping the anti-nazi move-
ment, keeping communication channels and de-
veloping new encryption system for the Uprising
and later guerrilla fighters (VHU, 2013). From
the available documents, it is not clear whether the
development of the specific Slovak cryptographic
systems was a part of the Uprising preparations.
However, the cryptography during SNP is a very
large and specific topic that is out of the scope of
this article.

5 The ”A-x” hand-cipher

The ”A-2” hand-cipher was developed as a first
cipher from the ”A-x” series. The cipher was up-
dated several times during the years. Versions ”A-
2” and ”A-3” consisting of 4 tables, and ”A-4”
consisting of 2 tables. We don’t have detailed in-
formation about the other versions.

The ”A-2” is a transposition cipher, designed to
encrypt less important messages of length up to
600 letters. Main transposition was defined by a

15Telegram from 24. III. 1944 as an attachment
to 2879/Dov.3./6.1944 in (Military History Archive in
Bratislava, 2019), fund MNO dôverné, box n. 475.

16Documents 173.074/Taj.spoj.1941, 592/Taj.spoj.1941
and 22/Taj.1941 in (Military History Archive in Bratislava,
2019), fund MNO tajné, box n. 10.

17Document 151332/-II/9.1940 in (Military History
Archive in Bratislava, 2019), fund MNO dôverné, box n. 57.

18Document 151332/-II/9.1940 in (Military History
Archive in Bratislava, 2019), fund MNO dôverné, box n. 57.
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series of secret tables, and each message had also
a specific message key. It was forbidden to en-
crypt text of length under 50 letters. Each table has
four logical sides — two are printed on the front
page (the second one is upside-down version of the
same page), and two on the back page. The logical
side and the table’s identification is marked with a
red and black color on each side as side/table, later
on in ”A-4” this was flipped to table/side.

On each side, in the first row (header) of the
table are two strings:

1. table identificator: 13 letters (unique for each
table),

2. side identificator: 6 or 7 letters (different for
each side).

The rows of the table are also labelled with one or
two letters from the alphabet. Before encrypting a
message, the message key is constructed from the
letters identifying the order of tables, pages and
starting positions within pages.

Before encrypting a message, several rules19

were defined how to pre-process the input text:

1. Replace:

• . with X,
• : with XX,
• , with QW,
• . (full stop) with XW.

2. Write special characters with a full name,
such as:

• ” as UVODZOVKY (quotation mark),
• ( as ZÁTVORKA (parenthesis).

3. Write numbers with a full name, divided to
digits:

• 14 as JEDNA ŠTYRI (one four).

4. Replace accent, like:

• á with AA,
• č with CV.

5. When an accent is removed from a name, a
letter Q should be put after this name.

6. When the text does not divide the number 5
a padding should be used (no longer as 4 let-
ters) using some of the QXW letters or using
the ”STOP” word.

19Document 164/Taj.spoj.1941 in (Military History
Archive in Bratislava, 2019), fund MNO tajné, box n. 10.

The cipher ”A-2” had 4 tables. Later on, in
version ”A-4”, this was reduced to only 2 tables.
As ”A-4” encryption mechanism is otherwise the
same as ”A-2”, for the sake of simplicity, we will
continue the description with ”A-4” procedure. In
Figure 2 we show one of the pages showing two
sides of one table.

To start an encryption, sender of the group cre-
ated a message key called ”skupina oznamova-
tel’a” (sender group), consisting of 5+5 letters. He
selected

1. the order of the tables,

2. the order of the four available sides for each
table,

3. the offset (row identificator), defining where
to start writing the text,

and encoded his selection as a group of first 5 let-
ters. The first letter of this group contains a ran-
domly chosen letter from the identificator label of
the first selected table, and the remaining four let-
ters are randomly chosen letters from the labels of
the sides (in the corresponding order). During the
encryption, after the four sides of the first selected
table were used, the encryption would automati-
cally continue with the remaining table. The se-
cond 5 letters were used to encode the row-offset
identificator, and then the order of the sides of the
second table.

As an example (using the Figure 2), we can
choose to start with the table marked 2. We select
randomly one letter from the selected table identi-
ficator string ”RKGJXDOQHFVB”. If we want to
start the encryption from side 2 (marked 2/2), we
select randomly one letter from the side identifica-
tor ”JLIXZA”. Next we choose the side 1 (marked
2/1) as the second side, selecting a letter from
”CURKTG”, and so on.

The encryption table itself consists of small
rectangles forming a matrix, where some of the
cells are cut off. This is essentially a variant of the
Fleissner grille. Each table realizes multiple 5×5
grilles in parallel, randomized by a message key.

The plain-text letters are filled into these cells
based on the message key. The text is written in
an order defined by the red arrow painted on the
corresponding side. On every side, we start to fill
the first available (cut off) cell on the row labelled
with the chosen row identificator. It is necessary
to note, that in case of a shorter text, only a part
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of the matrix is used (not ending on the last free
cell). The encryption grille was designed to auto-
matically form five letter groups of the encrypted
text. On each side, there are columns labelled with
numbers. Since the first row is known, we can
save the last number from the previous row. If we
add the plain text length (after the pre-processing)
to this number, we obtain the position of the final
cell.

To continue in our example, we choose the row
offset ”Q” (starting in the seventh row). The last
number from the previous row is 180 (red color).
Suppose the text length to be 50 letters long. Our
ending position will be 180+50= 230, so we can-
not use cells after this position.

The decryption is straightforward, using the
same order of tables, sides and using the same cell
range.

For the interested reader, we include an exam-
ple of the encrypted telegram (Figure 3), with the
following transcript:

VVXKW QUKQW

PZJXY AVTQA ZVRPO DAOSV PLLQA XIMVS

UOLNT IURTC DVEAL ATSNE WPDSE EUOPU

LSOTR OYKOJ UAOXV ECDTQ AKXLS JSSPD

SCAXR VPEAI RVIOT UOXAO SXNRK ESAPU
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Appendices

Figure 1: Report of the ”A-2” from the OKW Berlin - in (Military History Archive in Bratislava, 2019),
fund MNO dôverné, box n. 34.
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Figure 2: The ”A-4” hand cipher (Table 2, sides 1 and 2) - in (Military History Archive in Bratislava,
2019), fund MNO tajné, box n. 10.
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Figure 3: Text encrypted with the ”A-4” hand cipher - in (Military History Archive in Bratislava, 2019),
fund MNO tajné, box n. 10.
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Abstract 

The response of German Naval 

Intelligence, at various points in World 

War Two, to suspicions that the Enigma 

cipher had been broken is well known. In 

1943 the British were faced with 

evidence about the possible compromise 

of the Typex machine, the highest-level 

communications device in use across 

their armed forces. This paper compares 

the response of the British to the Typex 

scare to the German investigations 

concerning Enigma.  

Reconstructing the story, it seems that 

the Germans had, in fact, read some 

Typex messages. Although Allied code-

breaking during the war operated on a 

higher plane than Germany’s, it was 

inappropriate to assume that the Germans 

could not do so. Various similarities 

between the German and British 

responses emerge: the British were ill-

adapted to investigating their own 

security; they were reluctant to chase 

down the truth, using arguments to justify 

their desire to be reassured that all was 

safe. 

1 Introduction 

The British answer to high-security enciphered 

radio communication was the Typex machine. 

Typex has been discussed elsewhere (Erskine, 

1997; Ferris, 2005). Suffice it to say here that 

was an electro-mechanical machine, whose 

principle, as with the more famous Enigma 

machine, was a set of wired rotors each of which 

switched a letter of text for another, with the 

rotors stepping on to create a different cipher 

overlay each time a key was pressed. Additional 

security features included settable entry and exit 

‘stators’, rotor-cores which could be inserted 

backwards so as to invert their left-right 

behaviour, a set of ten rotors from which to 

choose five, and in some versions a plugboard 

(like the German military version of Enigma). 

All this was good for British communications 

security, but there were still vulnerabilities. First, 

the British armed services were not universally 

equipped with the plugboard version of Typex. 

Then there were elementary errors of 

cryptographic security, such as (in particular) the 

operational error where the machine operator 

chose as his start-position for encipherment a 

non-random orientation of rotors based on the 

end-position of the preceding message – 

facilitating a cryptanalytical attack known to 

Bletchley Park as ‘Herivelismus’.1 Together with 

the risk of capture of a machine, its operating 

instructions, and rotors, there was a high risk that 

the German code-breaking organisations in the 

Oberkommando der Wehrmacht (German Armed 

Forces General Staff), the Oberkommando des 

Heeres (German Army General Staff) or the 

Luftwaffe Chi-Stelle (German Air Force Cipher 

Bureau) would be able to crack messages sent in 

Typex.  

Despite this, the idea has persisted that the 

Germans never broke Typex (Hinsley et al., 1981; 

TICOM, 1946, vol 4). That received view is not 

clearly wrong, but there was certainly a point 
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during the war when it appeared that the 

Germans could read Typex messages and had 

done so. This paper examines the evidence which 

the British had before them, and how the British 

reacted. A comparison can then be drawn to the – 

perhaps notorious – lack of effective response on 

the German side to a series of equivalent scares 

about the security of Enigma (cf. Mulligan, 1985; 

Ratcliff, 1999, 2006). 

2 The Typex Scare of 1943 

The news came out, as news does, in bits and 

pieces. First there was an alarming message from 

Bertie. ‘Bertie’ was the name given to 

Commandant Gustave Bertrand, the signals 

intelligence officer from the French Army’s 

‘Deuxième Bureau’ who had managed somehow 

to re-establish himself under the Vichy régime 

and run a small code-breaking operation, which 

despite everything remained in contact with the 

British Secret Intelligence Service, the parent of 

the Government Code & Cypher School at 

Bletchley Park. As well as running a team of 

Polish, Spanish and French code-breakers, Bertie 

had his ear to the ground in many ways, 

receiving news relating to radio communications 

security and similar issues from a range of 

sources.  

On 19 July 1942, Bertie signalled to the 

British that there were reports that the German 

Air Ministry was using adapted versions of two 

‘English cipher machines’ captured at Dunkirk.2 

It is not difficult to imagine that the British had 

lost a Typex machine in the chaos of the Dunkirk 

evacuation, and indeed they had. 3  However, 

Typex would be difficult to crack without the 

rotors, and with a set of ten rotors from which to 

choose five (as opposed to the three when 

Marian Rejewski achieved his feat of reverse-

engineering the Enigma machine in 1932) the 

reconstitution of the wiring of Typex rotors 

would have been a herculean task without a 

physical capture; it seems that the Germans did 

not manage to capture Typex rotors at Dunkirk. 

(This probably reflects the fact that the Typex 

equipment was too bulky to be easily moved, so 

had to be left behind, whereas the rotors could be 

much more easily transported or disposed of.)  

                                                           
2 TNA HW 40/88. 
3 There are many TICOM interviews which stated this, for 

example, D-83 (TNA HW 40/87), D-40 (US National 

Archives and Records Administration (NARA) RG 457 

HMS P11 Box 24). 

Whether Bertie’s message needed to be taken 

seriously, amid all the noise of contrary 

intelligence heard in the cacophony of war, is 

difficult to judge even with hindsight. But in the 

same month there was another snippet of news. 

A certain Dr Vögele had, according to a German 

signal intercepted and decrypted at Bletchley 

Park, been sent to visit cipher material captured 

following the fall of Tobruk to Rommel: the 

signal was sent only five days before Bertie’s 

telegram, and only just over three weeks after the 

capture of Tobruk. The British probably did not 

know at that stage that Vögele was a senior 

cipher specialist (‘Regierungsrat’) in the 

Luftwaffe’s Chi-Stelle, thus establishing a link to 

Bertie’s note which showed that German Air 

Force intelligence could be engaged in an attack 

on Typex security. A note on the telegram, 

apparently in the handwriting of Lt Cdr Russell 

Dudley-Smith RNVR, the officer at Bletchley 

Park tasked with cipher security questions, says 

‘no typex machines forward of Gambut [a 

military airfield complex in Libya] during recent 

fighting’: maybe, then, this was more noise.4  

The third tiny piece of the jigsaw-puzzle came 

on 15 August. ‘The following message in code 

has been received from a British Prisoner of War 

in GERMANY… COLONEL STEVENSON 

C.S.O. S. AFRICA DIVISION REPORTS 

THAT ALL CODES CIPHERS TELEX 

MACHINES AND DRUMS DESTROYED 

TOBRUK BEFORE JERRY’S ENTERED.’ 5 

Why would a prisoner go to such lengths to 

report that what ought to have been done, had 

been done, unless perhaps there was a question 

about it?  

3 The British response 

Whatever the immediate cause, something seems 

to have prodded the British into action on Typex 

security. It may have been an intercept. On 20 

January 1943, the commanding officer of a 

signals intelligence regiment, believed to be 

stationed in Greece, wired ‘OKH/In 7/VI’ asking 

whether the recipient dealt with a certain kind of 

British five-letter traffic. ‘In 7/VI’ was the 

cryptanalytic division of the Oberkommando des 

Heeres, and it was noted that this was the first 

mention in secret signals of what seemed to be a 

programme of interception of Typex messages. 

                                                           
4 TNA HW 40/88. 
5 TNA HW 40/88. 
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To begin with, Alan Turing was asked to 

advise on the maximum secure message length 

for a Typex signal – on the basis that long signals 

should be split into pieces, each enciphered using 

a different rotor start-position, thereby reducing 

the exploitability of ‘cribbing’ to reveal the 

settings in use. Turing reported on 10 July 1943, 

‘it seems that 1000 letters would not be too long 

with the form of the machine with a pluggable 

Umkehrwalze [reflector rotor], but that with the 

other form of the machine the question turns on 

the crib-avoiding discipline’. 6  The problem 

which this short sentence reveals was that the 

British Typex machine was fundamentally 

insecure unless they were using the pluggable 

reflector. In any case, Turing’s assessment was 

hardly a thoroughgoing examination of security 

relating to Typex.  

What the sentence from Turing’s paper does 

not reveal is that the Typex machine existed in a 

form which lacked not just a pluggable reflector, 

but any kind of plugboard at all. At least some of 

the time, the British Army in North Africa was 

using only the simplest version of the Typex 

machine without the all-important plugboard. 

Alan Turing – who had worked on the Enigma 

problem in the earliest years of the war had just 

confirmed the ease of breaking a rotor-based 

cipher machine based on cribbing. Dilly Knox 

had broken such machines from the mid-1930s 

onwards. Post-war German interviews and 

documents confirm that the Germans knew how 

to do this too.7 Worse still, Commander Edward 

Travis, then deputy head of the GC&CS, had 

explained in 1940 that he had concerns about 

Typex.8 The central problem with Typex in 1943 

was that the British were ignoring what they 

themselves knew about rotor-machine security: 

allowing the services to use a bad machine with 

lax operational practice, a combination of affairs 

which surely ought to have rung alarm bells. 

The bells were not going to ring, though, 

without an accumulation of evidence which was 

overwhelming, and that would only happen if the 

Germans had actually broken Typex and then 

told the British that they had done so. This is, in 

practice, what happened when the Allies got 

notice that Colonel Fellers’s ‘black code’ 

                                                           
6 TNA HW 40/87. 
7 OKH In 7-VI Kriegstagebuch for July 1941, Politisches 

Archiv Berlin, TICOM collection S8 (PA-S8), nos T-2755 

to T-2764; TICOM document D-83, TNA HW 40/87. 
8 TNA ADM 223/505. 

messages back to Washington from Cairo were 

being read, and when the Allies got notice that 

the Royal Naval Cypher number 3 was being 

read by the German Navy’s B-Dienst with 

appalling consequences for the security of 

convoys in the North Atlantic (Tighe, 1945). 

Thus, by 1943 there was a growing body of 

concern that not all was well in the world of 

Allied signals security. The most damning case 

regarding Allied army and air force signals was 

presented by the Germans themselves, when 

their field signals security regiment NFAK 

(Nachrichtenfernaufklärung) 621 was captured in 

Tunisia. Not only did the prisoners explain that 

American signals security on the battlefield 

(where lower-grade ciphers were in use) was 

rotten, but there was a fresh set of indications 

that Typex itself might have been read. It only 

required the Germans to keep quiet about their 

successes for the British complacency to 

continue.  

During the final stages of the battle for Tunisia 

in May 1943 the German signals unit NFAK 621 

was among those who surrendered to Allied 

forces. NFAK 621 had a difficult history. On the 

one hand, the unit had been immensely 

successful at providing Rommel with real-time 

signals intelligence, based on both traffic 

analysis and in-the-field cryptanalysis, but on the 

other hand its star officers and much of the unit 

had been captured in July 1942 during the early 

stages of the second Alamein battle. Now even 

more men from the rebuilt unit had once again 

fallen into Allied hands. Leutenant Bode was 

interrogated in June 1943, and revealed that he 

had been engaged on translating and emending 

British machine messages from 1937 until June 

1940. The interrogator asked what kind of a 

machine; Bode said ‘a sort of typewriter. A man 

just typed the nonsense stuff, and the English 

came out on a tape.’ That sounded rather like a 

Typex. The intelligence captain from MI8(a) 

who interrogated Bode added that ‘Unfortunately, 

BODE, at that time, was a very junior N.C.O., 

and the knowledge of the machine was very 

restricted. It was in fact treated very much as our 

own CX/MSS knowledge.’ (CX/MSS was the 

designation to intelligence received from ‘most 

secret sources’, in other words decrypts resulting 

from cryptanalysis.)9  

But ‘the trouble with BODE is that he is trying 

to tell us more than he knows and is only too 
                                                           
9 TNA HW 40/88. 
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ready to agree with anything one says.’ On the 

other hand, ‘there is a possibility of obtaining 

confirmation of BODE’s story from other 

members of 621 Intercept Coy. when they arrive 

in this country for interrogation.’ So, another pair 

of prisoners were interrogated on 23 August 

1943. One – Leutnant Haunhorst – had been a 

divisional intelligence officer working closely 

with NFAK 621. The other – Oberleutnant 

Possel – was a senior radio officer in the 10th 

Panzer Army Intelligence Regiment. 10 

Independently, these two officers said that one or 

more Typex machines had been captured at 

Tobruk, and a certain ‘Warrant Officer Wagner’ 

using ‘reference books’ containing settings had 

been able to set the machine and decode 

messages. Some of the reference books came 

from the ‘Haupt Chiffrier Stelle OKH’ – the 

Head Cipher Office of the Oberkommando des 

Heeres.11  

Obviously, further action was needed. But the 

investigation was, almost perversely, directed in 

the wrong way. Rather than look at the 

vulnerability of Typex, it seems that evidence to 

confirm the security of Typex was sought out.  

4 Confirming confirmation bias 

So the first thing actually done was to track 

down what had happened to the Typex machines 

at Tobruk. Questionnaires were sent out and an 

inquiry as to destruction procedure was 

undertaken. ‘Navy report no typex equipment 

held by RN ships or staffs using Tobruk. RAF 

report no machines or drums [rotors] held RAF 

in Tobruk relevant dates. They add all drums 

held RAF during retreat to Alamein safely 

returned.’ ‘Your [question] five One set black 

drums Number 1270 handed over on authority 

CSO 8 Army to Captain MacFarlane Cipher 

Officer 2 SA Division reported by latter 

destroyed night before Tobruk file reference 

8Army X2/883 of 20 June 42. Destruction 

certificate black drums 1270 based on this cipher 

message which stated all cipher equipment 

except one “W” Book one local recyphering 

table destroyed.’12 

Another task was to locate the other members 

of NFAK 621 who might be able to cast further 

light on the alleged reading of Typex in North 

                                                           
10  TICOM document I-16, TNA HW 40/89. 
11 TNA HW 40/88. 
12 TNA HW 40/88. 

Africa, as revealed by Possel and Haunhorst – 

ideally the Warrant Officer called Wagner. After 

some months, ex-NFAK 621 prisoners Habel and 

Bremer were located, but there was no trace of 

any Wagner. Habel, who had been the 

commander of NFAK 621 at the time of its 

capture, was transferred from the United States 

to London together with Bremer, where they 

arrived on 22 December 1943, and interrogated. 

‘Although every means possible were used to 

induce these two men to talk, their inherent 

security which is of an abnormally high standard 

has completely defeated normal methods of 

approach.’13 So the British were none the wiser. 

Plus, the proper procedures had been followed at 

Tobruk: destruction certificates had been 

prepared, which should not have happened if the 

Typex equipment had not been properly 

destroyed, so clearly prisoners like Bode, 

Haunhorst and Possel must be mistaken or 

attempting to mislead.  

Indeed, it was quite possible that they had 

been mistaken. Various forms of rotor-based 

cipher equipment was being used in North Africa. 

If Typex were being read regularly, through 

cryptanalysis rather than capture of a few weeks’ 

worth of settings, surely a more robust response 

to Allied plans would have been experienced on 

the ground, whereas it had been possible to take 

the Axis by surprise in relation to major 

operations like TORCH (the landings in French 

North Africa) and HUSKY (the invasion of Sicily). 

By the spring of 1944, with the preparations for 

the main invasion of continental Europe well 

under way, those events seemed a long time ago, 

and the Typex scare of 1943 something one 

could stop worrying about. 

It was therefore, perhaps, not surprising to find 

Gordon Welchman of Bletchley Park reaching 

that conclusion, even before Habel and Bremer 

had been grilled. Welchman was not only highly 

intelligent and highly persuasive but he also 

carried the confidence of Commander Travis, 

who by this time was head of Bletchley Park. 

Travis appointed Welchman to lead a Machine 

Coordination and Development Section in 

September 1943, which meant that among other 

things Welchman was (occasionally – there was 

a question over his terms of reference) in charge 

of security of cipher machinery. Welchman’s 

memo is interesting: 

                                                           
13 TNA WO 208/5109. 
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This story about the mysterious Wagner sounds 

like a garbled account of something true. I 

imagine that, having captured a few Type X 

machines, the Germans would have the sense to 

maintain a forward decoding party to take full 

advantage of any captured keys, but it seems 

unlikely that we should have lost any Type X 

keys in Tunisia and the story suggests that there 

is far more in it than that…. 

As regards breaking, I have always felt that 

the Germans could not be breaking any of our 

Type X traffic because, if they were, they would 

take steps to prevent us breaking their enigma 

traffic…. 

I have never thought seriously about possible 

methods of breaking Type X, but should have 

guessed that the equipment necessary would be 

pretty bulky unless the problem is being 

simplified by extreme carelessness…. 

On the whole I feel that a thorough 

investigation would be a good thing, but I don’t 

see who could do it. However it may be possible 

to shoot down the Wagner story after further 

discussion here and further interviews with 

P.O.W’s. It is quite possible that Haunhorst was 

merely shown how the Type X machine worked, 

and it would be interesting to know whether he 

actually saw an English message decoded.14 

So the idea of an investigation into Typex 

security was not pursued. Despite being told that 

the Typex project was clothed with the utmost 

secrecy within the German radio intelligence 

regiment, the idea that ‘Wagner’ might have 

been a cover-name for the Warrant Officer 

actually involved does not seem to have occurred 

to those involved in the interrogations. The 

British had decided to look away from the 

possibility of ‘extreme carelessness’ and rely on 

the specious idea that ‘if they were, they would 

take steps to prevent us breaking their enigma 

traffic’. But this argument was nonsense: putting 

it in reverse, the British were taking no 

cryptanalytical steps (despite the success against 

Enigma) to check up on Typex, and using that as 

an illogical excuse to take no steps to protect 

Typex.  

In a note of 3 June 1944, Lt Cdr Dudley-Smith 

stated that ‘Five months of interrogation has 

produced no additional information on German 

exploitation of Typex in N. Africa.’ He sounds 

                                                           
14 TNA HW 62/5. 

weary of the whole business. And that was how 

things stood, until after the war was over.15 

5 TICOM 

As is now well known, a ‘Target Intelligence 

Committee’ (TICOM) was set up in the summer 

of 1944 to track down German codebreakers and 

interrogate them as to their successes or 

otherwise (Rezabek, 2017; Jackson, 2013; 

TICOM, 1946). Over the course of the months 

and years following the invasion of Germany, 

many German individuals were asked to describe 

their attacks on Typex and the successes which 

they had had. 

Some of the answers were confusing, and 

some prisoners seem to have changed their 

testimony. However, the consistent story from 

the team at OKH In 7/VI (who had had Typex on 

their to-do list for years) was that they had 

initially put a great deal of effort into the attack 

on Typex, knowing that they could reconstitute 

the keys through cribbing, if they knew the 

wiring in the coding rotors; that they could 

reconstitute the stepping arrangement of the 

rotors, if they knew the key; and that partial cribs 

were available because through statistical 

analysis they knew that RAF messages began 

stereotypically with the letters AIRX and ended 

with a series of Xs as filler to make up to a round 

multiple of five characters for a group. They had 

Hollerith machinery in abundance and were 

adept at using it for sorting and statistics – as 

indeed had been done at Bletchley Park. They 

had captured keys for May and June 1940 and a 

memorandum from the War Office (MI1(b)) 

which remonstrated against lax cipher discipline. 

They were using ‘Herivelismus’ to predict rotor 

start-positions. All in all, they had had a good 

start on Typex.16  

But later on, the Typex experts – notably Dr 

Erich Hüttenhain, Regierungsrat in the OKW’s 

cipher research division – had abandoned work. 

Recovering the rotor wirings through statistical 

analysis would demand excessive amounts of 

Hollerith time, relative to the resources available 

and other priority work which was using the 

machinery to good effect. What is more, it is not 

clear that they had any answer to the more 

challenging problem of the plugboard – by 

contrast to the attack in Britain on Enigma, for 

                                                           
15 TNA HW 40/88. 
16 TICOM document D-83, TNA HW 40/87. 

35



which Alan Turing’s Bombe had specifically 

been designed. Yet Hüttenhain’s boss, 

Oberstleutnant Mettig, who at the time of the 

Tobruk capture was in command of OKH In 7/VI, 

said under interrogation that Typex was read in 

North Africa in 1942.17  But Mettig’s evidence 

seemed to be contradictory. He had said, only 

five days before, that the official in charge of the 

British section of In 7/VI, Referat Zillmann, 

‘despite great efforts was unable to break the 

English cypher machine’.18 Mettig later retracted 

the statement about North Africa, but doubt 

lingered. 

None of the OKH codebreakers interrogated 

seem to have been personally present in North 

Africa in 1942. Dr Vögele had been there, and he 

was accompanied to Africa by Inspektor Harms, 

from Mettig’s team in OKH In 7/VI. Our 

knowledge of this visit comes partly from a 

bugged discussion between Hüttenhain and 

another German codebreaker, Dr Fricke, which 

took place in the evening of 25 September 1945. 

Harms, aged 50, was not happy in Africa, and 

came home after two weeks complaining of the 

heat. It seems that Harms didn’t think too highly 

of Vögele: Vögele had ‘done nothing’ while they 

were there, except that he had filled two 

suitcases with material and taken them back to 

Germany while, apparently, Harms came back 

empty-handed. Furthermore, Hüttenhain was 

certain that Harms had seen nothing of Typex in 

North Africa – he would have said so, and he 

hadn’t. Perhaps, hinted Hüttenhain, Vögele (of 

the German Air Force’s Chi-Stelle) had had his 

own Typex operation in Potsdam?19  

The basics of what Hüttenhain was telling the 

TICOM interrogators are confirmed by the war 

diary of Inspektorat 7/VI.20 Harms certainly went 

to Africa in July 1942, when there was much 

excitement about the finds at Tobruk. The war 

diary also confirms that Zillmann had made no 

progress on Typex cryptanalysis in OKH. But 

lack of success on the part of Zillmann, as 

confirmed by Mettig, did not confirm lack of 

success in every place and by every agency. 

What is more, there were liaison meetings at 

various times between OKH In 7/VI and the 

                                                           
17 TICOM document I-48, TNA HW 40/166. 
18 TICOM document I-78, TNA HW 40/167; TNA HW 

40/89. 
19 Transcript of bugged conversation between Hüttenhain 

and Fricke, TNA HW 40/89. 
20 See fn 7; also PA-S8 T-2762. 

Luftwaffe’s Chi-Stelle, with Vögele in particular, 

while Mettig was commanding In 7/VI;21 at the 

time of Tobruk and after he was in a position to 

control the liaisons with other services. These 

liaisons included a link-up connecting the 

intercept team of the Luftwaffe in Athens and the 

NFAK 621 outpost in North Africa. 22  The 

missing part of the Typex puzzle was in the Chi-

Stelle, and held by Dr Vögele in particular. 

Luckily the TICOM group had captured Dr 

Ferdinand Vögele in August 1945. Vögele was a 

reluctant captive. 23  Vögele wrote an extensive 

CV, and catalogued numerous breakthroughs on 

various American code and cipher systems; as it 

was a British system, Vögele did not mention 

Typex. 24  Vögele’s colleague Lieutenant Pick 

wrote about British systems and repeated the 

mantra that an attempt had been made against 

Typex in 1940 but abandoned. Although Vögele 

was interrogated specifically about Typex, the 

interrogation took place on 25 September, the 

same day that Hüttenhain and Fricke were 

discussing the Typex question under the British 

microphones. So the interrogation of Vögele 

about Typex lacked the input from Hüttenhain 

and Fricke, and was superficial:  

VOEGELE stated that he would certainly have 

heard had Typex been broken, and reiterated 

most emphatically his belief that Typex was 

never broken. His considered opinion was that 

the breaking of Typex was impossible… He 

ceased taking the messages in 1940. When 

informed that a P.O.W. taken in Cyrenaica had 

described what appeared to be the registration of 

Typex traffic at Athens in 1942 or 43, 

VOEGELE said that one of his staff there, a 

cryptographer named ROSSKATH, had 

unofficially arranged that they take Typex traffic 

again for 4-6 weeks.25 

Despite this feeble examination, the evidence 

was beginning to fall into place. Even that old 

telegram from the early days of the scare, when 

In 7/VI had been asked by Athens about Typex, 

could be seen to be part of the picture, if 

someone went through the war diary and joined 

the pieces up.  

                                                           
21 PA-S8 T-1620. 
22 PA-S8 T-2762. 
23 TICOM document I-87,NARA RG 457 HMS P4 Box 35. 
24 Seabourne Report, Vol XIII, NARA RG 457 HMS A1-

9032 Boxes 974-6.  
25 TICOM documents I-87, I-119, NARA RG 457 HMS P4 

Box 35. 
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Yet, oddly, the conclusion on 22 September 

had been that it was Hüttenhain who was 

misleading the interrogators on the story of 

Typex. ‘Great emphasis is laid on the idea that 

they considered enigma, and therefore Typex 

insoluble.’ By the next month, it was thought that 

Vögele was ‘the problem’ – he had been caught 

out on the business of Typex interception in 

Greece, and ‘again we have no definitive 

evidence but the whole story does not ring 

true.’26 Vögele was a civilian and the time was 

up; the TICOM team could not hold him 

indefinitely, and by the time of that report it is 

likely that Vögele had gone back to Germany. 

The secret of Typex in North Africa would 

remain just that. 

The conclusion? It seems that the Eighth 

Army had left behind a Typex machine, 

complete with rotors and keys, at the time of the 

capture of Tobruk. Both OKH and the Chi-Stelle 

had sent someone over, but it was Vögele who 

had filled two cases with the materials and it was 

his agency, not OKH’s Harms, which had 

exploited it. For some period after that, 

decryption of Typex messages was possible by 

figuring out the message settings being used by 

the British. Mettig was in the loop, but his 

subordinates and OKW colleagues seem not to 

have been: the to-and-fro between NFAK 621 

and Berlin, noted by Prisoner Haunhorst, may 

not have involved OKH, especially if it 

concerned RAF issues. The main cryptanalytic 

player was Vögele of the Luftwaffe’s Chi-Stelle. 

The TICOM interrogators do not seem to have 

picked up on the differences, or the rivalries, 

between the German agencies. The limited 

duration of the German success against Typex 

was probably due to the gradual adoption of the 

plugboard model of Typex, against which even 

Vögele’s Chi-Stelle had no answer.  

So Typex messages probably had been read, 

although on the basis of battlefield captures 

rather than as a result of Bletchley-style general 

cryptanalysis. Even so, that poses the question 

whether the British should have reacted 

differently when confronted with evidence that 

their most secure communications device was 

either compromised or under cryptanalytic attack. 

                                                           
26 TNA HW 40/89. 

6 Comparing German and British 

responses to security scares 

The German Marine-Nachrichtendienst (naval 

intelligence service) is widely perceived to have 

scored not just one but three own-goals in failing 

to detect the Allied breaks into naval Enigma 

during the Battle of the Atlantic. Investigations 

took place in 1941, 1943 and 1944 into the 

security of Enigma. On each occasion, too-good-

to-be-true coincidences were drawn to the 

attention of those in charge of signals security, 

and on each occasion alternative explanations, 

fantastic if not wholly absurd, were preferred to 

the simple, obvious, and correct interpretation 

that Enigma messages were being read by the 

Allies (Tighe, 1945; Ratcliff, 2006; Mulligan, 

1985). German intelligence preferred its own 

narrative that Enigma was secure, so it had 

(consciously or unconsciously) to be shown to be 

so, and all evidence was interpreted in that sense. 

The consequences for German, and Allied, losses 

in the North Atlantic are well known. 

To quote Dr Rebecca Ratcliff (1999):  

In concluding that Enigma was not the source of 

enemy information, the investigators set out to 

prove only what could not have been the leak, 

Enigma. They did not set out to prove what was 

the source and did not produce a scenario which 

explained the [British] Admiralty’s 

information… German intelligence assumed the 

enemy would either be able to read the ciphers 

completely – and within a three to five day 

period or not at all. 

In parallel, though on a smaller scale, the 

British were shown evidence in 1942 and 1943 

which indicated that (as predicted by Travis in 

1940) Typex was not secure. Gordon 

Welchman’s memo seems to have many of the 

same errors as the German investigations, as 

explicated in Dr Ratcliff’s analysis. Welchman 

should not carry the blame for British failings, 

though: in 1942 the number of personnel in 

charge of own-systems security at Bletchley Park 

was one – the diligent Lt Cdr Dudley-Smith – 

and he a non-specialist to boot (Erskine, 2002). 

The Admiralty appointed Lt Cdr George Bull 

RNVR as adviser on cipher matters to the Naval 

Intelligence Department’s Security Panel in the 

spring of 1942;27 by 1943 Alan Turing had also 

taken on a communications security role (Turing, 

2015, p 164), so things were slowly beginning to 

                                                           
27 TNA ADM 223/505. 
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improve on the British side at the time of the 

Typex scare, but a security mindset was not yet 

embedded. (By contrast, when the British spotted 

defects – through decrypts of German messages 

– in American cipher security in North Africa, 

they were quick to point them out, and the 

Americans as quick to implement change.28) 

Perhaps because of the paucity of personnel 

available for the task, the British reaction to the 

Typex scare of 1943 was almost as weak as that 

of the Marine-Nachrichtendienst. Confirmation 

bias seems to have influenced the decision to 

pursue further investigations – trying to prise 

more details out of more German prisoners, and 

checking for destruction certificates – rather than 

looking at the actual security issue, which was 

already known and ought to have been better 

understood. Surely it was wrong to own up to a 

problem with Typex only after it had been firmly 

established that the Germans had actually 

exploited Typex – to wait for sight of the horse 

bolting before checking the fastening on the 

stable door?  

It seems that if they had been equipped with 

what Dr Vögele came away with from Africa in 

1942, the talented team of German codebreakers 

in OKH or OKW might have been able to make 

some headway with the Typex problem. They 

might have been defeated by an earlier adoption 

of plugboard-equipped Typex and with more 

rigorously enforced operating discipline, but that 

does not seem to have been the outcome of the 

British examination of the post-Tobruk evidence. 

In fact, what saved the British from a potentially 

devastating reading of Typex messages in the 

months following Tobruk was the organisational 

split between the armed services’ own 

cryptanalytical organisations, OKW, OKH and 

the Luftwaffe’s Chi-Stelle. Vögele did not, 

apparently, have direct access to Hüttenhain, 

whose know-how on Typex was not shared. 

7 Concluding comments 

The British response to the Typex scare of 1943 

has similarities to the German responses to the 

Enigma alarms throughout the war. Neither side 

wanted to know that its high-security 

communications machine was insecure. Neither 

side wanted to investigate properly or to 

implement changes which would fix a risk 

without overwhelming evidence which would 
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arrive too late, in other words after breach – 

potentially a breach with monumental 

consequences – had actually occurred. A risk-

based assessment was done by neither side.   

There the similarities stop. Fortunately for the 

Allies, the British machine was more secure than 

the German one, and with the use of secure 

indicator procedures and the plugboard, 

significantly so; Bletchley Park was ahead of the 

game on mechanical cryptanalysis, thanks to the 

work of the Poles before the war and the 

invention by Turing and Welchman of the new 

cryptanalytic bombe; and the Germans had not 

managed to invent cryptanalytic techniques 

which could crack a plugboard-adapted rotor 

cipher machine. Much of the difference was a 

mismatch in brilliant inventiveness. Some of that 

brilliance might just as easily have been on the 

other side; it was the Allies’ good fortune that 

they possessed it in greater measure.  
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Abstract

The SIGABA is an electromechanical en-
cryption device used by the US during WWII
and in the 1950s. Also known as ECM
Mark II, Converter M-134, as well as CSP-
888/889, the SIGABA was considered highly
secure, and was employed for strategic com-
munications, such as between Churchill and
Roosevelt. The SIGABA encrypts and de-
crypts with a set of five rotors, and im-
plements irregular stepping, with two ad-
ditional sets of rotors generating a pseudo-
random stepping sequence. Its full keyspace,
as used during WWII, was in the order of
295.6. It is believed that the German code-
breaking services were not able to make
any inroads into the cryptanalysis of SIGABA
(Mucklow, 2015; Budiansky, 2000; Kel-
ley, 2001).

The most efficient attack on SIGABA pub-
lished so far is a known-plaintext attack
that requires at least 286.7 steps.1 Although
it is more efficient than an exhaustive search,
it is not practical, even with modern com-
puting (Stamp and Chan, 2007; Stamp and
Low, 2007).

In this paper, the author presents a novel
meet-in-the-middle (MITM) known-plaintext
attack. This attack requires 260.2 steps and
less than 100 GB RAM, and it is feasible
with modern technology. It takes advan-
tage of a weakness in the design of SIGABA.
With this attack, the author solved a Mys-
teryTwister C3 (MCT3) Level III challenge
(Stamp, 2010). The author also presents a
series of new challenges, which will also
appear in MTC3.

1To date, no ciphertext-only attack has been proposed, ex-
cept for an attack that requires multiple messages in depth
(Savard and Pekelney, 1999).

This paper is structured as follows: In Section 1,
the SIGABA encryption machine is described, in-
cluding a functional description and an analysis of
its keyspace. In Section 2, prior attacks on SIGABA
are surveyed, and a novel MITM known-plaintext
attack is presented, including an analysis of its work-
factor, and how it was used to solve MysteryTwister
C3 (MCT3) challenges (Stamp, 2010). In Sec-
tion 3 and in the Appendix, new challenges are
presented, as well as the reference code for a SIGABA
simulator used to create those challenges.2

1 The SIGABA Encryption Machine

In this section, a short functional description of
the SIGABA is given, as well as an analysis of its
keyspace size.

1.1 Functional Description of SIGABA
The functional description of SIGABA presented
here focuses on the features essential to the un-
derstanding of the new attack presented in Sec-
tion 2. A complete description of the machine and
its history may be found in the references (Savard
and Pekelney, 1999; Sullivan, 2002b; Stamp and
Chan, 2007; Mucklow, 2015; Kelley, 2001; Pekel-
ney, 1998; Sullivan, 2002a).

The SIGABA encryption and decryption mech-
anism consists of three banks of five rotors each,
the cipher bank, the control bank, and the index
bank, as depicted in Figure 1. Each rotor of the
cipher bank has 26 inputs and 26 outputs (similar
in concept to the Enigma rotors, but with different
wirings). The cipher rotors implement encryption
(from left to right), and decryption (from right to
left). The rotors of the cipher bank step according
to an irregular pseudo-random pattern generated
by the index and the control rotor bank.

2This work has been supported by the Swedish Research
Council, grant 2018-06074, DECRYPT - Decryption of his-
torical manuscripts.
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Figure 1: SIGABA – Functional Diagram

The control bank consists of five rotors, each
with 26 inputs and 26 outputs. The cipher rotors
and the control rotors are interchangeable, and are
selected from a set of ten rotors. Furthermore,
those rotors can be installed in two possible ori-
entations – forward or reverse (thus increasing the
size of the keyspace by a factor of 210 = 1,024).
Interestingly, the cipher rotors and the control ro-
tors move through the alphabet in reverse order
(e.g., from D to C, or from C to B) when installed
in forward orientation, and in alphabetical order
(e.g., from D to E, or from E to F) when installed
in reversed orientation. The leftmost and right-
most control rotors are stationary and do not ro-
tate. The fast rotor always steps (interestingly, this
rotor is located between the slow and the medium
rotors). If the fast rotor steps from O to N (while
in forward orientation) or from O to P (while in
reversed orientation), the medium rotor also steps
(Pekelney, 1998; Sullivan, 2002a).3 Similarly, if
the medium rotor steps from O to N (while in for-
ward orientation) or from O to P (while in reversed
orientation), the slow rotor also steps. At each en-
cryption step, the inputs F, G, H, and I of the right-
most (stationary) rotor are activated and fed with
electrical current (and the 22 remaining input are
always inactive). The 26 outputs of the leftmost
control rotor enter the index input logic, described
in Figure 2.

The index bank consists of a set of five station-
ary rotors, which do not rotate during encryption
or decryption, and they each have 10 inputs and

3(Stamp and Chan, 2007; Savard and Pekelney, 1999) de-
scribe different implementations for the stepping mechanism.

Figure 2: Index Input Logic

Figure 3: Index Output Logic

10 outputs. Those rotors are not interchangeable
with the cipher and control rotors, and they can
only be installed in a forward orientation. The in-
dex input logic, described in Figure 2, maps its 26
inputs into 10 outputs, which enter the leftmost in-
dex rotor. The index output logic, described in Fig-
ure 3, maps the 10 outputs of the index rightmost
rotor into five stepping control signals, controlling
the stepping of the five cipher rotors. The design
of the control and index rotor banks, in conjunc-
tion with the index input logic and the index output
logic, ensures that at least one of the five cipher ro-
tors will step, but no more than four cipher rotors
ever step (Stamp and Chan, 2007, p. 203).

Encryption is performed as follows, assuming
that the 15 rotors have been installed. The ma-
chine must be set to the encryption mode. The op-
erator selects the starting positions of the rotors,
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and types the plaintext on the SIGABA keyboard.
The plaintext symbol is applied to the cipher ro-
tors from left to right, producing the ciphertext
symbol on a printing device. After encryption of
a symbol, the cipher rotors step according to the
state of the stepping control (see Figure 1). After
the cipher rotors have stepped, some of the control
rotors step, thus generating (via the index rotors) a
new state for the stepping control of the cipher ro-
tors. The process is repeated for the next plaintext
symbols.

Decryption works similarly, except that the de-
vice must be set to the decryption mode, and the
cipher symbols (typed on the keyboard) are ap-
plied to the cipher rotors from right to left, the
resulting plaintext being printed.

1.2 Analysis of the Keyspace
Assuming that there is a set of ten rotors from
which the cipher and control rotors are selected,
there are 10! possible selections for those rotors.
Each one of those rotors may be installed in ei-
ther a forward or reverse orientation. The size of
the keyspace for the settings of the ten rotors of
the cipher and control banks is therefore 10! ·210 ·
2610 = 278.8.

There are 5! possible ordering of the index ro-
tors. The size of the keyspace for the settings of
the rotors of the index bank is therefore 5! ·105 =
223.5. The combined size of the SIGABA keyspace
is 278.8+23.5 = 2102.3.

However, the size of the keyspace for the in-
dex bank is limited by the fact that the five ro-
tors implement a (stationary) permutation of the
ten inputs and the ten outputs are mapped by the
index output logic into only five outputs. There-
fore, the size of the practical keyspace for the in-
dex rotors including the index output logic is only
10!/25 = 113,400 = 216.8, and the combined size
of the practical keyspace of SIGABA is as follows:

278.8+16.8 = 295.6 (1)

For comparison, the size of the keyspace the
German Enigma I was in the order of 277 (Stamp
and Low, 2007, p. 31), and it is 256 for the more
recent DES.

2 Cryptanalysis of SIGABA

In this section, prior attacks on SIGABA are re-
viewed, and a novel MITM attack is presented.

2.1 Prior Attacks
(Savard and Pekelney, 1999) describe a ciphertext-
only attack on SIGABA which requires a series of
10 to 15 messages in depth, that is, encrypted with
the same key.4 First, the plaintexts are recovered
using Kirchoffs superimposition.5 The alphabets
which represent the effect of the five cipher rotors
are reconstructed, for each position of the cipher-
texts/plaintexts. Positions at which only the left-
most or the rightmost cipher rotor move are iden-
tified, and the wiring of those rotors are recovered,
by comparing the alphabet at such a position with
the alphabet at the following position. The authors
describe how the wiring of the inner cipher rotors
can also be recovered, and they suggest additional
methods to recover the wiring of the control rotors.

In (Lee, 2003), attacks on simplified and weak-
ened versions of the SIGABA are presented.

(Stamp and Chan, 2007; Stamp and Low, 2007)
describe a known-plaintext attack in two phases.
It assumes that the wiring of the rotors is known,
while their order, orientation, and starting posi-
tions, are unknown. At the first phase, only the
cipher rotors are considered, and all their possible
settings (rotor selection, orientation, starting posi-
tions) are evaluated. For each such setting, the first
ciphertext symbol is applied across the five cipher
rotors, and the decrypted symbol is compared to
the known-plaintext symbol. To check the second
symbol, all options for the stepping of the cipher
rotors are tested (there are 30 such options, as at
least one rotor steps, and at most four), and the
cipher rotors step accordingly. If after stepping,
decrypting the second ciphertext symbol produced
the expected known-plaintext symbol, the process
is repeated for the next symbols. Only those ci-
pher rotor settings that survive the test for all the
known-plaintext symbols are retained. With 100
letters of known-plaintext, about 234.5 cipher rotor
settings are expected to survive, out of 243.4 possi-
ble cipher rotor settings.

At the second phase, all the surviving cipher ro-
tor settings are exhaustively tested against all pos-
sible control and index settings. The total work-
factor of the attack is 286.7, and it is therefore more

4An unlikely scenario, given the US Army and Navy’s
strict operational security procedures. The method, however,
requires little processing time, unlike the other attacks pre-
sented in here.

5The authors do not provide any detail on how the plain-
texts can be recovered using superimposition. Furthermore,
the required length for the messages in depth is not specified.
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efficient than a simple brute-force attack by a fac-
tor of 295.6−86.7 = 28.9. The authors also propose a
method with a workfactor of 284.5, but with only a
0.82 probability of success.

2.2 A New Meet-in-the-Middle
Known-Plaintext Attack

This new attack assumes that the wiring of the
rotors is known, but their order, orientation, and
starting positions are unknown. It was inspired by
the attack described in (Stamp and Chan, 2007),
and also consists of two phases. While (Stamp
and Chan, 2007) is essentially an (optimized) ex-
haustive search, the new attack is a divide-and-
conquer MITM attack. It is significantly more effi-
cient than a simple brute-force attack.6 It only re-
quires a minimum of 8 known-plaintext symbols.7

The first phase (described in Section 2.3) gener-
ates a set of cipher rotor settings and stepping se-
quences so that the expected known plaintext is ac-
curately reproduced when decrypting the cipher-
text. The second phase (described in Section 2.4)
generates feasible cipher stepping sequences, by
testing all possible control and index settings, and
matching the resulting cipher rotor stepping se-
quences against those gathered during the first phase.
The whole process – phase 1 and phase 2 – is re-
peated for all possible partitions of the ten cipher
and control rotors, into two sets of five rotors.

6MITM attacks are applicable to modern multi-stage en-
cryption systems (Diffie and Hellman, 1977). The approach
is illustrated here with a system with two sequential encryp-
tion stages, E1 and E2. For simplicity, we assume each stage
has a separate key, K1 and K2, with N1 and N2 bits, respec-
tively. A known-plaintext MITM attack for such a system
could potentially be developed. The attack has two phases.
In the first phase, the plaintext is encrypted with E1 only, for
each value of K1. The resulting encryptions are stored is a
hash table mapping each such partial encryption to the rele-
vant K1. The second phase checks for all possible values of
K2, decrypts the ciphertext using only E2, and checks whether
this partial decryption (via E2) matches one of the partial en-
cryptions (via E1) stored in the hash table. The overall com-
plexity of this attack is the maximum of 2N1 and 2N2 , com-
pared to 2N1+N2 for a brute-force search. This comes at the
expense of additional memory for the hash table, which the
two phases use to ”meet in the middle”. Such an attack is
also effective against 2-DES (seriated DES with two stages,
each using a 56-bit key), and to achieve a level of security
higher than with DES (or 1-DES), three stages (or 3-DES)
are required.

7The attack also works, albeit less efficiently, with less
than 8 known plaintext symbols. It may also utilize more
than 8 symbols, but the author found that this number allows
for a good trade-off between the size of the required memory
and the overall processing time for the attack.

2.3 Phase 1 of Meet-in-the-Middle Attack
At the first phase, only the cipher rotors are con-
sidered. For each partition of the ten cipher and
control rotors (divided into two sets of five rotors),
the first phase produces a hash table mapping all
cipher rotor stepping sequences, to their correspond-
ing cipher rotor settings, that together produce a
decryption matching the 8 known-plaintext letters.
The structure and contents of the hash table is de-
scribed later in this section. This is different from
the first phase of (Stamp and Chan, 2007), which
instead generates a simple list of matching cipher
rotor settings, but other than that, the first phase of
the new attack and of (Stamp and Chan, 2007) are
similar.

All orders of the five rotors (allocated for the ci-
pher bank in the partition), their orientations, and
starting positions are tested. The first ciphertext
symbol is applied through the five cipher rotors,
and the output is compared to the expected known-
plaintext symbol. If they match, all possible step-
ping options are tested, and the second symbol
is processed and checked. The next symbols are
(recursively) checked, and if there is a match for
all the known-plaintext symbols, the correspond-
ing cipher rotor stepping sequence and the cipher
rotor settings are added to the hash table.

Figure 4: Meet-in-the-Middle Attack – Hash Table

The structure of the hash table is illustrated in
Figure 4. This example is for a partition in which
rotors 0, 1, 4, 7, and 8 are allocated to the cipher
rotors. The hash key represents the stepping se-
quence of the cipher rotors, applied during the de-
cryption of the 8 symbols for which there is known
plaintext. Since stepping occurs after decryption,
only the first 7 stepping patterns are relevant, as
the eighth stepping pattern only affects the ninth
symbol. Each stepping pattern consists of 5 Boolean
values, one for each cipher rotor. The hash table
key therefore consists of 7 groups of 5 bits.

The first group represents the stepping of the ci-
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pher rotors after decrypting the first symbol. In
the first entry in the hash table illustrated in Fig-
ure 4, 01011 indicates that cipher rotors in slots 2
(from the left), 4, and 5 (the rightmost rotor) step
after decrypting the first symbol. Similarly, the
next group, 01000, indicates that only the cipher
rotor in slot 2 (from the left) steps after encrypting
the second symbol.

A hash key (the stepping sequence) maps into
one or more cipher rotor settings.8 Each such set-
ting includes the selection and order of the rotors
in the 5 slots of the cipher rotor bank, their ori-
entation, and their starting positions. In the first
entry in Figure 4, the order of the cipher rotors is
8, 0, 4, 7, and 1 (installed in cipher bank slots 1
to 5, from left to right). Rotors 8 and 4 (first and
third from the left) are in the reversed orientation
(marked as 8R and 4R, respectively). The start-
ing positions of the cipher rotors are H, Y, J, N,
and H, respectively. The same stepping sequence
(the first in Figure 4) also maps to a second ci-
pher setting, with 1, 7, 0, 8, and 4 as the order of
the rotors (7 and 8 are in the reversed orientation),
and T, U, A, L, and M as their starting positions.
This illustrates the fact that the hash table imple-
ments a one-to-many mapping, as there might be
several distinct cipher rotor settings which repro-
duce the known plaintext, while the rotors step in
an identical manner (as represented by the step-
ping sequence which is also the hash key).

Similarly, the second stepping sequence (hash
key) in the hash table (Figure 4), which starts with
01111, maps to only one setting, with 1, 4, 8, 7,
and 0 as the order of the rotors (1 and 8 are in
reversed orientation), and set at starting positions
K, H, J, N, and M.

Note that the presence of a combination of a
stepping sequence and cipher rotor setting in the
hash table, only indicates that under that same com-
bination, the 8 symbols of the ciphertext can be
decrypted to match the expected known plaintext.
It does not indicate that such a stepping sequence
is feasible and can be produced by the control and
index rotor banks. Therefore, the need for a sec-
ond phase, in order to generate all feasible cipher
stepping sequences, and check whether they ap-
pear in the hash table created by the first phase.

8This is different from most MITM attacks, where the
shared memory structure maps partial encryption or partial
decryption results to partial keys. Instead, in this attack on
SIGABA, the hash table maps stepping sequences of the ci-
pher rotors to partial keys (the cipher rotor settings).

This second phase is described in Section 2.4.

2.4 Phase 2 of Meet-in-the-Middle Attack
The second phase looks at all possible control and
index settings, generates their resulting cipher ro-
tor stepping sequences, and checks whether those
stepping sequences exist in the hash table. If such
a stepping sequence exists, then the combination
of the control and index settings, together with the
cipher setting associated with the stepping sequence,
constitutes a candidate key. When applying such a
candidate key to decrypt the 8 ciphertext symbols,
the decryption is guaranteed to match the expected
known plaintext.

Still, this is only a candidate key, as the fact that
it properly decrypts the given 8 ciphertext sym-
bol does not mean it will necessarily properly de-
crypt the rest of the message. To validate a candi-
date key, there are two options. Either more than
8 plaintext symbols are known, and the candidate
key can be validated by checking whether it prop-
erly reproduces the remaining known-plaintext sym-
bols. Alternatively a quality measure such as the
Index of Coincidence can be applied to the de-
cryption of the full message, together with a min-
imal threshold. Both methods may be combined,
if the known plaintext is not long enough to safely
rule out wrong candidate keys.9. Both validation
methods also impact the workfactor. The choice of
processing 8 letters of known-plaintext is a trade-
off between the complexity of phase 1 (the longer
the plaintext, the more steps in phase 1), the stor-
age requirements, and the need to validate phase 2
matches (the longer the known-plaintext, the lower
the probability for phase 2 false positives and the
need for validation).

2.5 Workfactor Analysis
Phase 1 and phase 2 of the attack are applied re-
peatedly, on each partition of 10 rotors (those with
26 input and outputs) into a set of five cipher rotors
and another set of five control rotors. The number
of such partitions is equal to the number of ways
to select 5 unordered rotors from a set of 10 rotors,
that is, 10!/(5! ·5!) = 252 = 27.9.

Workfactor Analysis for Phase 1
For each partition, the number of possible cipher
rotor settings is 5! · 25 · 265 = 235.4. When eval-
uating a certain cipher setting, all options for the

9Based on experiments, 12 to 22 letters of known plaintext
are necessary to rule out all ’false-positive’ candidate keys.
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stepping of the rotors are checked for each known-
plaintext-ciphertext pair (the stepping after the 8th
symbol is ignored). Since between one to four ci-
pher rotors step after decryption, there are only
25− 2 = 30 possible stepping options, out of the
theoretically possible 25 = 32 stepping patterns of
the 5 rotors (patterns 00000 – none of the rotors
step, and 11111 – all rotors step, are not feasi-
ble). For each symbol tested, the probability or
ruling out such a stepping option is (26− 1)/26.
So on average, 30 ·(1/26) = 1.154 option for step-
ping of the cipher rotors survive after each de-
cryption step, out of 30. The total number of op-
erations for each cipher rotor setting is therefore

7
∑

i=0
1.154i = 13.9 = 23.8. The total workfactor for

phase 1 for a single partition is 235.4+3.8 = 239.2,
and 239.2+7.9 = 247.1 for all partitions.

Workfactor Analysis for Phase 2
For a given partition, the number of possible con-
trol rotor settings is 5! · 25 · 265 = 235.4, and the
number of feasible options for the index rotors is
10!/232 = 113,400 = 216.8. Therefore, the work-
factor for phase 2 is 235.4+16.8 = 252.2 for a single
partition, and 252.2+7.9 = 260.2 for all partitions.

Overall Workfactor
The workfactor for phase 2 is the dominant one,
and therefore, the overall workfactor for the attack
is 260.2. This attack is more efficient than a brute-
force attack by a factor of 295.6−60.2 = 235.4, and it
is feasible with modern technology. For compari-
son, a brute-force attack on a 56-bit DES key was
successfully carried out already in 1998 (Gilmore,
1998).

Storage Requirements
Since the attack is a MITM attack, we still need
to address the size of the hash table, which is gen-
erated in phase 1, separately for each partition of
the cipher and control rotors. Based on simula-
tions, the ratio between the number of stepping se-
quences generated by phase 1 and the number of
possible cipher rotor settings is on average 0.107.
There are therefore approximately 5!·25 ·265 ·0.107=
232.1 sequences generated for each partition of the
ten rotors.

To represent a stepping sequence in the hash ta-
ble (see Table 4), 7 · 5 = 35 bits are required. To
represent the cipher rotor setting, 7 bits are re-
quired for the order (5! = 120≤ 27 options), 5 bits

for their orientation, and 5 · 5 bits for their start-
ing positions, with a total of 7+5+5 ·5 = 37 bits.
Since the vast majority of the entries in the hash ta-
ble map to only one cipher rotor setting, the total
size for an entry is about 35+37 = 72 bits.10 Im-
plementing and storing this information in a prac-
tical hash table in RAM requires some additional
overhead, and based on measurements using Java
10 Hashmap library, the overall amount of space
required for each entry is approximately twice the
amount of space for just the data of the entry, that
is, 2 ·72 = 144 bits or about 18 bytes.11 Therefore,
the memory size required for the per-partition hash
table can be estimated to be 232.1 · 18 = 4.6 · 109 ·
18 = 80 GB.

A possible optimization to reduce the size of
the hash table consists of checking for additional
matching known-plaintext-ciphertext symbols, if
more than 8 plaintext symbols are known. For ex-
ample, by checking an additional 7 symbols (to-
tal of 8+ 7 = 15), about half of the stepping se-
quences may be ruled out. When checking the
additional symbols (following the initial 8 sym-
bols), we do not extend the size of the stepping
sequence stored as the key in the hash table, and
we still keep only the first 7 stepping patterns. We
only check whether there is at least one possible
continuation of this stepping sequence, following
the 8 initial decryption steps. However, this op-
timization would also incur additional processing
at phase 1, which would probably not affect the
overall workfactor, as the workfactor of phase 2 is
overwhelmingly dominant.

The results in this section are based on sim-
ulations performed on 200 hundreds of random
keys and plaintexts. Further analysis is required
to determine the optimal parameters (e.g. trade-
off between processing time and storage space, de-
rived from the length of the known plaintext pro-
cessed), as well as more precise workfactor and
storage analyses, for a practical attack on the full
keyspace.

2.6 Solving the MysteryTwister C3 SIGABA
Level III Challenge

In (Stamp, 2010), a known-plaintext SIGABA chal-
lenge is given. Due to the particular method the
challenge was created, the effective size of keyspace
is reduced, making the attack described above prac-

10Based on simulations.
11A more (or less) efficient implementation of a hash table

may require different amounts of overhead.
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tical on a consumer PC. With a probability of 31/32,
it may be assumed that the starting position of four
out of the five cipher rotors is A, and the same ap-
plies to the control rotors. If we assume this is
indeed the case, the size of the keyspace of the
cipher rotors and the control rotors are each both
reduced by a factor of 264 = 218.8. Under the same
assumption, the workfactor of phase 1 for this chal-
lenge is therefore 247.1−18.8 = 228.3, and for phase
2, the workfactor is 260.2−18.8 = 241.3.

It took a few days on a 10-core Intel Core i7
6950X 3.0 GHz PC to complete the attack and
solve the challenge. The assumption stated above
was found to be true.12

3 New Challenges

A series of new SIGABA known-plaintext chal-
lenges is presented in Table 1 (see the Appendix),
with various levels of difficulty.13 For most chal-
lenges, the size of the keyspace is limited by set-
ting several of the cipher and control rotors to a
fixed position A. Challenge #2 is against a keyspace
of a size similar to the keyspace for the challenge
in (Stamp, 2010). The last challenge (#6) is against
the full keyspace of SIGABA. Java source code,
used to generate the challenges, is listed in the Ap-
pendix. It is compatible with the source code given
in (Pekelney, 1998), and has been tested against
another simulator (Sullivan, 2002a).14

4 Conclusion

The functional separation between the cipher ro-
tor bank, and the control and index rotor banks, is
a significant weakness, and it allows for a practi-
cal MITM attack. This attack is not feasible on
systems like the Siemens and Halske T52d, the
Russian Fialka, and the Hagelin CX-52, in which
rotors have two functions – encryption/decryption,

12jerva and Integral had previously found the solution to
the challenge. jerva used methods described in (Stamp and
Chan, 2007). Integral’s methods are unknown.

13All the plaintexts were extracted from Shakespeare writ-
ings. Each plaintext consists of the concatenation of two seg-
ments, extracted from different places. The first segment,
with 100 letters, is given as a crib. The letter Z is used to
represent a space.

14The SIGABA simulator source code given in (Stamp,
2010) and used to generate previous MysteryTwister C3 chal-
lenges has several incompatibility issues. The first one, de-
scribed in the forum discussion, has to do with several ro-
tors being unintentionally reset to position A. Another issue
is with the stepping logic for the medium and slow rotors. In
addition, the mappings for rotors in reversed orientation are
incorrect.

and controlling the stepping of other rotors.15 Still,
the attack on SIGABA proposed here would not
have been feasible given WWII technology.
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5 Appendix – Source Code and
Challenges

Listing 1: SIGABA Simulator Source Code
package s i m u l a t o r ;

c l a s s S ig ab a {
p r i v a t e Ro to r c i p h e r B a n k [ ] = new Roto r [ 5 ] ;
p r i v a t e Ro to r c o n t r o l B a n k [ ] = new Roto r [ 5 ] ;
p r i v a t e I n d e x R o t o r indexBank [ ] = new I n d e x R o t o r [ 5 ] ;
S i ga ba ( S t r i n g cph , S t r i n g c t l , S t r i n g idx ,

S t r i n g cphP , S t r i n g c t l P , S t r i n g idxP ) {
f o r ( i n t i = 0 ; i < 5 ; i ++) {

c i p h e r B a n k [ i ] =
new Roto r ( cph . c ha rA t ( i ∗ 2) − ’ 0 ’ ,

cph . ch a r At ( i ∗ 2 + 1) == ’R ’ ,
cphP . c h a r A t ( i ) − ’A’ ) ;

c o n t r o l B a n k [ i ] =
new Roto r ( c t l . c ha rA t ( i ∗ 2) − ’ 0 ’ ,

c t l . ch a r A t ( i ∗ 2 + 1) == ’R ’ ,
c t l P . ch a rA t ( i ) − ’A’ ) ;

indexBank [ i ] =
new I n d e x R o t o r ( i d x . c ha rA t ( i ) − ’ 0 ’ ,

idxP . c h a r At ( i ) − ’ 0 ’ ) ;
}

}
S t r i n g e n c r y p t D e c r y p t ( b o o l e a n d e c r y p t , S t r i n g i n ) {

S t r i n g o u t S t r i n g = ” ” ;
f o r ( c h a r c : i n . t o C h a r A r r a y ( ) ) {

o u t S t r i n g +=
( c h a r ) ( c i p h e r P a t h ( d e c r y p t , c − ’A’ ) + ’A’ ) ;

c iphe rBankUpda t e ( ) ;
c o n t r o l B a n k U p d a t e ( ) ;

}
r e t u r n o u t S t r i n g ;

}
p r i v a t e vo id c o n t r o l B a n k U p d a t e ( ) {

i f ( c o n t r o l B a n k [ 2 ] . pos == ( i n t ) ’O’ − ’A’ ) {
/ / medium r o t o r moves
i f ( c o n t r o l B a n k [ 3 ] . pos == ( i n t ) ’O’ − ’A’ ) {

/ / s low r o t o r moves
c o n t r o l B a n k [ 1 ] . advance ( ) ;

}
c o n t r o l B a n k [ 3 ] . advance ( ) ;

}
/ / f a s t r o t o r a lways moves
c o n t r o l B a n k [ 2 ] . advance ( ) ;

}
p r i v a t e s t a t i c f i n a l i n t INDEX IN [ ] =

{9 , 1 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 5 , 5 , 6 , 6 ,
6 , 6 , 7 , 7 , 7 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 8} ;

/ / r o t o r s t e p p i n g magnet
p r i v a t e s t a t i c f i n a l i n t INDEX OUT [ ] =

{1 , 5 , 5 , 4 , 4 , 3 , 3 , 2 , 2 , 1} ;
p r i v a t e vo id c iphe rBankUpda t e ( ) {

b o o l e a n move [ ] = new b o o l e a n [ 5 ] ;
f o r ( i n t i = ( i n t ) ’F ’ − ’A’ ;

i <= ( i n t ) ’ I ’ − ’A’ ;
i ++) {

i n t i n d e x I n = INDEX IN [ c o n t r o l P a t h ( i ) ] ;
move [ INDEX OUT[ i n d e x P a t h ( i n d e x I n ) ] − 1] = t r u e ;

}
f o r ( i n t i = 0 ; i < 5 ; i ++) {

i f ( move [ i ] ) c i p h e r B a n k [ i ] . advance ( ) ;
}

}
p r i v a t e i n t c i p h e r P a t h ( b o o l e a n d e c r y p t , i n t c ) {

i f ( d e c r y p t ) {
f o r ( i n t r = 4 ; r >= 0 ; r−−)

c = c i p h e r B a n k [ r ] . r i g h t T o L e f t ( c ) ;
} e l s e {

f o r ( i n t r = 0 ; r <= 4 ; r ++)
c = c i p h e r B a n k [ r ] . l e f t T o R i g h t ( c ) ;

}
r e t u r n ( c ) ;

}
p r i v a t e i n t c o n t r o l P a t h ( i n t c ) {

f o r ( i n t r = 4 ; r >= 0 ; r−−)
c = c o n t r o l B a n k [ r ] . r i g h t T o L e f t ( c ) ;

r e t u r n ( c ) ;
}
p r i v a t e i n t i n d e x P a t h ( i n t c ) {

f o r ( i n t r = 0 ; r <= 4 ; r ++)
c = indexBank [ r ] . i n d e x P a t h ( c ) ;

r e t u r n ( c ) ;
}

s t a t i c c l a s s Ro to r {
p r i v a t e s t a t i c f i n a l S t r i n g [ ] WIRINGS = {

”YCHLQSUGBDIXNZKERPVJTAWFOM” ,
”INPXBWETGUYSAOCHVLDMQKZJFR” ,
”WNDRIOZPTAXHFJYQBMSVEKUCGL” ,
”TZGHOBKRVUXLQDMPNFWCJYEIAS” ,
”YWTAHRQJVLCEXUNGBIPZMSDFOK” ,
”QSLRBTEKOGAICFWYVMHJNXZUDP” ,
”CHJDQIGNBSAKVTUOXFWLEPRMZY” ,
”CDFAJXTIMNBEQHSUGRYLWZKVPO” ,
”XHFESZDNRBCGKQIJLTVMUOYAPW” ,
”EZJQXMOGYTCSFRIUPVNADLHWBK”} ;

/ / Index f o r l e f t t o r i g h t .
p r i v a t e s t a t i c f i n a l i n t TO RIGHT = 0 ;
/ / Index f o r r i g h t t o l e f t .
p r i v a t e s t a t i c f i n a l i n t TO LEFT = 1 ;
p r i v a t e i n t w i r i n g [ ] [ ] = new i n t [ 2 ] [ 2 6 ] ;
i n t pos ;
p r i v a t e b o o l e a n r e v e r s e d ;
Ro to r ( i n t w i r i n g I n d e x , b o o l e a n r e v e r s e d , i n t pos ) {

f o r ( i n t i = 0 ; i < 2 6 ; i ++) {
w i r i n g [ TO RIGHT ] [ i ] =

WIRINGS[ w i r i n g I n d e x ] . c ha r A t ( i ) − ’A’ ;
w i r i n g [ TO LEFT ] [ w i r i n g [ TO RIGHT ] [ i ] ] = i ;

}
t h i s . r e v e r s e d = r e v e r s e d ;
t h i s . pos = pos ;

}
vo id advance ( ) {

i f ( r e v e r s e d ) {
pos = ( pos + 1) % 2 6 ;

} e l s e {
pos = ( pos − 1 + 26) % 2 6 ;

}
}
i n t l e f t T o R i g h t ( i n t i n ) {

i f ( ! r e v e r s e d ) {
r e t u r n

( w i r i n g [ TO RIGHT ] [ ( i n +pos ) %26]−pos +26) %26;
}
r e t u r n

( pos−w i r i n g [ TO LEFT ] [ ( pos−i n +26) %26]+26) %26;
}
i n t r i g h t T o L e f t ( i n t i n ) {

i f ( ! r e v e r s e d ) {
r e t u r n

( w i r i n g [ TO LEFT ] [ ( i n +pos ) %26]−pos +26) %26;
}
r e t u r n

( pos−w i r i n g [ TO RIGHT ] [ ( pos−i n +26) %26]+26) %26;
}

}
s t a t i c c l a s s I n d e x R o t o r {

p r i v a t e s t a t i c f i n a l i n t WIRINGS [ ] [ ] = {
{7 , 5 , 9 , 1 , 4 , 8 , 2 , 6 , 3 , 0} ,
{3 , 8 , 1 , 0 , 5 , 9 , 2 , 7 , 6 , 4} ,
{4 , 0 , 8 , 6 , 1 , 5 , 3 , 2 , 9 , 7} ,
{3 , 9 , 8 , 0 , 5 , 2 , 6 , 1 , 7 , 4} ,
{6 , 4 , 9 , 7 , 1 , 3 , 5 , 2 , 8 , 0}};

p r i v a t e i n t w i r i n g [ ] = new i n t [ 1 0 ] ;
p r i v a t e i n t pos ;
I n d e x R o t o r ( i n t w i r i n g I n d e x , i n t pos ) {

System . a r r a y c o p y (WIRINGS[ w i r i n g I n d e x ] , 0 ,
w i r ing , 0 , 10) ;

t h i s . pos = pos ;
}
i n t i n d e x P a t h ( i n t i n ) {

r e t u r n ( w i r i n g [ ( i n + pos ) % 10] − pos + 10) % 1 0 ;
}

}
p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {

Si ga b a s i g a b a =
new Si ga ba ( ” 0R1N2N3N4R” , ” 5N6N7R8N9N” ,

” 01234 ” , ”ABCDE” , ”FGHIJ” , ” 01234 ” ) ;
S t r i n g o u t = s i g a b a . e n c r y p t D e c r y p t ( f a l s e ,

”AAAAAAAAAAAAAAAAAAAA” ) ;
System . o u t . p r i n t f (

”%s ( e x p e c t i n g JTSCALXDRWOQKRXHKMVD) \n ” , o u t ) ;
s i g a b a =

new Si ga ba ( ” 0R1N2N3N4R” , ” 5N6N7R8N9N” ,
” 01234 ” , ”ABCDE” , ”FGHIJ” , ” 01234 ” ) ;

S t r i n g i n = s i g a b a . e n c r y p t D e c r y p t ( t r u e , o u t ) ;
System . o u t . p r i n t f (

”%s ( e x p e c t i n g AAAAAAAAAAAAAAAAAAAA)\n ” , i n ) ;
}

}
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Ciphertext First 100 Plaintext Letters Hint
#1 GSZQEMAGFULNFZHHRVUTCUEXU

FBMPDGOROJRPMAUDOZMJWJCVH
YCBZDELOWKVLYJLSZBQJXWXLR
WOIMBVUTBAVRHPPPYQDTIURLV
IQGIZSEVGXOYCMGESFOXDLPFT
UQQCRDSRNFDTBDDULFJKQGXZB
XKKIMSBSIUZSZNOOLCFRRVTOD
XFQRRXLDEMSLORKXUCGDKCZKY
ULDORUGEGDLTTROBUIVWJTBVH
YWOKANYJCGQUYGPHSMWJRILZP
SQJOXKKMEGMWQKXWVKF

AHZFOULZSHREWDZNEWSZBESHR
EWZTHYZVERYZHEARTZIZDIDZN
OTZTHINKZTOZBEZSOZSADZTON
IGHTZASZTHISZHATHZMADEZME

All cipher and control
rotors are at position A.

#2 ZMJHMLJTJSSHZBBMYXJRVZCUS
PMETNBPZQCAHGYJDHJNQNMTHY
EJAOOQYFSURONLTOGQVKOMABX
QXGKRAVBZYWBRWYWGLBYFZNNA
XIVJVOJYYBQGTWJIIZESYBRAN
XEWYDRMYAINJWWDFWBVCTHRGL
ZCTNHWWBRYSJSZSYMSSLUXBLZ
STDBARVGCSMTJOWIRFXYIBZCF
CCYRUXMUCISNUIFLCOJYZQTBY
DWVFJDHZBJNSAPYAUYWQGFPYO
ZJYWPCWVRSVCQTPHTFPGHCJAM
CFZRHYNFXJVWWNNN

WOULDSTZTHOUZNOTZBEZGLADZ
TOZHAVEZTHEZNIGGARDLYZRAS
CALLYZSHEEPBITERZCOMEZBYZ
SOMEZNOTABLEZSHAMEZFABIAN

The last 4 cipher rotors
and the last 4 control
rotors are at position A.

#3 HYYQUSBFHVDVKSLKSGUQIVZAR
QKCQZBLLGCTCLQHZNBEQVUOJH
BROKUKRYXWPGSPDJSWLLTDASB
MTTPRPFHMSXPLBDENAYJWAQZD
JDXGBJCWXNARABTTSEZBJDYHT
NEIQCQRTFUAZDTTVBNHJGWQHF
UHAPPBPYJAIXGELTILPULVSNC
BJJIGFJNYDURTIVWYHTNKFSLS
ALTHLBHYQBYXUK

TISZWONDERFULZWHATZMAYZBE
ZWROUGHTZOUTZOFZTHEIRZDIS
CONTENTZNOWZTHATZTHEIRZSO
ULSZAREZTOPFULZOFZOFFENCE

The last 3 cipher rotors
and the last 3 control
rotors are at position A.

#4 CEXZZGZOYLDYPAGJQTFJSEYZP
ORHMSTYLQVSJARJLCDBYXFPKB
NREAEYVOPBQKYFYETXOUQNMAT
CBWIIFKJWZJFWZHMJYQALVNXV
UDUVEJGJNBWZRCVMIHDHLPOSD
LSBPTFNEGWIAIRZZPIPPVEBWV
VBGLNCGBKWFUUCVGTTGKGEHJQ
XGEHVPLDDLALNWVNDOXTPPWCQ
HNAWFTXVOWIZFVRWXBIIJDFAU
TMCNWDHLSCHNOBQRURVLCXLVB
YXDXKMPYIWPYOXPFXBNESBUCR
WZECWXOUDTVVNRGGHPTE

IZWILLZBESPEAKZOURZDIETZW
HILESZYOUZBEGUILEZTHEZTIM
EZANDZFEEDZYOURZKNOWLEDGE
ZWITHZVIEWINGZOFZTHEZTOWN

The last 2 cipher rotors
and the last 2 control
rotors are at position A.

#5 JJJWJZMPUKYDGRHSPIXTYPAPA
IVGFOTXMFWRZLBRXQPNRYLCPF
WNMZFHFSMVIEEDAHWZOMBIVPA
RTAOWYOWRFACGAITUAFDFCTEV
YZAQIQXVHZFCIBSVSQJAMYPTS
YNWXBFBKDKVDOXZQQEVVGAAWI
LRFYRGIPJCKVVPMQAEIAIMOPY
XCSJFDAUHYZYVQJXGGZTMCAGW
BEICRYROYCPNGEZQFVVQTSZBP
SZYWCONNWMUBCNYQX

HOWZMIGHTZWEZSEEZFALSTAFF
ZBESTOWZHIMSELFZTONIGHTZI
NZHISZTRUEZCOLOURSZANDZNO
TZOURSELVESZBEZSEENZPOINS

The last cipher rotor
and the last control ro-
tor are at position A.

#6 FWEYNOPSTLFMWXQITVTMRVHOL
YDEIROBXPPVZVBLCSJPSYIXIY
IJHJMCHAWSWAQBHSUVASAGYLR
DJREKIFQUXBEJZUFVIJBJMWVT
VSPHOQTRAECHEEJLBRCDTGXRP
OVSJKDYYWNWIUTPXKVXSHDCBC
WVYDGBVJLMCPZJROXKDPTDTMC
PHXGCTHPDLVHYQHHFRTTKSOTE
IWAXEDMUOVBLSLZUWFTYGNCQY
YPHZRNJRBXYVVSNPYWAEMXOIV
UQWAXAECBOODIPLWGCVQJVDCX
GKCBXHCUK

TOZHAVEZNOZSCREENZBETWEEN
ZTHISZPARTZHEZPLAYDZANDZH
IMZHEZPLAYDZITZFORZHEZNEE
DSZWILLZBEZABSOLUTEZMILAN

No hint given.

Table 1: New SIGABA Challenges
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Abstract 

A close reading of unsuccessful breaking 

attempts of unsolved historical 

cryptograms (particularly, if they 

happened to be solved at a later moment) 

is more useful than it would be obvious 

at first glance. While the specific 

“solutions” offered by code breakers 

differ from each other, the attempts in the 

case of the Rohonc Codex, the Voynich 

manuscript, and other historical ciphers 

(or codes) exhibit surprising structural 

similarities. These attempts can be 

classified into promising and 

unpromising subcategories on structural 

grounds even when the final solution is 

not available. The paper aims at 

supporting this argument in a case study 

of the amateurish “solutions” of the 

Rohonc Codex, which include an old-

Hungarian, a proto-Rumanian (11th 

century “vulgar Latin”) and an old 

Sanskrit script theory. A more 

convincing thread also emerges, details 

of which are in the process of being 

published.  

This work has been supported by the 

Swedish Research Council, grant 2018-

06074, DECRYPT - Decryption of 

historical manuscripts. 

1 Introduction 

As a result of the last decade, reliable literature 

on the Rohonc Codex became available in 

English (Láng 2010, Király and Tokai 2018). 

The history of this entirely enciphered 450 long 

source is described, the characteristics of its 

script are analyzed. Most recently a convincing 

code breaking attempt is offered (Király and 

Tokai 2018), the continuation of which will be 

also submitted to the decisive journal of the 

history of cryptography, Cryptologia. However, 

much less attention is paid to the earlier, aborted 

attempts at breaking the code, which are 

accessible only in Hungarian.  

2 The codex  

The Rohonc Codex (also called Codex of 

Rohonc, and even: Codex Rohonczi) is a 

handwritten paper book filled with unknown 

sign-strings and more than 80 seemingly biblical 

illustrations. It consists of nearly 450 pages. The 

first and last few dozen leaves were detached 

from the book itself, thus rendering the original 

order of these pages as unknown. There is no 

title page. The small pages (3.9 x 4.7 inches / 10 

x 12 centimeters) on average contain nine to 

fourteen lines of characters of some unknown 

origin, and eighty-seven illustrations altogether. 

The leather binding was attached to the pages in 

the 19th century, and thus it does not add 

anything about the early history of the book. At 

present, the book is kept in the library of the 

Hungarian Academy of Sciences (MS K 114). 

What we know of its history dates back to 

1838 only, when, as part of the thirty-thousand-

book library of the late Hungarian magnate, 

Gusztáv Batthyány, it was incorporated into the 

collection of the Hungarian Academy of 

Sciences. Since no other information is available 

to us about its origin, the codex is named after 

the town of Rohonc (today Rechnitz, in Austria), 

the Batthyány family seat. However, since the 

Batthyánys had been amassing their book 

collection from a great array of sources through a 

succession of centuries, there is no proof that the 

codex is either Hungarian or Central European in 

origin.  
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Soon after it emerged, the mysterious codex 

earned considerable academic attention, but only 

as long as it could be considered a potentially 

valuable piece of old Hungarian writing. The 

initial enthusiasm soon died out, giving place to 

disappointment, skepticism and suspicion. By the 

end of the 19th century the academic public had 

decided to regard it as a forgery, and virtually no 

serious study was published on it until the turn of 

the 21st century. 

3 The first attempts  

The codex was first examined shortly after it was 

found by the Hungarian language historian, 

János Jerney. Judging by the watermark, he soon 

identified the paper as coming from 16th century 

Italy. This type of paper was indeed fairly 

common in early-modern Hungary. From the 

Biblical topic of the illustrations Jerney 

concluded that the author must have belonged to 

a Christian culture. He then went on to compare 

the writing to various Asian writings since it 

displayed some Eastern characteristics. Jerney 

was not yet tempted to regard the source as an 

ancient Hungarian document. Instead, he 

suspected that if the language was a natural one, 

it could have been written by Tartars, who had 

settled in medieval Hungary and become 

Christians. His theory was that the Tartars used 

their own Asian letters to write the Rohonc 

Codex or the original book that the codex was 

copied from. Jerney did not believe that the text 

was an imitation of an ancient Hungarian source 

or any other natural language. He did not think 

the purpose of the book had been to “deceive 

coming generations or to create a counterfeit just 

for the sake of a game”. He did toy with the idea 

of the text being a cipher though (Jerney 1844).  

In the following years, a succession of 

scholars tried to identify the symbols, 

Hungarians and foreigners alike: Ferenc Toldy, 

Pál Hunfalvy, Josef Jireček from Prague, Bernath 

Jülg from Innsbruck, Alois Müller from Graz. 

Later, Mihály Munkácsy, the famous Hungarian 

painter, even took the codex with him to Paris to 

have it examined. The first systematic and 

published attempt at breaking the codex was by 

Kálmán Némäti, who started working on the 

book after it was brought back from its 18-month 

long sojourn in Paris. 

Kálmán Némäti (1855-1920), the ‘educator of 

the nation’ – as he called himself, had a life so 

unique that it should be described in a separate 

monograph. He certainly did not belong to the 

institutionalized mainstream of the 

historiography of Hungarian literature. After 

giving up on educating the nation, he spent two 

years in an empty bear cave where, according to 

his entry in a biographical encyclopedia, “he 

wore underclothes and a monk’s habit made by 

his own hands; ate wild fruit and roots; and was 

often visited by the people of the land who 

would listen to his speech and give him wheat, 

fruit and bread” (Szinnyei, 1903, 954). Later, 

living on alms from his relatives like a “beggar-

writer”, he published a long line of articles not 

only on the Khazars, the Turks and the origins of 

the Hungarian people, but also on a proposed 

reformation of the teaching of the alphabet in 

primary schools, and the laws of nutrition (he 

himself was a hardcore vegetarian). As for the 

Rohonc Codex, he correctly identified the 

writing as running from right to left, and 

incorrectly argued for the ancient Hungarian 

origin of the text. He published his views on his 

own. Besides, he submitted a manuscript 

typology to the Academy that listed and grouped 

the symbols of the codex, of which he had found 

almost 800. This high number of symbols made 

him suspect that the codex is a syllable-writing 

(Némäti 1884 and 1889).  

Némäti’s research received some scholarly 

attention when he requested a grant from the 

Academy. The Committee of Linguistics took his 

proposal seriously and, according to the official 

record of the meeting on 12 November 1898, 

decided that they primarily needed a 

“palaeographic study in order to judge whether 

the manuscript is an ancient Hungarian source”. 

So they asked four palaeographers, experts on 

ancient writings, who, based on a variety of 

evidence, came to the conclusion that though the 

paper “was indeed from the first quarter of the 

16th century, the writing on it is a later forgery.” 

Their main argument was 

“it is impossible to encipher a text using 900 

symbols because no man on Earth could possibly 

read such a text, not even the person who had 

created it. Handling an alphabet of 900 secret 

symbols is beyond the capacity of human 

memory. The words are not separated, making 

the text difficult, even impossible to read. 

Moreover, no corrections have been made, which 

is unheard of in a manuscript of this length.” 
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Two of these observations are simply 

incorrect: there are ciphers that use 900 symbols 

or more, and the codex does contain a number of 

corrections, deletions and strikethroughs. Still, 

these comments imply that the palaeographers 

did not believe Némäti’s ancient Hungarian 

script hypothesis was correct. Instead, they 

examined whether the string of symbols could be 

a cipher. Though their arguments will be 

discussed later, the final conclusion of the 

Committee must be quoted here, 

“All of these convinced the committee that 

Mr. Kálmán Némäti had been wasting his rare 

tremendous zeal on an impossible task, and that 

anyone encouraging him to continue this work 

would do a bad thing to him.” (strikethrough in 

the original record) (The records of the 

Committee of Linguistics). 

When declaring the Rohonc Codex to be a 

forgery, the 12 November 1898 meeting of the 

Committee of Linguistics of the Hungarian 

Academy of Sciences silenced a long wave of 

attempts that were losing their initial fervor and 

were becoming more doubtful. The Academy’s 

opinion actually discouraged the desire to break 

the codex for almost a century (with the 

exception of one attempt). Upon the arrival of 

the third millennium, however, many voices 

broke the silence.  

4 The ancient Hungarian theory 

In the last few decades, Attila Nyíri, was one of 

those who proposed a solution for the codex. 

Nyíri is neither a professional historian, nor a 

paleographer, instead he is an electrical engineer, 

but we should bear in mind that good insights in 

the codebreaking of historical texts often emerge 

from non-professional sources. In the late 1990’s, 

when copies of the codex were not yet easily 

available, Nyíri used those two complete pages 

he had access to. He read the symbols of the 

codex as a prayer written with ancient Hungarian 

letters, i.e. a natural language. This means that he 

did not correspond the characters of the codex to 

the letters of the Hungarian language, but he 

simple recognized them as letters that could be 

read spontaneously (Nyíri, 1996). He happened 

to read the text upside down, something that he 

himself realized later, but it is not this mishap 

that proves him to be completely wrong. For one 

thing, Nyíri allowed for one letter (one sound) to 

correspond to several symbols, a method 

perfectly common in the case of ciphers, though 

not so much in natural languages. For another, he 

read the same character as several different 

letters. He furthermore claimed that the order of 

the letters is sometimes jumbled up in the text. 

This method of decoding, nevertheless, drops to 

such an arbitrary level where every deciphering 

attempt is successful by nature, and thus any text 

can be read in any way. 

Turning the page upside down, a few lines 

from the Rohonc Codex as Attila Nyíri reads it 

from right to left in “the ancient Hungarian 

language” sounds like this:  

“Your God has arrived. Oh, the Lord is flying. 

There are the holy angels.  

Oh, yes, them. Sung with decorous words, 

send the song, pour it. 

The Lord is to come, I am flowing 

everywhere. Oh. The Lord is honored. 

The peace of the Lord flies far. Those holy 

words...” 

5 The Daco-Romanian hypothesis 

Nyíri was no philologist, and he only had access 

to a limited section of the original text. These 

qualifications cannot be made in defense of that 

Romanian archaeologist who summarized her 

twenty years of studies of the Rohonc Codex in 

an eight-hundred-page book (Enăchiuc, 2002). 

Viorica Enăchiuc claims that the text is in Vulgar 

Latin, in other words, proto-Romanian, from the 

11th century. She transcribed the complete string 

of symbols, provided the dictionary of this 

hitherto unknown language, published the 

complete reproduction of the codex without ever 

asking the library for permission to do so, and 

then translated the text to modern Romanian and 

French. Furthermore, in her voluminous book 

she also made room for studies in Romanian (and 

their French translations) on topics such as the 

“musical notes” and “musical content” of the 

codex, various maps of Dacia, and even the 

author’s list of publications.  

There was only one thing left out from this 

thick volume, something that is the basis of all 

successful solutions, namely the one-or-two-page 

code table that would reveal which symbols 

correspond to which letters in Enăchiuc’s view. 

Her hints in the book seem to imply that we will 

only see this table when the “second volume” is 
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published. If the readers, however, attempt to 

create the table on his own, they will quickly find 

that the various symbols correspond to a 

different letter every time, carefully tailored to 

the meaning that Enăchiuc’s Vulgar Latin text 

carries. 

Throughout the twenty years she spent on 

studying the codex, the archeologist never 

realized she was reading the text the wrong way. 

She did notice that the symbols read from right 

to left, which is obvious from the facts that the 

text is aligned to the right, and that there are 

sometimes hyphens at the left end of the lines. 

Why she read the text from bottom up, however, 

is hard to explain. Even a relatively quick study 

of the text identifies coherent strings of 

characters that, when broken at the end of a line, 

always continue in the right end of the line below. 

Furthermore, there is a fairly conspicuous 

phenomenon where the end of a chapter or 

section produces a blank area at the bottom of a 

page, and not its top. Looking at these features, 

even the earliest researchers could correctly 

determine the direction of the writing, right to 

left, top to bottom, of the Rohonc Codex.  

Equally bizarre is the fact that the Romanian 

researcher failed to notice that certain symbols 

always stand together, such as the frequent IO:O 

and several dozen other examples that she 

decodes as separate letters every time they occur. 

If they really were a string of separate letters, 

instead of carrying a meaning as a complex 

character, then they would be signs of such a 

high level of structure unmatched by any other 

language. (In other words, the number of letters 

that always stand together like q+u in Latin, are 

too high.) Enăchiuc also believes the second 

symbol of one specific digraph to be a sentence 

delimiter. If that were the case, all sentences 

would start with the same letter, i.e. the first 

symbol of this digraph. This weird feature of 

Vulgar Latin went unnoticed during the process 

of translation only because the same symbol is 

always translated by different letters. This is yet 

another method that enables the reader to 

translate any kind of ciphertext in any way she 

chooses.  

All of these peculiarities make sense, 

naturally, once we glimpse into the 

reconstruction of the text and discover her 

motivation. In her rendering, the codex describes 

the centralized Blaki (early Romanian) state, 

located between the Tisza and the Dniester 

rivers, at the peak of its glory in the 11th and 

12th centuries, led by emperor Vlad. The codex 

contains speeches, prayers and songs in 

connection with this state, but mostly battle 

songs to inspire the 11th century Blaki youth to 

glorious victory over the Oghuz and the 

Hungarian people. The Oghuz, if I understand 

her correctly, are in fact the Pechenegs, who 

were allies of the Hungarians and posed a threat 

on the centralized Blaki state as well as the 

Byzantine Empire around the year 1100.  

Let us read the transcript of the codex by the 

Romanian archeologist, Viorica Enăchiuc. It 

goes right to left, bottom to top in Vulgar Latin, 

i.e. in Daco-Romanian language, 

“Deteti lis vivit neglivlu iti iti itia niteren 

Titius suonares imi urast ucen” (Enăchiuc 

2002, 22) 

Chances are that the reader would not quite be 

able to read this in Vulgar Latin. Vulgar Latin, to 

the best of our knowledge, has no other surviving 

source, let alone a language book or dictionary. 

This does not bother Enăchiuc in the slightest, as 

she attaches a detailed dictionary where she 

assigns each word of this language to another 

word, usually Latin. For example, the Vulgar 

Latin ITI comes from the Latin “eo, ire, ivi, 

itum” word, which means go. The strange-

looking NEGLIVLU is not listed in the 

dictionary, but could be the verb neglect, based 

on a similar-sounding word, the Latin “negligo”. 

SUONARES stands for the Hungarians, because 

it sounds like Hunor, a character in Gesta 

Hungarorum, an early history of the Hungarians 

written by the medieval Hungarian chronicle-

writer, Simon of Kézai. The Vulgar Latin lines 

above were translated to French by Enăchiuc and 

here you, the reader, can read them in English, 

“In great numbers in the fierce battle, go 

without fear, go heroically! 

Advance thunderingly, to sweep away the 

Hungarians and win!” (Enăchiuc 2002, 674) 

Elsewhere an encouraging speech is quoted, 

that was delivered at the forts of Inau, 

Transylvania, before the battle over the river 

Tisza against the Hungarians,   

“A suoar noas suoar striol / inou iu oi iura fidi 

tenis nitioi / inou nevi tenes sedani dit = / iu 
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elicen vasi abdi bini / sunar edo lidi sunar titi tisa 

/ ti inou to veiki uti nititi acira / ti deti atr dira 

sati sunara / ot nis tenen vi ulcer iurai sunar / 

dica er uti veik iuku inou a roi / suoar osorai 

suoar striool / isti is etia vi iker uti iti ser” 

(Enăchiuc 2002, 8) 

In English: 

“In our defense, in defense of the Strei! Go to 

Inau and swear! 

Defend it with glory and defend the united 

Ineu in continuum, completely.  

Go together, I have pushed forward. Together 

fight back the Hungarians; I encourage you to 

fight over the Hungarians, not letting go of the 

Tisza at your Ineu; push forward, to shine with 

glory, by your bravado  

stop the cruel tragedy caused by the 

Hungarians.  

To defend us strongly, swear to wound the 

Hungarian. 

Decide my lord, to push forward at Ineu with a 

hawk’s cry again in defense, decide about the 

defense of Strei in advance. 

Go and now you will strike with greater force, 

now that you go united.” (Enăchiuc, 2002, 669)  

The reconstruction by Enăchiuc about the 

centralized 11th century Romanian state and its 

soldiers who would defeat the Hungarians over 

and over raises a series of historical problems, 

and little wonder that even Romanian historians 

have criticized it (Ungureanu, 2003). Let us for a 

moment accept this theory and assume that ever 

since Roman times there had been a Romanian 

state, and that its people spoke “Vulgar Latin”. 

We will still find it impossible to accept 

Enăchiuc’s rendering of the codex: she reads it 

the wrong way, she decodes the same strings of 

symbols into different sentences, and she makes 

up a non-existent language that has sources 

nowhere else.  

Although a close study of the illustrations of 

the codex is beyond the scope of this paper, we 

must cite how the archaeologist identifies 

emperor Vlad, his subjects and the ambassadors 

arriving to the emperor from Byzantium in 

images where every other researcher sees typical 

Biblical scenes. There is an image, for example, 

of Christ entering Jerusalem riding on a donkey, 

with people laying their clothes in front of him, a 

palm tree that people have taken the branches 

off, and also the money changers being driven 

out of the temple. This is entitled, “Vlad is 

preparing for the alliance to be made with the 

Byzantines against the 1064-65 conquest of the 

Oghuz, the metropolitan archbishop of the Blak, 

Sova Trasiu, blesses the warriors in the temple 

with battle signs”. The Hail Mary, depicting 

Mary, the winged angel and Joseph bears the 

title, “Sova Trasio metropolitan archbishop is in 

a wooden church with a bell tower, sending a 

book to Jaroslav I, Prince of Kiev so they would 

unite with the Blak in the war against the 

Oghuz”, as Enăchiuc sees it. On the right, where 

we see Joseph and the angel, she sees “the Prince 

of Kiev, who, receiving the news, accepts the 

alliance”. The adoration of the Magi, which, to 

make things clear, also depicts the star of 

Bethlehem, is seen by her as, “Vlad, head of the 

Blak, is standing with Sova Trasiu metropolitan 

archbishop and a general, receiving the envoy of 

Byzantine emperor Constantine, in an army base 

somewhere in the Sub-Carpathian region.” She 

does not stray so far from the traditional 

rendering in the obvious scene of the crucifixion, 

“Vlad, governor of the Blak, wearing a helmet 

and weaponry, is praying for victory at the foot 

of the crucified Savior, before leaving for the 

war against the Oghuz.” The arrest of Christ in 

the Garden of Gethsemane, however, is actually 

the meeting between the Goths, who were 

crossing the Blak territories, and the Byzantine 

army leaders, while Christ meeting Pilate is 

indeed Vlad, Prince of the Blak, before the 

Byzantine emperor Alexander I. The scene 

depicting Christ wearing a crown of thorns 

standing before Herod is explained as the Cuman 

king receiving blessing from the Cuman high 

priest. The king is about to leave for battle where 

he is going to fight on the side of the Blak and 

the Byzantines. The events unfolding around the 

grave of Christ (the noli me tangere scene, the 

empty cave with the angel) in Enăchiuc’s book is 

the scene where the Goths are preparing to fight 

back the invasion of the Pechenegs. All of these 

illustrations are typical and unambiguous 

depictions of Biblical scenes using conventional 

iconographic symbols.  

6 The Sanskrit theory  

Perception is gravely influenced by a priori 

nationalistic expectations, a fact not only 
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illustrated by the work of Enăchiuc. Turán, the 

journal specializing on research on the early 

history of Hungary published the solution of Dr. 

Mahesh Kumar Singh. Dr. Singh is from India, 

and at the same time a descendant of the Hunnish 

royal family – as he himself claims. The 

accounts of the chief editor of the journal inform 

us, how Dr. Mahesh started browsing through an 

earlier edition of the journal, reading in English 

without a pause the facsimile of the mysterious 

Rohonc Codex (Turan, 2004-2005, 6-7), as if the 

language was familiar to him. The chief editor of 

the Turán, despite contrary advice from some 

fellow editors, published the first 24 pages of the 

Singh transcript, along with its Hungarian 

version (Singh, The Rohonc Codex, 2004-2005).  

The following are a few lines from the Rohonc 

Codex as read by Dr. Mahesh Kumar Singh, 

from left to right, top to bottom, in Old Indian 

script, in Sanskrit: 

“Oh, Lord, the people here are very poor, sick 

and hungry, / give them skills and strength to 

satisfy their needs / provider, do not harden your 

heart / do not take your hand from this needy 

people / their needs that they desire for 

themselves / grant these to them for their sake / 

whenever you help them these people / that they 

may find this help perfect.” 

Credit should be given to the journal Turán for 

publishing a reader’s letter in a subsequent issue 

with a detailed refutation that argues, like we do 

with regard to Nyíri and Enăchiuc, that the Singh 

decoded the same strings of symbols in different 

ways: one digraph was for example interpreted in 

eleven different ways, and one other, longer 

string of symbols had four meanings in four 

different places within the text (Varga, 2005). 

7 Systematic attempts 

The list of attempts at decoding the Rohonc 

Codex is not yet finished. The followong ones 

are relevant because of the method applied in 

them, tools that a professionals would also use. 

And although they were considerably more 

successful than the attempts described so far, 

they have modestly refrained from thinking they 

were a full solution. The first such attempt is that 

of lieutenant colonel Ottó Gyürk, who became 

known in 1969 as the person who deciphered the 

numbers in the encrypted diary of the novel 

writer, Géza Gárdonyi (the script of the diarly 

was cracked by Gábor Gilicze, then a university 

student). Having successfully transcribed the 

secret text, Gyürk felt confident enough to have a 

go at breaking the Rohonc Codex too (Gyürk 

1970). Studying the continuous strings of 

symbols that broke up at the end of the lines, as 

well as the incomplete lines and pages, he 

quickly realized that the text goes from right to 

left, top to bottom. He also correctly identified 

the double line that often appeared on the left 

side of the page as a hyphen. This symbol is 

familiar to researchers studying handwritten texts 

from the 16th to 19th centuries, but we must 

remember that Gyürk was not a philologist. 

Following the procedure that proved to be 

successful with Gárdonyi’s diary, Gyürk went on 

to try and identify certain strings of symbols as 

numbers. He confesses to spending years on 

creating tons of systematic statistics, yet he could 

not achieve any more results. His method, which 

focused on studying the patterns and statistics of 

(groups of) symbols was the first in the history of 

the Rohonc Codex that was promising. 

A similar, but computerized analysis was 

carried out by Miklós Locsmándi, who published 

his results in the same 2004 issue of Turán that 

also contained the Singh-transcipt. Locsmándi 

apparently received less support from the editor 

(Locsmándi, 2004-2005). He realized fairly 

quickly that the language of the codex is a 

constructed one and he was willing to let go of 

the early Hungarian script theory, a feature 

somewhat alien to the journal Turán. He 

distinguished between the simple and the 

complex symbols, a real achievement in itself, 

because neither Némäti, nor Nyíri, nor Enăchiuc 

seem to have recognized that certain symbols 

always stand together and must be translated as 

one unit. Locsmándi then examined the 

frequency of the symbols, to find out if they 

represented letters, syllables or perhaps complete 

words. He drew attention to a queer feature of 

the codex, namely that the text contained 

repetitions that were too frequent. “The language 

of the text probably uses a small number of 

simple basic units,” he concluded. This structure 

is strongly characteristic of “prayers of litany, 

perhaps charms from the folk tradition” which 

suits the proposition based on the illustrations 

that the codex is the prayer book of a religious, 

perhaps sectarian movement. Locsmándi, 

however, did not produce the real solution either.  

8 Epilogue 
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Finally, in 2010, after a ten-year pause, another 

important step was made on the road paved by 

Gyürk and Locsmándi. Gábor Tokai and Levente 

Zoltán Király started cooperating on the code of 

the codex, which led finally to a common series 

of articles, the first of which have been published 

in Cryptologia. This is however, a different story, 

which is – in contrast to the earlier, aborted 

attempts – accessible for the wider public. 
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Abstract

During the military dictatorship in
Uruguay in the 1970s and 1980s, three
encrypted documents were sent be-
tween members of the urban guerrilla
MLN Tupamaros. In this work we
present the second of these documents,
whose text was encrypted by an ar-
ray of colored circles on the covers of
a book.

We introduce some of the history and
the processes of image recognition and
decryption of this document.

1 Introduction

In Uruguay, a small buffer country between
Argentina and Brazil, an urban guerrilla MLN
Tupamaros emerged in the 1960s and 1970s
under the influence of the Cuban Revolution.
After years of fame, it was finally defeated
in the mid-seventies and a large part of its
members were imprisoned in EMR �1 (Lib-
ertad Prison) and EMR �2 (Punta de Rieles
Prison), for men and women respectively. The
rest sought political asylum in European coun-
tries, or died in combat or torture. Prisoners
in EMR �1 and some exiles played a leading
role in this story in the early 1980s involving
Uruguay, Germany, and Sweden.

When nine members of their leadership were
held hostages (“rehenes poĺıticos”) in different
barracks in September 1973, the Tupamaros

left in EMR �1 focussed on self-criticism in-
side the prison and felt the need to make their
political positions known to their comrades in
exile. The elaboration of self-criticism took
them three years (1977-1980) in severe prison
conditions on the second floor of the EMR
�1 where the military kept the prisoners that
they considered “dangerous”. The discussions
necessary to reach a certain consensus, more
or less representative, went through several
stages and led to the final draft of the doc-
ument and a detailed revision among many of
them. Two prisoners were charged with the
task of elaborating the key and deciding on
the vehicle that would carry the message, as
well as looking for ways to get the key to fam-
ily members, so that they could transmit it
into exile. A cryptographic tapestry (called
carpet in (Cabezas et al., 2018)) emerged as a
medium for clandestinely passing their elabo-
rations and proposals to the outside.

They agreed on an 18-letter alphabet, re-
duced from the standard 27 letters of Spanish,
and its representation in six columns and three
rows:

m a r k o s

d i n t e l

j u p v h f

Figure 1: Encryption key used in the tapestry.

A total of six colors was used. Each column
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represents one of the six colors, and each row
one of three among them. The encryption of a
letter is the pair of colors at the intersection of
its column and row. It was implemented as a
tapestry elaborated with threads of wool of six
different colors and made in the ”cross stitch”
technique on burlap. This was a craft accepted
by the military and many inmates sent similar
items outside, passing censorship.

It took many months to make the tapestry.
First, the proportion and the size of the fab-
ric, and then a reading direction were defined.
The agreed text was written in the new al-
phabet, obtaining the pairs of colors for each
letter of the alphabet. Then a tapestry design
was made on common squared paper, and fi-
nally letter by letter, stitch by stitch, the text
was transferred from the squared paper to the
burlap.

In spaced and controlled visits, the prisoners
tried to pass the code to the outside, with the
logical difficulties implied in committing fam-
ily members to things unknown to them. An
inmate who was soon to be released and then
to be expelled from the country was chosen to
remember the key and transmit it to Germany.
In exile, the key and the tapestry should con-
verge to allow reading of the message. It was
also intended that a message with news from
the outside be returned and that the same key
be used.

What happened to the key, to the alpha-
bet? It came out of prison on thin cigarette
rolling paper wrapped in nylon, forming a tiny
pill that the released prisoner carried in his
mouth, as a backup to his memory. But since
life is always complex and much more so for
those who in the midst of a dictatorship are
”expelled” from their country, in a moment of
tension he swallowed the pill containing the
alphabet. The tapestry remained in Uruguay
and never reached its intended recipients in
exile.

Memory is deceitful and elusive. The exiled
prisoner tried to reconstruct the code in or-
der to send a message with news from exile,
but only came up with one somewhat inspired
by the tapestry ’s. The released prisoner’s new
life, the health care given in Germany, the re-
unions with family and colleagues, the com-
mitment to denounce the living conditions of

Figure 2: Front cover of the book “Eva”.

prisoners in the Libertad Prison, the eagerness
to know what had happened in the organiza-
tion and in the world in all those years, un-
doubtedly conspired to hinder the recovery of
the key. This inconvenience became the great-
est obstacle for the successful deciphering ef-
fort almost forty years later ((Tiscornia and
Cabezas, 2015), also (Cabezas et al., 2018)).
That is the first part of this story.

The exiled Tupamaros, who did not even
know of the tapestry ’s existence, sent a mes-
sage from Sweden to Uruguay. It was en-
crypted by colored dots on the covers of a
little book entitled “Eva” (Figures 2 and 3)
whose contents is irrelevant to our story. Two
copies were printed in Sweden. One arrived in
Uruguay at the time, but did not pass prison
censorship. The coding used a method vaguely
similar to that of the tapestry, but with some
changes that complicated its recent analysis,
which is the subject of the present work. This
is the second part of the story.

Its third part is a notebook (cuadernola in
Spanish) having on its covers the same plain-
text as “Eva”, but encrypted differently, with
a key similar to that of the tapestry. The
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Figure 3: Back cover of the book “Eva”.

three key words MARKOS-DINTEL-JUPVHF were
identical, but with the rows and columns en-
coded is in “Eva”, using the run-length of
black and magenta dots as the row indicator.
It was printed in Sweden and arrived safely in
the Libertad prison and had to be deciphered
without any technical help. This demanded
a great deal of effort due to alterations, as
mentioned above, in the tapestry ’s encryption
method. Enclosed in their cells, against all
odds and dedicating weeks of permanent work,
eventually they managed to do this. It com-
pleted the whole route, but we do not have the
notebook with us because it was destroyed in-
side the prison for security reasons as soon as
its contents was copied. And this is the third
part of the story.

In 2015, thirty-five years later, someone
coming from exile in Sweden brings a small
book entitled “Eva”, a copy of the original
that had not passed censorship. Slightly em-
barrassed, he informs the ex-prisoner that its
front and back covers contain the message that
came to the Libertad prison in the notebook.
They consist of regular arrangements of a myr-
iad of colored dots. Whoever has been able
to see the tapestry and “Eva” together under-

stands that the strategy has been the same.
The little book is given to an ex-prisoner who
has been working on the Memory of the Lib-
ertad Prison, not knowing the story we have
been telling so far. So this researcher started
from scratch, consulting his comrades. No
prisoner had ever seen “Eva”, but some knew
about the existence of the tapestry, and others
had held it in their hands; step by step he ad-
vanced until finding the author of the tapestry.
Although this person had never seen “Eva”, he
recognized the colored dots. In the first dis-
cussion with him, the surprise was great when
the researcher found the already moth-eaten
tapestry. And then, in successive meetings, 35
years later, began a process of retrieving mem-
ories; trying to recover the key and the whole
process of its creation.

The researcher, besides being surprised,
tried to put a rigorous logic to the events
in order to help memory, on the one hand,
and on the other hand to construct an under-
standable story. Thus, first questions arose,
and after the answers, certainties of what had
happened, in order to arrive at the following
conclusions. Only one person saw, no mat-
ter at what time, the tapestry, the notebook,
and “Eva”. This is the author of the tapestry.
Thirty-five years later, when shown “Eva”, of
whose existence he had no prior knowledge, a
circle is closed. The long-awaited message con-
tained in the tapestry never left the home of
the author’s family. Miraculously, thirty-five
years later it was still there. After so much
effort, so many dangers, and so much inven-
tiveness and just out of EMR �1, the tapestry
ran aground in his family’s house.

Almost forty years later, after a decipher-
ing effort at INCO1, someone unrelated to the
authors of the message was able to read it
(Tiscornia and Cabezas, 2015). The tapestry
ended its journey and revealed its content and
the thoughts of those imprisoned Tupamaros.

For deciphering “Eva”, we have in our hands
the tapestry and its alphabet and key, and the
almost certainty “Eva”’s code should be the
same. We also know that the notebook is a
backup of the message sent as “Eva”, which
never reached the hands of the prisoners be-

1Computing Science Department at the Universi-
dad de la República, Montevideo, Uruguay
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cause the censorship did not allow it. In other
words, the notebook was a second attempt of a
message from exile - this time successful - with
many months, or years, between the two.

Time made more memory come to light in
that expelled prisoner and with it the key
to the notebook, in spite of small differences
with the tapestry ’s code. Eventually, the
notebook could be deciphered. However, this
did not help to solve the problem of “Eva”,
but rather complicated it. Deciphering the
tapestry was considered more complex due to
the digitization itself, the discoloration of the
wool, the structure of the fabric, the waves
that are generated, and the moth eaten ar-
eas. These are the reasons why we started with
the tapestry. Once again, chance, memory and
oblivion intersect. In the course of “Eva”’s de-
cipherment, it was detected that the encoding
method was not the same as the one used in
the tapestry and the complications multiplied.
But the task was solved (Castro, 2019). All
these steps were finished by confirming the cor-
rectness of the discovered plaintext with those
who received the notebook and verifying with
the “forgetful” ex-prisoner that the new alpha-
bet was the one in Figure 10.

2 Previous Knowledge

For decoding “Eva”, the following previous in-
formation was known, or at least could be as-
sumed as a starting point for decrypting the
book covers:

� The text was written in Spanish without
spaces and using an 18-character alpha-
bet.

� The encoding method of the tapestry,
namely a substitution cipher with each
character encoded as two colors, one
for the row and another for the col-
umn. (This assumption turned out to be
wrong.)

� The key of the tapestry (forming a 3 × 6
matrix): MARKOS-DINTEL-JUPVHF (Figure
1).

� The encoding method of the book cov-
ers and particularly the key should not be
too different from the one on the tapestry
since it was decoded by hand.

A few days before final sucess, an additional
hint was provided: the author of the book
cover remembered that there was a word in
Latin somewhere. Which later proved to be
true, as MORTIS was found (by computer) as
part of the book cover’s key.

3 Image Recognition

Compared to the tapestry, the book was found
in good condition (Tiscornia and Cabezas,
2015). The inks used in the cover were suf-
ficiently clear and well-preserved to easily dis-
tinguish the colors from each other and from
the white background. This allowed us to use
simple algorithms for the recognition.

The back cover consists of a 61×91 array of
colored circles, missing one per corner, totaling
5547 circles. On the front cover there is a rect-
angular space lacking circles where an image
is located instead. That is why the analysis
began with the back cover only.

Two difficulties during the recognition pro-
cess are illustrated in Figure 4:

� Minor cracks, probably originating from
bending the cover, causing thin yellow
lines (from the acid paper) to appear be-
hind a few circles.

� Each of the eight inks was manually
printed from a different plate, and the
plates were not perfectly aligned. The
amount of misalignment was only prob-
lematic on the front cover.

Figure 4: Snapshot of the recognition tool on
the back cover. Smaller overlayed white circu-
lar marks show which circles were recognized.

A tool was created to assist in the recogni-
tion process.
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1. First, the pixel coordinates for the centers
of the circles located at the corners are
specified, along with the number of rows
and columns.

With this information the program is able
to overlay a grid where an approximation
to the center of each circle is calculated.
This is done using bilinear interpolation.

2. When the application is run, it shows a
list of the circles that it couldn’t recog-
nize. For each one of them the color at
their center point is also shown (includ-
ing the RGB values, each in the 0 . . . 255
range) at the center point.

The user may then specify the RGB val-
ues of recognized colors with their names,
like color 30 192 44 g for green.

A circle is recognized when a pixel of a
valid color is located in the area given
by the center point (±5,±5) pixel area.
Valid colors are those whose RGB triplets
differs less than 10 in the 2-norm of a rec-
ognized color. In case of ambiguity the
point nearest to the center is used.

The front cover, being significantly shorter,
was recognized and transcribed by hand once
the back was decoded and the key was known.

It was then found that in fact the front cover
is the continuation of the back, with the bot-
tom half being the repetition of the beginning
of the text.

4 Encoding deduction

4.1 Frequency count

After the image was recognized we only had
a text file with a character per circle, and the
knowledge that it was encoded with a method
similar to the one used in the tapestry.

There are eight colors with the following
number of occurrences:

Code Count Samples for each color

k 1501 Black

m 1497 Magenta

y 622 Yellow

g 466 Green

c 424 Cyan

n 394 Brown

o 350 Orange

r 293 Red

The first difference from the tapestry is that
8 colors were used instead of 6. Black and
magenta are the two most common colors, yet
no two consecutive black nor magenta circles
can be found.

4.2 Conditional probabilities

When we started, we did not know the reading
direction. In order to determine it, Figure 5
exhibits for a circle with color ‘y’, the proba-
bility to be immediately followed by a circle of
color ‘x’. Here, P (x) is the overall probability
for color x, say P (k) = 1501/5547. Addition-
ally, this table can also be seen as the transi-
tion table of a first order Markovian model.

The background hue of each cell in Figures
5 and 6 indicates the distance from a memory-
less process; the more colorful, the more dis-
tant it is. Thus the stronger colors in Figure 5
say that reading is more likely to be horizontal
than vertical. Formally the hue is calculated
as h = c1 ·sigmoid(c2 ·(P(yx|y)−P(x))), where
green indicates positive and red negative h.2

By building the same table from the trans-
posed array of circles, which would be in effect
equivalent to reading the circles vertically, as
done in Figure 6, we can see that the transi-
tion probabilities are much more similar to a
memoryless model.

From this we can infer that the text is en-
coded horizontally.

4.3 Text direction via compression

Another hint that the text is encoded hori-
zontally can be obtained by compressing the
text file with the arrays of circles using a pure
variant of LZ-77 (Ziv and Lempel, 1977)3, re-
sulting in 2064 bytes compressed horizontally
and 3014 bytes vertically.

4.4 Text direction via common
substrings

A conclusive method to ensure the text was in-
deed written horizontally is to find the longest
common repeated substrings in both direc-
tions. Figure 7 shows a text mkmnkomkgn-
gnmkmykycmkrgmgc of 26 circles appearing

2c1 = 32, c2 = 10, RGB color=[224−h, 224+h, 224].
3Variant with a sliding window of 4kB coding in 9

bits each uncompressed byte and in 17 bits (1 bit for
the type, 12 for offset and 4 for length) the matches of
length 3 to 18.
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P(yx|y) x=k x=m x=y x=g x=c x=n x=o x=r

y=k 0.00 44.40 15.53 10.67 8.73 7.07 6.53 7.07

y=m 45.16 0.00 15.76 9.95 7.82 8.08 8.15 5.08

y=y 31.99 31.19 1.93 2.89 8.04 10.61 7.40 5.95

y=g 30.69 30.26 4.08 1.29 7.30 15.45 5.58 5.36

y=c 29.48 33.49 8.96 14.39 3.54 4.01 1.89 4.25

y=n 34.26 32.74 5.84 3.30 7.87 1.02 9.90 5.08

y=o 35.14 31.71 8.57 12.57 6.86 2.29 0.29 2.57

y=r 33.79 38.91 10.58 5.12 7.51 0.00 3.41 0.68

Figure 5: Conditional probabilities from the text read horizontally.

P(yx|y) x=k x=m x=y x=g x=c x=n x=o x=r

y=k 25.13 27.87 11.73 8.40 7.13 7.33 5.93 6.47

y=m 29.39 27.59 10.89 7.82 7.35 6.81 6.01 4.14

y=y 26.37 26.53 13.18 8.68 7.88 6.11 6.75 4.50

y=g 28.76 25.75 10.52 8.37 6.87 7.51 6.44 5.79

y=c 28.54 23.82 12.74 5.42 8.02 8.49 6.13 6.84

y=n 25.63 26.14 7.36 11.42 10.66 7.61 7.61 3.55

y=o 26.86 26.00 9.43 10.29 6.86 7.43 7.71 5.43

y=r 23.89 29.01 12.29 8.87 8.87 5.80 5.46 5.80

Figure 6: Conditional probabilities from the text read vertically.

nkmckcmkmokmykymkymyookmknmkycmrkmgcckomkmnkomkgngnmkmykycmkr

gmgcroygkmykomkynymkmnkomkgngnmkmykycmkrgmgckmnkomkrymykmykmk

rcmkymrkmykyomkygmrokmckomkymkmnkomkgngnmkmykycmkrgmgckmrykmk

Figure 7: Example showing the longest repeated string.

thrice in the text, with a newline breaking the
first two lines which are contiguous in the orig-
inal.

4.5 Kasiski test

The Kasiski test is commonly used to obtain
the key length for Vigenère cryptosystems,
and even though we assume from the start that
Vigenère was not used, this test can provide
additional information.

In the Figure 8 we present the number of
pairs of circles of the same color (#matches)
with the same distance offset between them,
factors shows the prime factorization of the
offset.

#matches offset factors

1112 173 173

1112 1842 2,3,307

1115 1071 3,3,7,17

1119 782 2,17,23

1121 2679 3,19,47

1122 2294 2,31,37

1126 289 289

1130 2148 2,2,3,179

1130 2538 2,3,3,3,47

1166 6 2,3

1175 530 2,5,53

1562 3 3

Figure 8: Top values of the Kasiski test (x̄ =
1015.80, σ = 41.47)

Since there are only 8 colors to encode an al-
phabet of 18 characters (assuming it was the
same alphabet as in the tapestry), we have a
multi-symbol cryptosystem, where more than
one symbol is needed to encode each charac-
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ter. The Kasiski test could then be used to
obtain a clue about the number of circles per
characters needed, in the case that such fixed
value existed.

Even though a higher number of coinci-
dences were found at offsets 3 and 6 (vs 1,
2, 4 or 5), the number of matches for offsets
congruent with i modulo 3 show a difference
small enough to discard trilateral or trinomic
cryptosystems (US Army, 1990):

offset x̄ σ
∼= 0(3) 1015.08 37.63
∼= 1(3) 1015.23 47.14
∼= 2(3) 1017.10 38.97

4.6 Black and magenta runs

For any subset of two or more colors, we con-
sider the substream of those circles whose col-
ors belong to the subset. When we com-
press these substreams with LZ77, we ob-
tain a significant result: black and magenta
circles reach the maximum compression ra-
tio. This occurs because they are interspersed
(kmkmkm. . .).

If we treated black and magenta as identi-
cal colors, then the ciphertext would still have
the same meaning. We observed that the run
lengths for consecutive black and magenta cir-
cles follow a pattern: There are 638 runs of
length 1, 694 or length 2, 324 of length 3, but
none of length 4 or higher.

At this point we correctly suspected that the
run length was pointing out the row number
of the 3 × 6 key, with the other 6 colors ref-
erencing the column. This was one of the key
observations leading to our cryptanalysis.

Example 1 The first few circles of the back
cover can then be decoded as:

� kmyc: in row 2: yellow and cyan,

� ky: in row 1: yellow,

� mkgr: in row 2: green and red,

� mo: in row 1: orange,

� kmkn: in row 3: brown,

� moy: in row 1: orange and yellow,

� kmo: in row 2: orange,

� ko: in row 1: orange,

� mkmr: in row 3: red.

The sequence of black and magenta run
lengths starts with (21213121321232312121-
2112121232. . .). Few numbers are repeated
consecutively. This suggest that in most places
when there are two or more consecutive letters
from the same row, the row number is indi-
cated only once.

A few repetitions can be seen in the first
part of the back cover. However from about
midpage on there are no more consecutive runs
with the same length. This can be observed
in Figure 9. Maybe they realized during the
production process that repeated run lengths
could be optimized out.

Figure 9: Positions where consecutive re-
peated black and magenta run lengths are
found on the back cover.

Assuming that our hypotheses are correct at
this point, the “Eva” code is not a simple sub-
stitution. The alphabet is split into three parts
(rows) of six letters each. In each part, a letter
is indicated by one of six colors. Two special
colors (black and magenta) indicate the part
to be used, but not by colors, rather by the
black/magenta run length. We are not aware
of any historical cipher that employs such a
two-step encryption.

However, we can rewrite it as a simple sub-
stitution. The first entry kmyc in Example 1
then becomes ((2, y), (2, c)), and we now work
with this simple substitution. But it required a
major effort to discover this unusual and clever
step in the encryption.

5 Simple Substitution

Once we have reduced the encoding to a sim-
ple substitution, we need to know which letter
corresponds to each of the 18 entries in this
3× 6 table. This table forms the secret key of
the resulting cipher.

Traditionally such ciphers are broken by fre-
quency analysis, a process which begins by
counting the number of times each character
appears in a corpus and in the encrypted text.
Since the ratio depends mainly on the lan-
guage used and applying the subtitution does
not change the ratios, it is expected to have
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a similar order both in the corpus as in the
encrypted text.

Instead of using just the frequencies for the
individual characters, digrams are commonly
used as well (Clark and Dawson, 1998).

In our case we used the simple hill climbing
IILS greedy algorithm (iterative improvement
local search) which starts from a random solu-
tion key and keeps looking for the best neigh-
boring one until a local maximum is reached
(Lourenço et al., 2003):

procedure IILS(key)
best← maxn∈neighbours(key) {fitness(n)}
if fitness(best) > fitness(key) then

return IILS(best)
else

return key
end if

end procedure

A key is a permutation of the 18 letters in
our alphabet A, and two keys are neighbors if
one can be obtained by swapping two entries
of the other.

5.1 Fitness function

For the criterion used to prefer one key over
another we use a “fitness” function. Such func-
tions return higher values whenever the plain
text obtained (by using a “better” key) has
some property closer to a given corpus, like the
relative frequencies of letters or polygrams.

A first approach to a fitness function based
on a dictionary is just breaking the text in
words, so that the sum of the lengths of the
words that can also be found in a Spanish dic-
tionary is maximized.

Furthermore we can power the length of the
words to a positive constant α to increase the
weight of longer words. The longer the word,
the lower its probability is to appear inside
garbled text.

Example 2 Given the text HELLONE and an
English dictionary, α = 1.8 would prefer a
higher coverage selecting “hell”+“one”, while
α = 2.2 would prefer a longer match “hello”.

α ‘hello’ ‘he’, ‘lone’ ‘hell’ ‘one’

1.8 18.1 15.6 19.4

2.0 25 20 25

2.2 34.5 25.7 32.23

Formally, our fitness function fitness : A∗ 7→

R is defined as:

fitness(z) = max{fitness(φ)+|ω|α
∀ (φ||σ1||ω||σ2)=z, ω∈D},

fitness(ε) = 0.

where:

� φ, σ1, ω, σ2 ∈ A∗,
� ε is the empty string,

� ‘||” is the string concatenation operator,

� |ω| is the length of the string ω,

� α is a constant applied to the length, and

� D ⊂ A∗ is the Spanish dictionary whose
characters were projected to the alphabet
A (without accents or diaresis).

The α parameter can be calibrated to make
the function have stronger preference to find-
ing longer words vs. finding more words (a
higher percentage of the text covered by rec-
ognized words). A value of 1.8 was used.

Trying all possible partitions of a text has
exponential cost. By remembering (dynamic
programming) the fitness result of the first i
characters and keeping the dictionary in a trie,
we can implement the fitness function with
O(m) memory usage and O(n · m) CPU us-
age, where n is the text length and m is the
length of the longest word in the dictionary.

5.2 Result

After several executions of the algorithm, the
correct key is obtained when the maximum fit-
ness value is obtained:

r c y n o g

1 m o r t i s

2 k l a n d e

3 j u p v h f

Figure 10: The key of “Eva”.

The tapestry and the book cover share the
third row of the key. However instead of
“markos”/“dintel” here we have “mortis” as
Latin for death and “klande” as short of “clan-
destino” (Spanish for clandestine).

Obtaining or not the correct key in a series
of independent executions can be modeled as
a Bernoulli process of a given probability p.

66



Since this key was obtained in 643 of 10000 in-
dependent executions, we know that the prob-
ability of not obtaining a correct key in 500
independent executions given p > 0.05 has a
trivial upper bound of (1− p)500 < 7 · 10−12.

On the other hand, given p ≤ 0.05 the prob-
ability of finding the correct key at least 643
times in 10000 independent executions would
be less than 1 − bin(k = 643, n = 10000, p =
0.05) ≈ 1.8 · 10−16, where bin, the bino-
mial cumulative distribution function, equals∑bkc

i=0

(
n
i

)
pi(1− p)n−i.

Thus running 500 independent executions
of this algorithm implies testing an average
of 1.15 million keys, with the probability of
not finding the correct key upper-bounded by
10−10. That said, if we were to do a 1.15 mil-
lion näıve random searches for the key, the
probability of finding it would be less than
1.8 · 10−10.

6 Parts of the document’s
cleartext.

We present the initial part of the cleartext.
The opinions and political points of view ex-
pressed in this document do not, in any way,
reflect necessarily those of the authors or their
institutions.

Al recibir digan: Magdalena
llegó.

Colores marcan renglones.

Cuando saĺı no revisaron boca.

[...]

Hay agrupamiento tupas en base
a acuerdos, con discrepancias lla-
mado proceso, o simposio. Coincido
bastante con ellos, todav́ıa embrión,
falta mucho.

Fracasos anteriores, recelo y de-
sesperanza, exilio jode gente.

Va a ser largo y dif́ıcil, derrota
muy gruesa.

Viejas desviaciones, Cros en
Chile, Argentina, Cuba.

Europa: fui bienvenido por todos,
hablo con todos grupos, homogéneos
y sueltos, no pude hablar (con) seis
puntos.

Empezamos a organizar trabajos
prácticos, necesarios para MLN, al-
gunos quieren arrimarse América.

Hay unos pocos en Salvador,
Nicaragua, Cuba, Colombia.

Intento solidaridad, reorgani-
zación, impulso tarea, me queda
enorme.

Gran respeto pensamiento (del)
segundo. Estamos mas frescos que
exilio. PUMA (Pautas Unificado-
ras Mińımas y Amplias) muy bien
recibido, coincidencia. Olvidé partes,
saquen de nuevo. Importante sigan
trabajando ustedes. 4

7 Conclusions

None of the Uruguayan Tupamaros had any
in-depth knowledge of cryptography, but still
they succeeded in encrypting three fairly long
messages in different ways: the tapestry, the
notebook, and the small book “Eva”. The
notebook was deciphered and then destroyed
on purpose in its time, the 1980s, but the other
two items survive. Both are esthetically pleas-
ing. Their contents were deciphered only in
recent years.

For the tapestry and “Eva”, special-purpose
image recognition software was designed in
order to translate the sequences of colors
into machine-readable text. Understanding
the tapestry encryption gave several hints for

4When you receive this, notify by saying “Mag-
dalena has arrived”. Colors mark rows. When I left
[the prison], they did not check my mouth.

There are groups of Tupamaros based on agreements,
with discrepancies called process or symposium. I ba-
sically agree with them, still in embryonic state, that
much is missing. Previous defeats, retreat, and dispair,
exile fucks up people. It will be a long and arduous way,
after a big defeat.

Old disagreements, comrades from Chile, Argentina,
Cuba. In Europe, it was welcomed by everybody, I talk
to all groups, homogeneous and unattached, I could
not talk (to) six groups. We start organizing practical
work, necessary for MLN, some want to go with Amer-
ica. There are a few in Salvador, Nicaragua, Cuba,
Colombia.

I go for solidarity and reorganization, push towards
the goal, but much remains to be done. Great respect
for the thinking on the second floor [where the “dan-
gerous” prisoners were housed]. We are fresher [our po-
litical thoughts here in prison are clearer] than those in
exile. PUMA (minimal and broad unifying guidelines)
well received, a coincidence. I forget some parts [of
PUMA], please send them again. The important thing
is for you to keep working.
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“Eva”. Some of them proved useful, for ex-
ample the arrangement of 18 letters in a 3× 6
array. Others did not. The arrangement of
the 18 row/column pairs was done just by col-
ors in the tapestry, but no such arrangement
worked for “Eva”.

Statistical experiments led to the insight
that the run length of black and magenta cir-
cles indicates the row number, and any color(s)
following such a run indicate the column(s) to
be encoded. Once this unusual method was
understood, a hill climbing algorithm with an
appropriate fitness function broke the result-
ing simple substitution of “Eva”.

Overall, we have unique encryption systems
designed by amateurs. They embedded suf-
ficient steganographic cleverness to pass crit-
ical inspection by prison guards, were hand-
coded with substantial efforts, and the coding
method is sufficiently strong to resist attacks
by equal adversaries, namely by hand.
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Abstract
We present an on-line database DE-
CODE consisting of encrypted histori-
cal manuscripts, aiming at the system-
atic collection of ciphers and keys to
create infrastructural support for his-
torical research in general, and his-
torical cryptology in particular. The
collected material is annotated with
a metadata scheme developed specifi-
cally for historical ciphers. Informa-
tion includes provenance and location
of the manuscript, computer-readable
transcription, possible decryption(s) of
the ciphertext and translation(s) of the
plaintext, images, and any additional
materials of relevance to the particu-
lar manuscript. The database allows
search in the existing collection and up-
load of new encrypted sources by users.

1 Introduction
According to some historians, 1% of the na-
tional archives and libraries in Europe con-
tain secret messages, encrypted hand-written
manuscripts, intended to hide the content of
the message with the exception of the intended
receiver(s). Keys used for encryption might
also be found, often without being stored to-
gether with the encrypted or decrypted mes-
sage. The manuscripts in the libraries and
archives are seldom indexed as ciphers, which
makes it difficult to find them unless you know
the librarian with extensive knowledge about
the library’s selection. Historians and other
scholars interested in our history stumble on
these manuscripts when searching for sources
from a particular period of their interest. They
try to decrypt the hidden source to shed some
new light on our history — to find new inter-
pretations and explanations.

However, it is far from trivial how to crack
a secret message and there is a clear lack of
infrastructural support in terms of data re-
sources and automatic tools that historians
and others without any knowledge in cryptol-
ogy can use to reveal the content of the hidden
message. In order to develop tools for auto-
matic decryption, we need large(r) collections
of ciphertexts and keys to develop better al-
gorithms and systematically evaluate them on
various cipher types.
In this paper, we describe an on-line

database, DECODE1 aiming at the systematic
collection and description of ciphers, keys and
related documents. The database comes with
a graphical user interface that allows simple
and advanced search in the existing collection
for all users, and upload of new ciphertexts
and keys by users with an account.
The DECODE database is one of the first

steps towards an infrastructure for historical
cryptology. Our goal is to collect cipher-
texts, codes, keys, and codebooks from var-
ious archives and libraries as well as from
the public, and to develop tools to support
the transliteration of images into computer-
readable format, cryptanalysis, and to make
the resources and tools available to people in-
terested in historical cryptology. Our hope
is that users will contribute to enlarge the
database by uploading new material for a
growing collection, a monitor corpus of histor-
ical ciphers and keys.
The paper is structured as follows. In Sec-

tion 2, we describe the general architecture of
the database followed by a detailed description
of the metadata, a set of features with their
possible values for the description of the en-
crypted manuscripts in Section 3. Information

1https://cl.lingfil.uu.se/decode
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about cryptanalysis and decryption, including
standards for transcription/transliteration of
the images is described in Section 4. Then,
we present the search design in Section 5, and
the upload and editing functions in Sections 6
and 7. User access roles are described in Sec-
tion 8 followed by a brief technical description
of the database in Section 9 and some tools
for the automatic processing of ciphers in Sec-
tion 10. Lastly, in Section 11, we conclude the
paper and give directions for future research.

2 The DECODE Database

The database was developed between 2015-
2018, to cover a large range of different ci-
pher types and keys for various plaintext lan-
guages from early modern time. We ex-
pected that the Vatican archives would be
the right place for our endeavor, given papal
correspondence throughout the centuries with
many countries, with many (European) lan-
guages. Luckily, the Secret archives of the
Vatican and the main library of the Vati-
can are well-organized archives with indexes
over the encrypted manuscripts’ whereabouts
and description of their provenance. Within
a few weeks, we could collect over 300 ci-
phers and some keys, and order images from
the archive. This dataset became the start-
ing point i) for a systematic description of ci-
phers and keys, ii) to develop the database
with a search function, iii) to draw up guide-
lines for transliteration of ciphers, iv) to de-
velop tools for semi-automatic transcription
using hand-written text recognition, v) to im-
plement tools for cryptanalysis, and vi) to map
available ciphers with their corresponding key
in the database.
During the past year, the database has

been publicly released and three historians
were asked to upload their cipher and key
collection to test the functionality of the
database. At the time of writing, the col-
lection contains nearly 1000 records, ciphers
and keys with images, and description of their
current location, provenance, content, along
with related documents including transcrip-
tions/transliterations, cryptanalysis, related
generated key, deciphered plaintext, possible
translation(s), references to publications and
other information of interest. Each record is

marked with the name of the user who up-
loaded the record and the date for entering
the record into the database.
The ciphers and keys are collected at vari-

ous archives and libraries in Austria, Belgium,
Germany, Hungary, Italy, the Netherlands,
UK, and the Vatican City. Among the dated
records, the earliest ones originate from the
15th century, and the latest from 1793. About
33% of the material consists of original keys.
Out of 634 ciphers, 205 are decrypted, and 232
are transcribed as running text allowing fur-
ther processing for cryptanalysis. Among the
records, we find plaintext languages in Dutch,
English, French, German, Hungarian, Italian,
Latin, or a combination of these (e.g. English-
Latin, Hungarian-Latin, Italian-Spanish).
The majority of the records are short, one-

page images, but we also find longer ciphers,
the longest 410 pages. The great majority of
the ciphers are encrypted with numbers, but
ciphers with alphabetic characters and esoteric
symbols such as zodiac and alchemical signs
are also present. The known cipher types in
the database are mostly based on simple sub-
stitution or homophonic substitution, with or
without nomenclatures, but polyphonic sub-
stitutions also appear.
To browse the database, we developed sim-

ple and advanced search functions that are
available to the public. The graphical inter-
face is accessed using a web browser, making
it usable on various operating systems and de-
vices (smartphones, tablets, etc.) Experts in
the field of historical cryptology may also ap-
ply for a database account to be allowed to
add new records, and edit existing ones. In
order to be able to enter and store a record
in the database, image(s) showing the origi-
nal cipher or key are required to ensure that
the record actually exists. Images and other
related documents that cannot be distributed
for copyright reasons can be marked as private
by the user. In such cases, the private docu-
ments/images are accessible only to the owner
of the record, i.e. the person who uploaded the
original document, and the database system
owner(s). The database is publicly available
for search but private images or documents re-
lated to the records are neither visible nor ac-
cessible to anyone, except for the owner. For
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users with login, private images/documents
are shown as miniature pictures but the doc-
uments are not downloadable.
On the basis of the initially collected records

present in the database, we developed a meta-
data scheme for the description of ciphers and
keys, which will be described next. Our hope
is that the metadata can serve as basis for a
standardized description of ciphers and keys.

3 Describing Ciphers: Metadata

Each manuscript is described according to a
subset of metadata structured as attribute-
value pairs. The structured information is di-
vided into three fields: the current location of
the manuscript, information about its content,
and the form of the manuscript.

3.1 Current Location
The current location of the manuscript, being
it a ciphertext or a key, is mandatory infor-
mation divided into three attributes: Coun-
try, City, and Holder. Country and City relate
to the current location of the document, while
Holder refers to an institution or a person who
owns or keeps the document today.

3.2 Origin
The field Origin gives information about the
origin of the manuscript: the Dating or time
period when the document was created, the
name of the Author of the manuscript, the
Sender(s) and the Receiver(s), which can be
an institution or a person, as well as the place,
the Region and the City of origin. Given that
we often do not know much about the prove-
nance of the manuscript, information about
the origin of the document is supplemental.
However, knowing something about the prove-
nance of the manuscript might be highly valu-
able during the puzzle of the decryption pro-
cess, for example to make educated guesses
about the possible plaintext language(s) be-
hind the encrypted document.

Dating can be given as a specific date or
a time period during which the document is
assumed to have been created. Dates are rep-
resented in the proleptic Gregorian calendar,
and follow the convention of ISO 8601 where
1 BCE is represented as year 0, 2 BCE is rep-
resented as -1, and so on. The year, month

and day (in that order) must be separated
by a dash (-). The user can enter the year
only, and it is interpreted as an interval span-
ning over the entire year. For example, 1542
is interpreted as an interval between 1542-01-
01 to 1542-12-31 (i.e. from January 1, 1542 to
December 31, 1542). If the exact dating of
the document is not known, an interval can
be specified with a starting and ending date,
separated by a colon (:). Thus, 1542:1570 is
interpreted as the interval between 1542-01-
01 to 1570-12-31. If the month or day is not
specified in the ending date, they will default
to the last day of the last month. For example,
1542-05:1570-03 is interpreted as the interval
between 1542-05-01 to 1570-03-31.
Concerning naming the sender and receiver

of the manuscript, and naming the city or re-
gion where the manuscript originates from, the
user is allowed to fill in the full or partial
name of the Author, the Sender(s) and the
Receiver(s). The Region and City of origin
might be given as original names, i.e. the his-
torical name of the region or city used when
the document was created. For example, if a
manuscript originates from the current capi-
tal of Slovakia, Bratislava, it is up to the user
to decide whether to name the city by its old
German name Pressburg , use the old Hungar-
ian name Pozsony, or give the current name
Bratislava. We are aware of the fact that the
lack of standard concerning the name of cities
and regions throughout the history might con-
fuse users, and raises higher demands on the
user when searching in the database.

3.3 Content
Describing the content of the encrypted doc-
ument includes ten different types of optional
attributes. Number of pages gives, as its name
indicates, the number of pages of the cipher-
texts or key given the image, excluding en-
tirely non-encrypted plaintext pages, such as
title pages or envelope. This is intended for
quick search, for example, for shorter or longer
ciphertexts.
The manuscript can either be a cipher, or

a key, which is defined in the Cipher/Key
field as predefined values. Each cipher can
also be marked on the basis of its Status, in
terms of whether the cipher is decrypted, non-
decrypted, or partly decrypted. For keys, the
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value of Status is non-applicable (N/A). For
each record, it is indicated if it is a pub-
licly available record with downloadable im-
ages and documents, i.e. if the record is Public
cipher/key or not.

Cipher type is predefined and can be added
to keys, ciphers and codes. If the type is
not known, the value unknown applies. In
case the type is known, the following prede-
fined values might apply: homophonic substi-
tution, nomenclatures, polyalphabetic, simple
substitution, transposition, or a combination
of those. If the cipher is of another type than
the predefined values, there is an option to fill
in a user-defined one in the other field.
Encrypted documents consist of many dif-

ferent Symbol sets, numbers, alphabetical
characters from various alphabets (e.g. Latin
or Greek letters), diacritics, esoteric sym-
bols such as zodiac or alchemical signs, lo-
gograms, punctuation marks, and a combina-
tion of those. In the database, the user is al-
lowed to give information about the symbol
set used in a particular manuscript, predefined
values for alphabet, esoteric, and/or numerical
symbols. White space in the original cipher-
text might be present intentionally to keep
word boundaries during encryption, between
code groups, or unintentionally when produc-
ing the encrypted message. The user can in-
dicate whether the ciphertext includes white
space or not. If the encrypted manuscript con-
tains other symbols than the pre-defined list of
symbols, the user can define his/her own.
Lastly, the encrypted manuscript might con-

tain encrypted sequences, i.e. ciphertext only,
but plaintext, non-encrypted sequences of
words, sentences, paragraphs and even pages
might occur embedded inline in the message.
Figure 1 shows an encrypted message with the
plaintext <comé la mi comanda> in the ci-
phertext (ASV, 2016a).

Figure 1: Extract from a cipher, with cleartext
embedded in the ciphertext.

The cipher might contain not only em-

bedded non-encrypted plaintext, but also de-
crypted plaintext, often written over the ci-
phertext sequences by the receiver, see Fig-
ure 2 (ASV, 2016b).

Figure 2: Extract from a cipher with cleart-
ext embedded in the ciphertext, and decrypted
plaintext.

Therefore, there is a need to differentiate be-
tween the plaintext, written in the original lan-
guage and in which the ciphertext is embed-
ded (or vice versa), and plaintext represent-
ing the decrypted ciphertext. We define plain-
text as the decrypted ciphertext, and cleart-
ext, as a non-encrypted text embedded in the
message. According to the above, we indicate
in the metadata description whether the text
contains Inline cleartext, Inline plaintext, or
both. In Figure 2, both Inline cleartext and
Inline plaintext are added as values.
Similarly, the Cleartext language(s) (if any)

and the original underlying language of the ci-
pher, i.e. the Plaintext language can be defined
by the user, as optional fields.

3.4 Format
Another optional field is the Format aiming
at the description of the paper or ink type,
for codicological studies to date a particu-
lar manuscript. The user can fill in these
fields as free text. Typically, these fields are
used for notes about the quality of the pa-
per/parchment, whether it is damaged, or dif-
ficult to read or interpret due to bleed-through
ink, or just a bad photocopy.

3.5 Other
There is also an option to provide links to
available publications and other information
about the manuscript in text format in the
field Additional information.

3.6 Related Documents
In addition to the description of the cipher-
text or key given as metadata fields, there is
the possibility to add various types of docu-
ments describing the manuscript. These can
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be transcriptions or transliterations of the
manuscript (Transcription), the decrypted or
decoded plaintext of the cipher (Deciphered
text), generated key(s) (Key), statistics and
cryptanalysis of the ciphertext (Cryptanaly-
sis), or any other relevant document (Miscel-
laneous).
Many manuscripts containing ciphertexts or

keys are buried among letter correspondences
written in cleartext. These might be of rele-
vance for the historical interpretation and con-
textualisation of the manuscript and could also
be helpful for cryptanalysis to make educated
guesses about the topic of the document, to
crack encoded named entities such as place or
personal names, and so on.
The plaintext might be translated and here,

the user can upload Translation(s) of the
plaintext to various languages.
If there is any published material about the

cipher or key, the user can upload these (Pub-
lications), or add references as a single file.
The documents can be uploaded in various

formats (txt, doc, docx, pdf) and most image
types are allowed (e.g. png, tiff, jpeg). When
uploading a document, the user is asked to
name the document and categorize it by its
type. The user can decide whether to create
the documents with free access and download-
able to everyone, or to keep these private so
other users won’t be allowed to access those.
The images can be uploaded as a single file, or
as multiple files stored in the same folder by
holding the Control key (Windows/Linux) or
the Command key (Mac) while clicking on the
desired files.

4 Analyzing Ciphers

In addition to the cipher collection and brows-
ing function provided, we develop tools for the
automatic transcription and decryption of ci-
phers. Given an image representing a cipher
or key, the first step is to transcribe or translit-
erate the ciphertext into a computer-readable
format. Then, the transcribed ciphertext can
be statistically analyzed using various met-
rics (n-gram frequency, clusters, index of co-
incidence, entropy measures), and decrypted.
Keys and ciphers can also be mapped auto-
matically, calling for language models for var-
ious European languages. In the subsequent

sections, we give an overview of the transcrip-
tion guidelines, and tools for cryptanalysis and
cipher-key mapping.

4.1 Transcription/Transliteration
Usually, the first step in attacking a cipher is
the conversion of the image into a machine-
readable format, represented as text. There
are many different ways of transcribing or
transliterating a manuscript. Therefore, we
developed guidelines so that the transcriptions
available in the database have a common for-
mat.
Each transcript file of a particular cipher

(which may consist of multiple images) starts
with comment lines with information about
the file. Each comment line starts with "#"
followed by a transcription attribute and its
value, as illustrated below:

• #catalog name: your own index, i.e.
file location: e.g. /Segr. Stato Francia 6/1

• #image name: the name of the image(s)
representing the cipher: e.g. image inter-
val 234r-237v.jpg

• #transcriber name: full name or ini-
tials of the transcriber: e.g. BeMeg

• #date of transcription: the date the
transcription was submitted

• #transcription time: the time it
took to transcribe all images of a cipher
in hours and minutes without counting
breaks and quality checks

• #comments: description of e.g. difficul-
ties, problems

Next, the content of the image is tran-
scribed. Each new image in a cipher starts
with a new comment line with information
about the name of the image followed by a
possible comment line:

• #image name: the name of the image,
e.g. 234v.jpg

• #comments: any comments, e.g. diffi-
cult to read line 3, bleed-through

The transcription is carried out symbol by
symbol and row by row keeping line breaks,
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spaces, punctuation marks, dots, underlined
symbols, and cleartext words, phrases, sen-
tences, paragraphs, as shown in the original
image. Line breaks are kept so that when a
new line starts, a new line is added in the
transcription. Punctuation marks, such as pe-
riods, commas, and question marks are tran-
scribed as such. Space is represented as space.
If there is a larger width of a space in rela-
tion to other spaces in the ciphertext, two or
more space characters can be entered in the
transcription. The reason for allowing several
space characters is that a larger space in the
original might mark word boundaries which
the encryptor unintentionally left there when
encrypting the manuscript, which can be help-
ful in the decryption process as they might de-
note word boundaries.
Sometimes, punctuation marks (e.g. dots,

commas, underscores) appear above or un-
der specific symbols. It could be ink splash,
but if they appear in a systematic way, they
are transcribed as well. If the mark appears
above the symbol, the sequence is transcribed
as the symbol, followed by “∧” and the specific
mark (e.g. dot or comma). If the mark ap-
pears under the symbol, it is marked by an“_”
placed between the symbol and the mark “.”
(e.g. s_.). Similarly, underlined symbols are
marked with “_” immediately following the
symbol, except when the whole ciphertext is
underlined.
Uncertain symbols are transcribed with

added question mark “?” immediately follow-
ing the uncertain symbol. Possible interpre-
tations of a symbol can be transliterated by
transcribing the options using the delimiter
“/”. For example, if it is not clear if a symbol
represents a 0 or 6, it is transcribed as “0/6?”.
The cipher sequences might be embedded

in cleartext, or cleartext might be embedded
in ciphertext, see Figure 3. We can also find
cleartext in keys, often explanations about the
key. To be able to distinguish between ci-
phertext and cleartext sequences, the latter
is clearly marked in brackets as <cleartext
lang letter/word sequence>, where the tag
<cleartext ... > denotes where the cleart-
ext starts and ends. lang represents the lan-
guage the cleartext is written in, marked by
id as defined by ISO 639-1 two-letter codes

for languages (e.g. it for Italian), and un for
unidentified languages.

Figure 3: Transcription of the cipher image in
Figure 1.

Sometimes we can find the decrypted plain-
text written above the ciphertext. Simi-
larly to cleartext, plaintext is transcribed as
<plaintext lang letter/word sequence> in
a separate line. Transcription of the image
containing cleartext and plaintext of the orig-
inal image in Figure 2 is shown in Figure 4.
Note that if the cipher is cracked, the entirely
or partly deciphered parts, i.e. the plaintext,
can be uploaded as a separate file (see Sec-
tion 3.6).
Transcription reflects the intention of the

encoder, i.e. the corrected segments are tran-
scribed. For example, if numbers are crossed-
off in the original, these are not transcribed.
Similarly, insertions of corrections between
symbols are transcribed, as they intended to
appear in the original. Ciphertext/cleartext
written in the margin is added into the specific
space as indicated by the given mark/note in
the original cipher.
Not seldom, historical manuscripts contain

catchwords placed at the foot of the page to
mark page order (instead of numbers). Catch-
words are a sequence of symbols anticipated
as the first symbols of the following page.
In ciphers, catchwords might denote an ac-
tual word, unintentionally, and therefor tran-
scribed as <catchword symbol sequence>
(e.g. <catchword 1 1 2 0 8 9>.
The transcriptions are uploaded as text files,

represented in Unicode (utf-8) format. Several
transcription files are allowed to be uploaded
of the same cipher/key, and they should be
uploaded as text files (.txt, docx, etc).

4.2 Cryptanalysis
The transcribed ciphertext can be analyzed by
using various metrics. Attacking and eventu-
ally cracking ciphers might involve many dif-
ferent types of cryptanalysis. We implemented
the ManuLab statistical analyzer (Antal and
Zajac, 2018) for ciphers containing metrics for
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Figure 4: Transcription of the cipher image containing ciphertext, cleartext and plaintext in
Figure 2.

index of coincidence, n-grams up to 8 char-
acters, and entropy. The user can upload a
ciphertext, run the appropriate metrics, and
get analyzed data back. Then, the user can
upload his or her own analysis to the database
for the particular cipher, see Section 3.6. The
analysis can be represented in terms of statis-
tics, or a structured description of a study.

4.3 Mapping Ciphers to Keys
Given many ciphers and keys (being it original
or generated), we developed a tool that maps
a key/code/nomenclature and a ciphertext of
the user’s choice and creates a plaintext (i.e.
decrypted text) on the basis of the provided
key. The result is compared against 14 Euro-
pean historical language models, to see which
language the plaintext matches best. The lan-
guage models are provided by HistCorp, a col-
lection of historical texts and language mod-
els for 14 European languages (Pettersson and
Megyesi, 2018).

5 Searching in the Collection

The search function of the database allows
for simple and advanced search depending on
the user’s need. Simple search, illustrated in
Figure 5, allows for keyword searching, which
looks for the occurrence of the search term
in the record. The search is not sensitive
to capitalization. The system matches the
search term (i.e. the entered text) as a sub-
string against all text fields with the exception
of fields with checkbox and fields with numer-
ical values. To search in these field types, the
advanced search interface is used.
Advanced search allows the user to limit (or

target) the search to each attribute or a combi-
nation of attributes defined by the metadata
scheme with specific value(s). The Boolean
operators AND, OR, and NOT are used in
a graphical interface. The user first selects
the attribute specified by the metadata. Most
metadata fields use a text field for matching
and the entered text is matched as a substring.

Figure 5: Simple search with matched records.

The NOT checkbox can be set to negate the
expression. To the right of the selected field
the user can delete the expression.
Search functions can be built upon each

other for sequential search. The order of
the operating functions are made explicit by
grouping the expressions; composite expres-
sions are shown in the same grey box ap-
pearing vertically, while consecutive opera-
tions, visualized horizontally, are executed in
sequence. Figure 6 illustrates the advanced
search function where we searched for all keys
originated from either Germany or France
from all times except from the years between
1700 and 1800.
The result of the search is shown either

as a list of matched items line by line with
metadata information shown in the columns
for each item (see Figures 5 and 6), or as a
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Figure 6: Advanced search.

"Google-style" result showing each record with
its metadata listed item by item, see Figure 7.
The magnifying glass shows all information
about the particular record.

Figure 7: Search result.

Upon choosing a record from the list of
matched documents, the record with all meta-
data is visualised, as illustrated in Figure 8 for
the Copiale cipher with all metadata entered
in the database.

Figure 8: A cipher with metadata.

6 Adding New Data
One of the main goals of the DECODE
database with its graphical user interaction
is to allow registered users to create new
records, ciphertexts or keys, by uploading
an image of the encrypted document, and
filling in metadata information about the
manuscript. Mandatory fields are naming
the manuscript, the current location (Coun-
try, City and Holder) of the manuscript, and
the number of pages the manuscript consists
of. All other metadata fields and related doc-
uments are optional.
For each uploaded document, being it an

image, transcription, cryptanalysis, or publi-
cations, the user can choose to make it private,
i.e. to not allow access to the file to other users.

7 Editing Existing Data
The user can edit information about existing
records if she/he is the owner of the record.
Uploaded documents, such as transcriptions,
decrypted plaintexts, or translations of the
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Figure 9: Entering new records.

plaintext can be deleted. New documents can
be added and the metadata can be corrected.
The owner can also choose to delete the whole
record.

8 User Access and Roles
The DECODE database with a hosting web-
service is publicly available with open access.
In order to edit or add ciphers, codes or keys
and related documents, registration is required
of interested parties, typically specialists in
historical cryptology. Personal data about the
registered user includes information about the
name of the user, affiliation, and scientific
background (computational linguistics, com-
puter science, cryptology, history, linguistics,
literature, mathematics, politics, and other).
The personal information that the user pro-
vides is handled according to GDPR. The per-
sonal information is stored and used to enable

users of the site to see who has uploaded and
modified certain content, and to simplify col-
laboration between users. The user may un-
subscribe as a registered user upon request at
any time without any explanation.
Registered users of the site may upload

text, pictures and other information ("con-
tent") which is stored by DECODE, and is
shared with other registered users and other
users of the site, except in circumstances where
registered users choose to make their content
inaccessible to other users (i.e. private); this
functionality is noted where available.
The user can remove the content that she/he

uploaded (i.e. the owner of the record) at any
time. Upon registration, the registered user
agrees to not upload any content to which he/
she does not hold the necessary rights. We
do not claim any ownership rights of the con-
tent uploaded by the users. We do not use
the content commercially. However, we share
the content with third parties in order to per-
form image analysis and other types of anal-
yses, except for the content that the user has
chosen to make inaccessible. Should the con-
tent be in violation of applicable copyright law
or other laws on intellectual property rights or
be in any way abusive or illegal, we reserve the
right to remove such content without any prior
warning.
Should a user find any content on the site

which is or may be in violation of applica-
ble copyright law or other laws on intellectual
property rights or in any way abusive or ille-
gal, we ask the user to report this to us via
email. Such information may be deleted by us
at any time without any prior warning. The
user has to tick a box that she/he agrees to the
Terms and Conditions which are provided on
the site upon registration, as described above.

9 Technical Description

The DECODE database web application is
written in Python and runs as a WSGI appli-
cation using Flask on the Apache web server
via mod_wsgi. Secure session handling and lo-
gins are handled via the Flask extension Flask-
Login. The codebase has two layers: The core
logic, for which a test suite has been written
to make sure that the system always remains
in a consistent state, and the web part, which
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calls into the application logic on behalf of the
user.
All data itself (user data, record metadata)

is stored in a PostgreSQL database, and is in-
teracted with using Psycopg (a PostgreSQL-
Python adapter). Image files are stored di-
rectly in the filesystem, although any ac-
cess to these is done by first consulting the
database. Search queries are served directly
by the database.
Because Python does not handle dates be-

fore year 0 (ISO 8601), and because documents
dated before that might be introduced into
the database, the mxDateTime library from
eGenix is used in place of the datetime mod-
ule that the Python standard library provides.
Creation of thumbnails is done using Pil-

low, a fork of the Python Imaging Library.
The ’pdfimages’ utility from Poppler does the
PDF image extraction, enabling users to di-
rectly upload PDF files of a scanned cipher
instead of having to extract these themselves.
The server that the database web applica-

tion is running on provides the SMTP connec-
tion, which is used to (via the Python stan-
dard library) send email to users, for example
in order to reset one’s password.

10 Tools

The database content is currently connected
to CrypTool2 (CrypTool2, 2018) through an
HTTP API, and connection to the Manulab
system (Antal and Zajac, 2018) is underway.
To allow automatic processing of cipher im-

ages and transcription for decryption of the
documents, we also develop historical lan-
guage models extracted from authentic histor-
ical texts, and on-line tools for semi-automatic
transcription, further develop cipher-key map-
ping, and the statistical analysis of cipher-
texts. Currently, CrypTool2 is directly ac-
cessible for automatic decoding of ciphertexts
where the user can test various decryption al-
gorithms to decipher the encrypted elements.

11 Conclusion

We presented an on-line database aiming at
the collection and systematic description of en-
crypted historical manuscripts. The database
allows the user to search among ciphertexts
and keys, and upload new encrypted histor-

ical sources with their metadata information
and other relevant documents.
Future improvements include a mapping be-

tween ciphers and matching original and gen-
erated keys, and standardised forms for per-
sonal names, holding institutions and loca-
tions, like GND-number, VIAF or geonames-
Number to be able to connect these in a sys-
tematic way for reliable search, as these en-
tities are freely decided by the owner of the
record today.
Most importantly, tools for automatic tran-

scription, cryptanalysis and decryption are un-
derway and will be connected to the database
to allow self-help of the users.
Our hope is that many professionals inter-

ested in historical cryptology could make use
of the data collected and enlarge and enrich
the database with new ciphertexts, codebooks,
and keys, or transcriptions, additional im-
proved cryptanalysis, or in the best of worlds
solution(s) to the undecrypted, still secret doc-
uments.
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Abstract 

This paper lays out the course design for, 
and teaching experiences with, a class that 
introduces students in the humanities to 
the history of cryptology, with particular 
attention to film and media studies. The 
course covers principles of secret 
communication from ancient times to the 
21st century, and encourages students to 
develop creative solutions that may help 
portray computing, computer networks, 
and cybersecurity issues in more informed 
and accurate ways on screen. 

1  Introduction 
While it may seem paradoxical to combine 
communication and secrecy, in fact media history 
can be told as the story of secret communications 
- from long before the earliest radio transmissions 
and interceptions to long after the commercial 
union of military technology and entertainment in 
television. In this course, students discover the 
media history of codes and ciphers from ancient 
cultures to the advent of computing, with a focus 
on secret communication mostly before the proto-
computers of Bletchley Park, while connecting 
historical methods to contemporary questions of 
secrecy, privacy, and security in the Internet age. 
Readings include short stories and selected 
articles and chapters from the history of 
encryption and code breaking. Each week also 
features hands-on exercises (in class as well as in 
homework), and workshops on 21st century 
applications of historical models, with particular 
attention to the often fundamentally irreconcilable 
demands of privacy, security, trust, data integrity, 
and freedom of speech (Diffie/Landau 2007). 
This, however, is not a class in computer science 
or informatics, and it requires neither facility with 
number theory nor an appetite for algorithms. 

    The overall arc of the course leads students to 
ponder the motivations for secure and secret 
transmissions, from assurances of communication 
integrity to various forms of authentication, and 
beyond a naïve identification of concealment with 
security. Once they wrap their heads around the 
difference between steganography and cryptology 
and begin to appreciate the nuances of substitution 
and transposition ciphers, historical examples 
from the ancient Skytale to forms of the Pigpen 
cipher allow hands-on decoding experience. After 
an aside about steganography and invisible ink, it 
is time for methods of cracking monoalphabetic 
substitution (Kahn 1967, Macrakis 2014, Singh 
1999). Most students at the University of 
California have sufficient prior exposure to 
American history to enjoy exploring secret 
communications from Independence to the Civil 
War, amplified by selected screenings from TV 
shows like Turn (2014-2017) about the Culper 
Ring - which also makes an appearance in season 
4, episode 6 (2012-2013) of the TV show White 
Collar in contemporary New York City. Many 
also enjoy tracing the mechanization of ciphers 
from the Alberti disc to the Mexican Army disc 
and from the Jefferson wheel cipher to the US 
Army’s M-94 cylinder used as late as 1942. 

Media representations of secrecy and security 
in communications allow students to tackle the 
Vigenére table, try taking the Kasiski test, 
visualize implementations of ciphers from 
Polybius to ADFGVX, and wrap their heads 
around Friedman's index of coincidence 
(Kackman 2005, Bauer 2013). In order to 
introduce the enduring mystique of Number 
Stations, it helps to have them listen not just to a 
few tracks from the CONET Project (1997), but 
also from the Wilco album Yankee Hotel Foxtrot 
(2001) from a band many of them recognize; 
moreover, the thriller Numbers Station (2013) 
starring John Cusack and Malin Akerman can lead 
to a fruitful discussion of how faithful film and 
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television should be to real technology. One 
pivotal homework assignment therefore is a film 
review focusing on ciphers and codes as they are 
explored in cinema and television. The list of 
acceptable titles ranges from Rendezvous (1935) 
and Cipher Bureau (1938) to The Imitation Game 
(2014) and Mr Robot (2015-2019), but most 
students tend to pick neither the most recent nor 
the oldest examples, preferring to stick instead 
with espionage fare from the eighties or nineties – 
often several vie for writing up Sneakers (1992) 
or Pi (1998). 

The course pivots on storytelling and 
visualization, but since it cannot require advanced 
mathematics or informatics knowledge, it focuses 
mainly on ciphers and codes before the advent of 
computing, without omitting Navajo code talkers, 
Enigma and Colossus, etc. Students quickly grasp 
why linguists developed frequency analysis as a 
way to crack simple substitution ciphers, and how 
nomenclators and book codes aided trade and 
diplomacy (Kahn 1967). Yet without requiring 
students in such a course to tackle prime 
factorization or hash functions, it is nonetheless 
important to discuss how much their internet use 
depends on cryptographic principles – once they 
share how much their daily life revolves around 
trust in online communications with banks and 
stores, doctors and pharmacies, educational 
institutions and entertainment, it is not difficult to 
illustrate how much the infrastructure of secure 
communications depends on asymmetric ciphers 
(Bauer 2007, Quisquater 1990). 

Finally, the course ends with a survey of 
unsolved cryptological puzzles, touching on 
Voynich, Beale, Zodiac, and Kryptos (Schmeh 
2015, Clemens 2016, Bauer 2017). At the 
conclusion of this writing-intensive seminar, 
students are expected to have gained greater 
facility with the relevant historical and critical 
vocabulary, deeper knowledge about media 
history, a keener appreciation for codes and 
ciphers, an ability to critically evaluate conflicting 
demands on communication, and a better 
understanding of both fictional and real secrecy 
(Glass 2013, Koblitz 2010, Koss 2014). In 
addition to familiarizing students with conceptual 
and historical content, this course involves 
advanced information literacy skills by locating, 
evaluating and integrating information gathered 
from multiple sources into discipline-specific 
writing. 

2  Overcoming the schlock paradigm 
What does encrypted communication look like? 
The problem with audiovisual representations of 
cybersecurity in particular and computer networks 
in general is that they are all too often turned into 
ludicrous caricatures on screen. Even computer-
focused TV dramas like CSI: Cyber (2015) get 
numerous details so wrong that few computer-
literate viewers can stand to watch. Computing is 
not about blinking lights and pixels - and it does 
not help to lard the script with misused and 
mispronounced jargon. Malicious code does not 
show up in red on your screen, and a forensic 
review takes more than a few minutes. 
Cybercrime is more likely to involve phishing for 
credit card numbers or trade secrets rather than 
kidnapping. When it comes to real or imaginary 
risks online, movies and TV shows dish up tired 
iterations that not only perpetuate stereotypes of 
hacking as (usually male) teenage flirtation with 
crime, but perhaps offend even more in how they 
depict data 'space' as an arcade game. 

The countless TV shows and movies that get 
computing, encryption, and decryption wrong 
tend to make two types of mistakes: they want to 
glamorize the actions of a person in front of a 
computer, and they try to visualize the flow of 
data in networks, often in a ludicrous manner. 
Take the recent Michael Mann movie Blackhat 
(2015), which has Chris Hemsworth’s character 
come out of prison to help combat international 
cybercrime. Setting aside the idea that Thor 
should be a computer nerd (and that he reads 
Baudrillard and Derrida in his prison cell instead 
of, say, Schneier or Kahn), while the plot features 
tricking a government employee into changing his 
password (so an outsider may gain access), its 
garish attempt to visualize data on a network is a 
major throwback to the bad old days of films like 
The Net (1995), Hackers (1995), Sneakers (1992), 
War Games (1983), or Tron (1982). Of course, 
Hackers (1995) is remembered mainly because it 
featured Angelina Jolie as one of two high 
schoolers involved in corporate extortion, but it 
also featured a virus that can speak and has a face, 
and its protagonists spend more time trash talking 
and partying than using computers. The Net 
(1995) has Sandra Bullock stumble around 
bulletin boards as if ordering pizza online was a 
radical act of subversion, and while this film does 
show some true aspects of the net (such as IP 
addresses), it does not do enough with them to 
ground it in computing reality - you could not 
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connect via telnet to an email address, for 
instance, you need an IP address and a TCP port 
number: only once you are connected can you 
initiate an email login. Nor would a Macintosh 
virus from 1995 infect a mainframe computer.  

Interestingly, Sneakers (1992), an ensemble 
caper conceived during the making of Wargames 
(1983), features a black box capable of breaking 
any and all computer encryption, threatening to 
destabilize the world economy (which already 
raises the issue of post-quantum cryptography). 
Both movies tend to play fast and loose with 
computer technology - while you may be able to 
change your high school grades from a home 
computer if your school is sloppy, you most 
definitely won't be able to launch ICBMs with the 
same machine over the same dial-up modem. Tron 
(1982) is venerable for its pioneering use of 
computer graphics, but the idea that you can enter 
the network and act there as if it was a wireframe 
videogame has had a pernicious influence on film 
and television.  

But perhaps one of the funniest transgressions 
against computing in a movie is Swordfish (2001), 
a Travolta extravaganza that sees Hugh Jackman’s 
character forced to remotely access a computer of 
the Department of Defense (via an ancient PDP10 
in a CalTech basement), which the actor does by 
typing really fast and clapping his hands while 
being threatened by thugs and at the same time 
sexually engaged by a young woman... and of 
course he pulls it off within 85 seconds, despite 
having suffered a long-term ban from using 
computers; and of course his old software, extant 
in some basement on tape, may look like vintage 
graphics software but it acts like a destructive 
worm... At least in Superman III (1983), Richard 
Pryor’s character was allowed to concentrate on 
hacking a weather satellite, as unlikely as it is that 
you would do that in BASIC with some PRINT 
and LIST commands - let alone change payroll 
data, mess with traffic lights, and other exploits of 
Pryor's role as a recent computing acolyte.  

Yet sadly, things have not become much more 
sophisticated over the years - consider, for 
instance, the recent TV show Homeland (2011-
2019): who believes that the CIA server two 
Berlin-based online activists accidentally chance 
upon (in the fifth season, 2015) would grant them 
access to a directory full of files whose 
inordinately long names all contain the character 
string CIA? Do all your file listings contain your 

employer’s name? We are supposed to believe 
that pulling a physical cable out of the wall is the 
only thing experts in Langley can do to defend the 
CIA against an onslaught of internet connections 
seeking pornographic cam-shows? Shows like 
that tend to take computers less seriously than 
Indiana Jones is serious about archeology...    

This is not just a question of verisimilitude or 
realism. While sci-fi author Arthur Clarke 
stipulated that “Any sufficiently advanced 
technology is indistinguishable from magic,” this 
relies on a notion of widespread ignorance that is 
a legacy of pre-literate times and incompatible 
with the aims of education. Magic may be 
acceptable in fantasy fiction but not at university; 
we are interested in applicable concepts.  So a 
student who wants to discuss Harry Potter in this 
class should consider two-factor authentication - 
the combination of something you have (e.g. a 
wand) or something you are (not a “muggle”) and 
something you know (a passphrase) for common-
room access at Hogwarts; not to mention 
parseltongue access to the Chamber of Secrets, or 
maybe the “blood password” needed to access the 
Horcrux Cave... How can films portray restricted 
access to The Leaky Cauldron, to Diagon Alley, 
and to Platform 9 3/4 at King’s Cross? Who has 
access (and how) to the prefects’ bathroom or to 
Dumbledore’s office? These questions may seem 
fanciful, but the stakes are very real. 

Before the recent TV show Mr Robot (2015-
2019), television did not often show computer 
security issues in a realistic light. But Mr Robot is 
a show that pivots on the activities inside a cyber-
security firm, the code it displays on computer 
screens is real, and there are no hokey sound 
effects or flights of fancy. Even the hack on this 
show of an android phone, by inserting a chip that 
runs a bootloader, is a reference to realistic 
technology, in this instance the Flexispy software. 
Remarkably, Mr Robot does not shy away from 
discussing TOR routers, a distributed denial of 
service attack on corporate servers, and getting 
people to install malware - in this case, a remote 
access trojan that resembles an actual piece of 
software called DarkComet.  

Ironically, the sci-fi conspiracy pastiche of The 
Matrix Reloaded (2003) is one of the few movies 
in the entire schlock genre to show a realistic 
scene: eschewing for once the usual antics of 
visualizing cyberspace as a vertiginous flight 
through the dim canyons of some badly rendered 
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Data-Manhattan, the movie shows Trinity (neither 
male nor a teen, but played by Carrie-Anne Moss), 
working at a keyboard instead of some futuristic 
interface contraption, using an actual piece of 
software to scan a power grid for weaknesses: 
NMAP, a port scanner on the command line, 
known to system administrators around the world. 
The German cyber-thriller Who am I? No System 
is Safe (2014) features a similar presentation of 
software exploits on the power grid – protagonist 
Benjamin seeks to remotely compromise a local 
utility using a script that seems to be endowed 
with universal powers in a command shell. In the 
thriller The Bourne Ultimatum (2007), the CIA 
hacks the mail server of a British newspaper, and 
the screen shows the realistic use of SSH, Postfix 
SMTP, and a domain name server in a UNIX 
shell. Another franchise thriller from the same 
year featured an interesting exploit within the first 
ten minutes: Live Free or Die Hard (2007) had its 
protagonist team up with a young hacker to fight 
a cyberterrorist. Meanwhile, the Swedish 
cinematic adaptation of the Stieg Larson book The 
Girl with the Dragon Tattoo (2009) shows her 
computer skills, again right in the first ten 
minutes, while the Hollywood remake (2011) 
does not. At least in the superhero flick Fantastic 
Four (2015, based on the Marvel Comics), you 
can see Sue Storm (played by Kate Mara) tracking 
down a companion online: her screen flashes 
"IPSCAN", "TRACEROUTE" and 
"PORTSCAN" - it is all too rare to see actual 
network technology represented. 

Of course, getting computer technology right 
on screen is not just about software and hardware; 
cybersecurity is also about social engineering – 
the exploitation of patterns of behavior, 
vulnerabilities and opportunities.  While hardware 
manufacturers clearly work closely with film and 
television producers to show off their wares, the 
software industry and the educational sector both 
miss out on opportunities to show computing as 
interesting, stimulating, and challenging - without 
faking it. Indeed, popular culture no longer 
celebrates hacking as the generally innocuous but 
occasionally very profitable pursuit of the 
computer hobbyist. Television stopped 
romanticizing the obsessions of talented nerds, the 
press no longer touts the bootstrapping spirit of 
digital capitalism. Instead, journalists are busy 
selling the sinister specter of hacking as an 
irreducible systemic threat of digital media. Never 
mind that until the late 1980s, a hacker was 
someone who, by trial and error and without 

referring to any manuals, ended up successfully 
operating computers. Only a few years later, 
commentators already began to fret that malicious 
hacking might pose a serious and costly problem. 
For the longest time, digital culture had focused 
on access, learning, privacy, and free speech 
(Bamford 1982, Levy 2001, Schneier 2004). Yet 
in a sea change in popular opinion as well as legal 
and economic policy regarding network 
technology and education, alarmist commentators 
began to demonize anyone who tried to access 
more than the official, limited interface allowed. 

3  Assignment Design 
A cult of secrecy can easily lead to a global 
resurgence of irrational rumor, and unfortunately 
this is indeed what one sees in a lot of internet 
culture. When conspiracy theory takes the place 
of critical computer culture, our future is seriously 
impoverished. Arguably, teaching students in film 
and media studies about basic concepts of 
cybersecurity, and getting them interested in the 
outlines of the history of cryptology, may in time 
greatly increase the chances for scripts and scenes 
that provide more accurate and more intelligent 
audiovisual representations of computing and of 
communication security. 

In order to heighten attention to both the 
problematic audiovisual representation of 
cybersecurity as well as to the possibilities of 
visualizing cryptology in persuasive and plausible 
ways, students are tasked with writing synoptic 
treatments for films or TV pilots based on 
assigned short stories. While a synopsis is 
different from a full treatment in industry parlance 
(a synopsis distils the narrative into a brief pitch, 
while a treatment gets into nuts and bolts of 
representing a story audio-visually), for the 
pedagogical purposes of this course, what is 
solicited is a document that highlights the 
necessary details with some cinematic style and 
rhythm, giving a feeling for characters, mood, and 
visual settings evocative of a time and place. Such 
a synoptic treatment is not simply a retelling of the 
story; it should be a document that might allow a 
decision-maker to evaluate the idea as well as its 
intended audiovisual execution. Marking story 
beats with particular attention to how to present 
issues of secret communication on screen, it needs 
to include a title and logline, introduce major 
characters, set the scene, dramatize the main 
conflicts leading to a crisis, and envision the 
dramatic resolution. Unlike a short story, the 
synoptic treatment cannot tell us a character’s 
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thoughts but needs to show them, it cannot 
provide background but needs to outline dialogue; 
for pedagogical reasons (and because writing 
actual dialogue is hard), the task here is to 
succinctly describe the dialogue that a fully-
fledged screenplay would provide. The short 
stories assigned were culled mostly from 
American and British detective fiction dating to 
the turn of the 20th century. In turning such old-
fashioned material into a synoptic treatment, 
students are not simply retelling a piece of fiction, 
but updating and retooling its story beats to suit 
their own contemporary taste, with particular 
attention to how one can present secret 
communications on screen. 

In addition, students compile reference 
materials resembling 'encyclopedia entries' about 
certain names and concepts that are important to 
the history of cryptology. Here the task is to 
conduct some research (a minimum of 4-5 
references), define/describe/discuss what the 
keyword denotes or who the person is/was, and 
how exactly this entry relates to course topics. At 
least one reference source must be drawn from an 
online database for academic research (such as 
JSTOR or Project MUSE) in order to familiarize 
students with library systems for academic work. 
With names ranging from Alberti and Trithemius 
to Diffie and Schneier, and concepts including 
Kerkhoff’s Principles, a Zero Knowledge Proof, 
Atbash, PGP, or the Clipper Chip, students 
sometimes struggle to fit all their findings into an 
encyclopedia entry that is concise yet 
comprehensive in scope. 

An in-class midterm mixes multiple choice 
questions about historical facts with a few open-
ended prompts that solicit a few paragraphs of 
reflection. How do you use a keyword to enhance 
the Caesar cipher? What is the second most 
common trigram in English? What kinds of 
sympathetic stains can you list? What was the 
name for the ancient Greek method to secure 
confidential messages? Which early US diplomat 
is associated with a wheel cipher? What is the first 
step to begin cracking a message if you know it 
was enciphered with the Vigenère method but you 
do not have the key? What led Babbage to a 
statistical breakthrough in cryptanalysis, and why 
did he not publish it, but Kasiski later did? A final 
take-home essay on a research topic directly 
related to course materials is expected to be more 
substantial, and again at least one source must be 
drawn from an online database for academic 

research (such as JSTOR or Project MUSE), and 
the individual research topics and essay drafts are 
workshopped in class. Should governments be 
able to access anyone’s encrypted communication 
to prevents crimes, or should technology 
companies deploy encryption as unbreakable as 
possible to protect widespread privacy and 
security? What are contemporary forms of 
steganography, and how practical does it seem to 
store and/or transmit secret information in 
superficially unaltered sound files, images, 
videos, etc.? As with all assigned writing, both in 
class and at home, students provide peer review 
on multiple drafts though a shared course portal, 
so that graded assignments are never first drafts 
with all their usual flaws. 

4  Feedback   

Students quickly find out for themselves why 
the depiction of secret communications on screen 
is often so stilted and wrong-headed, but a few 
found rather creative solutions that their peers 
justifiably celebrated in peer-review sessions. 
Unlike the analytic and critical mode university 
students in the humanities are commonly 
expected to exercise, many of these assignments 
are not explanations or comments on what they 
read. If your writing must prepare for telling a 
story with audiovisual means, you are neither 
spelling out a character’s thoughts, nor providing 
biographical or technical background. Granted, 
one must not expect truly creative writing –
students know that they should neither copy nor 
invent dialogue or characters for their synoptic 
treatments. Once they see that they can remain 
faithful to the conceptual dimensions of each short 
story and yet put considerable inventiveness into 
the pitch for a screenplay based on it, they deliver 
with impressive ingenuity.  

On the other hand, even if they enjoy puzzling 
out how to write their own names in Pigpen, or 
how best to define the differences between 
substitution and transposition ciphers, one should 
not expect humanities students to install JCrypt on 
their computers, or to study the math involved in 
public key crypto (Koblitz 1997, Kaur 2008, 
Winkel 2008, Kurt 2010). But one certainly can 
expect them to work through a curriculum that 
surveys the history of secret communication, 
albeit mostly pre-computing, and draw 
conclusions for their own lives in the 21st century. 
Even or especially if they are not budding 
computer scientists, they need to be able to debate 
the role of cryptography during World War II, 
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reading about Enigma and Purple, about Alan 
Turing and the Polish mathematicians who made 
seminal discoveries. Students invariably show 
themselves engaged with current cybersecurity, 
from password management to the trust they put 
in various communication platforms, whether 
WhatsApp or Messenger or Telegram or Signal. 
They tend to be enthusiastic about social media, 
and generally much less skeptical about data 
mining and advertising than national surveys 
suggest they might be (Pew Research Center 
2018). They not only get a kick out of the 
Zimmerman Telegram, but even more so out of 
imagining its contemporary equivalent as a casus 
belli. They tend to be rather skeptical about some 
of David Kahn’s claims about why the Germans 
lost to US intelligence in World War II; they 
neither vilify nor venerate characters like Julian 
Assange or Edward Snowden, and their 
discussions and homework show a clear 
preference for discussing the security of gaming 
servers over that of credit card companies, or 
whether to trust social media platforms rather than 
political institutions. 

Students tend to have animated and well-
informed discussions of the stakes of online 
identity, anonymity, and pseudonyms. They never 
acquiesce to a majority viewpoint, though, and 
some maintain reservations throughout the entire 
course about certain conflicts between privacy 
and public security, trust and advanced 
technology, freedom of speech and personal 
accountability online. 

Writing synoptic treatments that seek to update 
classic detective fiction like the Sherlock Holmes 
yarn about the Dancing Men or an Isaac Asimov 
short story about encryption, students show 
ingenuity in visualizing a code that might be like 
graffiti, hidden in plain sight. Perhaps not 
surprisingly given that they are less likely to own 
printed books and more likely to read digital files 
on their various devices, fewer students become 
interested in book codes, as featured in season two 
of the TV show Burn Notice (a stolen bible 
dominates the entire season’s plot, 2008-2009), in 
the movie National Treasure (where coordinates 
on the back of the Declaration of Independence 
lead to elusive treasure, 2004), or in the Sherlock 
Holmes mystery The Valley of Fear (1915), 
despite the enduring popularity of Holmes as a 
character on TV and on the big screen. Also 
perhaps unsurprisingly, students tend to be less 
interested in codes that involve more than one 

language, even though they appreciate that the 
history of cryptology for a long time was entwined 
with translation and philology, and not only in 
prominent ways like the Rosetta Stone or in 
decoding German and Japanese World War II 
communications. 

By the same token, students tend to show a 
refreshing lack of respect for old-fashioned 
aspects of the short stories they were tasked to 
update; instead of snuff boxes, poisoned pens, and 
handkerchiefs, their versions of these stories 
feature smartphones, dance clubs and graffiti, and 
rather than see their characters scandalized by 
allegations of infidelity or fiscal impropriety, their 
envisioned plots twists include social media 
gaffes and wet t-shirt contests. In the end, the aims 
of the course are demonstrably achieved, as 
evident in the students’ confident command of 
historical and conceptual dimensions of 
cryptology in their final essays. There are usually 
quite a few essays on questions of identity theft 
and how to protect oneself against it. There are 
usually competent arguments for, as well as 
against, government access to encryption 
backdoors; some ambitious and more computer-
literate students are also game to puzzle over 
unsolved ciphers (Schmeh 2015, Bauer 2017), or 
to tackle the task of demonstrating how Auguste 
Kerckhoffs’ principles (from 1883) are still valid 
in today’s mobile media culture. 

Students also enjoy a brief weekly exercise that 
introduces various technical implementations of 
the issues studied in the class, from the proper set 
up of browsers and virtual private networks to 
comparing password managers, from multi-factor 
authentication to safe use of social media. Now 
that the university they enrolled with is moving to 
systems that require multi-factor authentication, 
they see that passwords alone are no longer 
sufficient in preventing unauthorized access of 
individual and institutional resources; and most 
students turn out to be rather passionate about 
protecting their personally identifying 
information. Since passwords, even in the 
academic environment, are now routinely 
compromised through malware, brute force 
attacks, phishing, and other exploits, the history 
and future of secure communication raises new 
questions that are directly relevant to their 
everyday lives. Part of the impact of this course is 
to lead students to discover basic principles for 
themselves, instead of nudging their behavior as 
institutions tend to try. 
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Integrating online resources into the course has 
also greatly aided the contextualization. An 
Instagram account is a more readily accessible 
repository of images from the history of 
cryptography than slides used to be. Students can 
see on the calendar of the National Cryptologic 
Museum Foundation what happened on this day 
in cryptologic history, they can use morse coders 
and decoders, play with Pigpen fonts and anagram 
servers, and cast a far more informed look at the 
cyber security training resources of the university. 
Several times, I teamed up with IT specialists on 
campus responsible for propagating safe online 
behavior among students, and whether it was 
screenings and discussions or more focused panel 
presentations, the students who had taken this 
class did far better on the Cybersecurity training 
modules of the university than the general public 
does according to relevant surveys (Pew Research 
Center Cybersecurity Knowledge Quiz, 2017). 
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Abstract

Playfair is a manual substitution cipher in-
vented in 1854 by Charles Wheatstone. Its
name and popularity came from the en-
dorsement of his friend Lord Playfair. The
Playfair cipher encrypts bigrams (pairs of
letters), and is considered more secure than
monoalphabetic substitution ciphers which
encrypt single letters. It was used by sev-
eral countries in the 19th century and in
the first half of the 20th century.

Playfair ciphers can often be solved with
the help of a crib. Ciphertext-only attacks
usually require hundreds of letters when
carried out manually (Mauborgne, 1918).
More recently, computerized attacks based
on hill climbing and simulated annealing
have been published, that require between
60 to 100 letters of ciphertext (Cowan, 2008;
Al-Kazaz et al., 2018).

In this article, the author presents a novel
ciphertext-only attack, implemented in the
open-source e-learning CrypTool 2 (CT2)
platform, that is effective against cipher-
texts as short as 40 letters (CrypTool 2 Team,
2019). This attack is based on a special-
ized adaptation of simulated annealing and
uses hexagrams in the scoring method. With
CT2, a Playfair public challenge with only
40 letters was solved, establishing an un-
official world record for decrypting short
Playfair messages, encrypted with random
keys, from ciphertext only (Schmeh, 2018b).
The author also offers a series of new Play-
fair challenges.1

1This work has been supported by the Swedish Research
Council, grant 2018-06074, DECRYPT - Decryption of his-
torical manuscripts.

1 Description of Playfair

Playfair enciphering and deciphering are based on
a key square, with a 5 · 5 grid of letters. Each of
the 25 letters must be unique and one letter of the
alphabet (usually J) is omitted from the square, as
there are only 25 positions in the square, but 26
letters in the alphabet.

While it is possible to use a random key square,
it is often more convenient to derive a key square
from a keyword (or sentence). The keyword is
written horizontally with duplicate letters being re-
moved. The rest of the square is filled with the
remaining letters of the alphabet, in alphabetical
order.

For example, the key square derived from the
keyphrase HELLO WORLD is:

H E L O W
R D A B C
F G I K M
N P Q S T
U V X Y Z

To encrypt a message, the plaintext is split into
bigrams. If there is an odd number of letters, a
Z or X is added as the last letter. To encrypt the
message HIDE THE GOLD, we first split it into
bigrams, and add Z at the end:

HI DE TH EG OL DZ

Next, for each pair, we locate its two letters in
the square. We replace them according to the fol-
lowing rules:

• If the two letters are corners of a rectangle,
take the letters on the horizontal opposite cor-
ners of the rectangle. For example, HI is en-
crypted as LF.

• If both letters are in the same column, select
the letters below each one in the square (go-
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ing back to the top if at the bottom). For ex-
ample, DE is encrypted as GD.

• If both letters are in the same row, select the
letters to the right of each one (going back to
the left if at the farthest right). For example,
OL is encrypted as WO.

Using these rules, we obtain:

LF GD NW DP WO CV

2 Cryptanalysis of Playfair

In this section, the security of Playfair is discussed,
and a survey of prior attacks on Playfair is pre-
sented.

2.1 Security of Playfair
The Playfair cipher has several weaknesses, which
may be exploited when trying to recover a Playfair
key square:

• With long enough ciphertexts, statistical anal-
ysis can be applied on bigrams, and matched
against the frequencies of common bigrams
in the language (e.g., English). The cipher-
text bigrams corresponding to the most com-
mon bigrams in the language (such as TH or
IN in English) can often be easily identified.

• The most frequent ciphertext letters are likely
to be near the most frequent plaintext letters
(e.g., E, T, I, O, N) in the key square.

• Each mapping of a plaintext bigram to a ci-
phertext bigram reveals the mapping of an-
other bigram, where the letters of the bigrams
have been reversed. For example, if HI is en-
coded as LF, then IH will necessarily be en-
coded as FL.

• If the Playfair key is derived from a keyword,
then the last row often contains the last alpha-
bet letters such as X, Y and Z. Also, the letters
which did not appear in the keyword and are
used to fill the bottom part of the square will
always appear in alphabetical order.

2.2 Prior Cryptanalysis of Playfair
Historically, Playfair was often solved by hand with
the help of cribs (partially-known plaintext attack).
Based on the crib, some entries of the key square
can be guessed or reproduced, and additional en-
tries reconstructed by trial and error.

Manual ciphertext-only cryptanalysis involves
frequency analysis of ciphertext bigrams, and usu-
ally requires hundreds of ciphertext letters, not an
uncommon scenario if multiple messages were en-
coded using the same key. In (Mauborgne, 1918),
a manual method is described, to solve a cipher-
text composed of 800 letters. The frequencies of
the most common ciphertext bigrams are matched
against those most common in English, e.g. TH,
ER, and ET. A tentative initial square is built, and
completed in a trial-and-error process.

In (Monge, 1936), a challenge ciphertext with
only 30 letters is solved by taking advantage of the
characteristics of a key square built from a key-
word (see Section 2.1). This is considered to be
the shortest Playfair ciphertext ever solved, that
was encrypted using a key derived from a key-
word.2

(Cowan, 2008) presents an attack based on sim-
ulated annealing. It uses quadgrams frequencies
(applied on a logarithmic scale) as the scoring func-
tion. A constant temperature is employed (Hoos
and Stützle, 2004, p. 76). With this method, ci-
phertexts as short as 80 letters can be solved. Also,
in the now-defunct website www.cryptoden.com3,
(Cowan, 2015) proposes a churn algorithm, de-
scribed in Section 3.2. The churn algorithm was
designed to mimic the process of simulated an-
nealing with constant temperature, while reducing
software code complexity and runtime. Cowan
describes how his churn method was found su-
perior to hill climbing for attacks on various ci-
phers (Cowan, 2015). Cowan’s implementation
of churn also produces an interesting but probably
unintended side-effect, described in Section 3.3.

In (Al-Kazaz et al., 2018), a compression-based
technique combined with simulated annealing is
described, and demonstrated on several ciphertexts.
The shortest one, with only 60 letters, was suc-
cessfully decrypted with only two errors. The com-

2The unicity distance for Playfair and English is 22.69
letters (Deavours, 1977). For any Playfair cryptogram of that
length or shorter, it is likely that there exist one or more keys,
different from the original key, which decrypt the cryptogram
so that the resulting decryption is a plausible English text (and
different from the original plaintext). The unicity distance
can be viewed as a theoretical lower-bound for the length of
a cryptogram, so that its key may be recovered via cryptanal-
ysis. The length of the cryptogram solved by Monge (30 let-
ters) is very close to that limit. On the other hand, the unicity
distance is only 16.56 letters if it can be assumed that the last
row in the key square is VWXY Z (as for most keys derived
from keywords) (Deavours, 1977).

3www.cryptoden.com is still accessible via
www.wayback.com (Cowan, 2015).
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pression technique proposed in (Al-Kazaz et al.,
2018) is essentially analog to using hexagram statis-
tics (on a logarithmic scale) as the scoring method.

3 A New Ciphertext-only Attack

In this section, a novel attack, successfully em-
ployed to solve several public challenges, is pre-
sented.

This new attack extends Cowan’s method (Cowan,
2008). While it is also based on constant-temperature
simulated annealing, it uses hexagrams statistics,
instead of quadgrams, converted to a logarithmic
scale. It implements an extended set of transfor-
mations applied to candidate keys, adding new types
of transformations, as described in Section 3.4. Fur-
thermore, the new attack exhaustively applies and
tests the full set of transformations on candidate
keys, at each step of simulated annealing (instead
of applying only a random subset of transforma-
tions as in (Cowan, 2008)).

3.1 An Initial Implementation
Initially, this new attack was implemented using
a standard constant-temperature simulated anneal-
ing algorithm. As described in Listing 1, higher
scores are always accepted. If the new score is
lower than the current score, the probability of ac-
ceptance p is computed using the Metropolis for-
mula (Hoos and Stützle, 2004, p. 75), based on the
score degradation d and the constant temperature
t.

p = e−d/t (1)

The first implementation of this new attack, af-
ter tuning and optimizing the temperature t, was
able to solve ciphertexts with only 70 letters, and
rarely, with 60 letters (for comparison, (Cowan,
2008) requires between 80 to 100 letters). Also,
hexagrams were found to be more effective than
quadgrams or pentagrams as the scoring method
(all using a logarithmic scale).

3.2 Improved Implementation Using Churn
The attack was modified to use Cowan’s churn im-
plementation of constant-temperature simulated an-
nealing (Cowan, 2015). The churn acceptance func-
tion is described in Listing 2.4 Cowan does not
explain why he employs the term churn, however,

4The code in Listing 2 is different from the original code
given in (Cowan, 2015). It was adapted for clarity, but it
preserves the original functionality.

the process could be described as candidate keys
being accepted with a decreasing probability, or
discarded (’churned’) with a increasing probabil-
ity, as the score of the current key increases over
time during simulated annealing.5

A lookup table with degradation values, D, is
precomputed. Cowan does not describe how he
computed D, but his original values can be repro-
duced and closely approximated. From Equation 1,
it follows that:

d = t · ln(1/p) (2)

D has 100 entries (with an index i from 0 to 99).
For each i, the acceptance probability is computed
as follows:

pi = (i+1)/100 (3)

and therefore:

Di = t · ln(100/(i+1)) (4)

The churn acceptance function selects a (ran-
dom) degradation threshold from the lookup table
by generating a random index i from 0 to 99. If
the actual degradation d is lower than this thresh-
old, then the new key is accepted.6

After modifying the new attack on Playfair to
use the churn acceptance function, the attack was
again tested, and surprisingly, not only its runtime
could be reduced, but the attack’s performance was
also improved. The algorithm was able to consis-
tently solve ciphertexts with 50 letters. Cowan’s
churn algorithm was originally designed to mimic
a constant-temperature simulated annealing pro-
cess. There was therefore no apparent reason for
such an improvement. After further investigation,
the root cause of this phenomena was found, as
described in Section 3.3.

3.3 An Unintended Side Effect
With a regular constant-temperature simulated an-
nealing process (without churn), since the Metropo-
lis acceptance function is a continuous function

5The acceptance probability decreases exponentially for
candidate keys with a score lower than the score for the cur-
rent key, as a function of the score degradation - see Equa-
tion 1. As the score of the current key increases over time (as
better current keys are being selected), the degradation for a
given candidate key increases, and its probability of accep-
tance decreases.

6The same functionality could in principle be achieved
without a lookup table. However, the implementation using a
lookup table plays an important role, described in Section 3.3.
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(see Equation 1), a candidate key with a score sig-
nificantly lower than the score of the current key
can theoretically be accepted, albeit with a low
but non-zero probability p. In other words, a can-
didate key resulting in a very high degradation d
might still be accepted.

With churn, the lookup table stores 100 discrete
degradation values, and from Equation 4, it can be
seen that the highest degradation value is:

D0 = t · ln(100/(0+1)) = t · ln(100) (5)

As a result, with churn, no key resulting in degra-
dation d greater than D0 may ever be accepted.
Similarly, it can be seen that there is a also lower
bound for the acceptance probability, pmin, so that:

pmin = (0+1)/100 = 0.01 (6)

Therefore, with churn, keys with a score degra-
dation resulting in an acceptance probability p <
pmin = 0.01 will always be rejected, unlike with
regular simulated annealing, where there is a low
but non-zero probability they might be accepted. It
was suspected that particular side-effect of the im-
plementation of churn could be the root cause for
the higher performance of the attack with churn
compared to the attack with regular constant-tem-
perature simulated annealing.

To validate this hypothesis, a third version of
the attack was implemented, using the standard ac-
ceptance function (for constant-temperature sim-
ulated annealing – see Listing 1), but this time
only accepting keys with acceptance probabilities
p ≥ 0.01. With this modification (described in
Listing 3), the attack on Playfair achieved the same
performance as when using churn, confirming the
hypothesis. The pmin parameter was further fine-
tuned and set to an optimal value of 0.0085.7

3.4 Transformations on Candidate Keys
In all versions of the new attack on Playfair, the set
of transformations applied at each stage of simu-
lated annealing includes:

7In preliminary experiments with attacks on other ciphers,
this seemingly minor adaptation of simulated annealing sig-
nificantly improved their performance. One possible explana-
tion is that accepting candidate keys with scores significantly
lower than the score of the current key, might completely
disrupt the convergence of simulated annealing towards the
correct key. Whereas accepting keys with score slightly or
moderately lower than for the current keys helps in surveying
more diverse areas of the keyspace.

• Swaps of any two elements in the square

• Swaps of any two rows in the square

• Swaps of any two columns in the square

• Permutations of the five rows

• Permutations of the five columns

• Permutations of the five elements of any row

• Permutations of the five elements of any col-
umn

All possible transformations listed here are tested
at each step of simulated annealing. In contrast, in
(Cowan, 2008), only randomly selected transfor-
mations are applied and tested (from a smaller set
of transformation types, which only includes the
swaps, as well as a few special transformations).

4 A New Partly-Known Plaintext Attack

The algorithm described in Section 3 was also adapted
to support a crib-based attack. The scoring func-
tion was modified, so that the score (computed
using hexagrams statistics) is increased for each
known-plaintext symbol correctly reproduced, when
decrypting the ciphertext with a candidate key. With
this modification, ciphertexts with 40 letters can
easily be solved given a crib of 10 letters.

5 Solving Playfair Challenges with
CrypTool 2 (CT2)

The new attacks described in Section 3 were first
implemented as command-line programs. A first
ciphertext-only challenge with 50 letters published
by Klaus Schmeh was solved (Schmeh, 2018c).
It took a few seconds on a 10-core Intel Core i7
6950X 3.0 GHz PC to complete the attack and to
recover the key and the plaintext.

The attack was also integrated into CT2, taking
advantage of the convenient user interface of CT2,
which shows useful details about the progress of
the attack, such as a list of top keys (CrypTool 2
Team, 2019). Klaus Schmeh published a second
challenge, this time with only 40 letters, stating
that its solution would constitute a world record
for solving the shortest Playfair ciphertext encrypted
with a random key (Schmeh, 2018b).

This new challenge was attacked with CT2. Ini-
tial runs only produced spurious solutions. At some
stage, CT2 displayed a decryption (in the 4th place
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in the list), starting with MEETYOU, but only for a
few seconds, before the decryption quickly disap-
peared from the list as new higher-score decryp-
tions were inserted. The partial known-plaintext
attack (see Section 4) was then run with MEETYOU
as a crib, and the solution was quickly found (see
Figure 1). The plaintext, after adding spaces, is as
follows:

MEET YOU TOMORROW AT FOUR TWENTY

AT MARKET PLACE

6 CrypTool 2

CrypTool 2 (CT2) is an open-source e-learning tool
that helps pupils, students, and crypto enthusiasts
to learn cryptology.8 CT2 is part of the CrypTool
project which includes widely-used e-learning tools
for cryptography and cryptanalysis.9 CT2 is the
successor of CrypTool 1 (CT1), and it is based on
a graphical programming language allowing the
user to cascade different ciphers and methods and
to follow the encryption or decryption steps in real-
time (CrypTool 2 Team, 2019).

CT2 is maintained by the CrypTool team. Con-
tributions and voluntary support to this open-source
project come from all over the world. CT2 imple-
ments classical and modern cryptographic meth-
ods, including cryptanalytic methods. It is also
used to implement real-world prototypes of dis-
tributed cryptanalysis using the so-called CrypCloud.
CT2 is maintained in English and German.

State-of-the-art algorithms, such as the attack
against the double transposition cipher described
in (Lasry et al., 2014) and shown in Figure 2, are
also integrated in CT2.

7 New Challenges

A series of new Playfair challenges is presented
in Table 1 (Appendix 9), with short ciphertexts.
The plaintexts were extracted from English books.
The keys were generated either from an English
keyphrase, or randomly. For some, the first eight
letters of the plaintext are given as a crib. This crib
is always PLAYFAIR, but the continuation of the
plaintext is a sentence unrelated to Playfair.

In addition, (Schmeh, 2018a) has published a
new challenge with 30 letters only and encrypted
using a random keysquare.

8https://www.cryptool.org/en/cryptool2
9https://en.wikipedia.org/wiki/cryptool
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8 Appendix – Listings and Figures

Listing 1: Simulated Annealing Acceptance Function – Constant Temperature
package common;

import java.util.Random;

public class FixedTemperatureSimulatedAnnealing {

private Random random = new Random();

// Fixed temperature optimized for hexagram scoring
private static final double FIXED_TEMPERATURE = 20_000.0;

/**
* Simulated annealing acceptance function.
*
* @param newKeyScore - score for the ney key
* @param currentKeyScore - score for the current key
* @return true if new key should be accepted
*/
boolean accept(double newKeyScore, double currentKeyScore) {

// Always accept better keys
if (newKeyScore > currentKeyScore) {

return true;
}

// Degradation between current key and new key.
double degradation = currentKeyScore - newKeyScore;

double acceptanceProbability =
Math.pow(Math.E, - degradation / FIXED_TEMPERATURE);

return random.nextDouble() < acceptanceProbability;
}

}
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Listing 2: Simulated Annealing Acceptance Function – With Churn Lookup Table
package common;
import java.util.Random;

public class ChurnSimulatedAnnealing {

private Random random = new Random();

// Fixed temperature optimized for hexagram scoring
private static final double FIXED_TEMPERATURE = 20_000.0;

// Size of degradation threshold lookup table.
private static final int LOOKUP_TABLE_SIZE = 100;

// The churn algorithm lookup table of degradation thresholds.
private final double[] degradationLookupTable = new double[LOOKUP_TABLE_SIZE];

// Compute the churn algorithm lookup table of degradation thresholds.
void computeDegradationLookupTable() {

for (int index = 0; index < LOOKUP_TABLE_SIZE; index++)
degradationLookupTable[index] =

FIXED_TEMPERATURE * Math.log(LOOKUP_TABLE_SIZE / (index + 1));
}

/**
* Simulated Annealing acceptance function - Churn implementation.
*
* @param newKeyScore - score for the ney key
* @param currentKeyScore - score for the current key
* @return true if new key should be accepted.
*/
boolean accept(double newKeyScore, double currentKeyScore) {

// Always accept better keys
if (newKeyScore > currentKeyScore) return true;

// Fetch a random degradation threshold from the lookup table.
int randomIndex = random.nextInt(LOOKUP_TABLE_SIZE);
double degradationRandomThreshold = degradationLookupTable[randomIndex];

// Degradation between current key and new key.
double degradation = currentKeyScore - newKeyScore;

return degradation < degradationRandomThreshold;
}

}
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Listing 3: Simulated Annealing Acceptance Function – Constant Temperature – Modified
package common;

import java.util.Random;

public class ImprovedFixedTemperatureSimulatedAnnealing {

private Random random = new Random();

// Fixed temperature optimized for hexagram scoring
private static final double FIXED_TEMPERATURE = 20_000.0;

/**
* Simulated Annealing acceptance function.
*
* @param newKeyScore - score for the ney key
* @param currentKeyScore - score for the current key
* @return true if new key should be accepted.
*/
boolean accept(double newKeyScore, double currentKeyScore) {

// Always accept better keys
if (newKeyScore > currentKeyScore) {

return true;
}

// Degradation between current key and new key.
double degradation = currentKeyScore - newKeyScore;

double acceptanceProbability =
Math.pow(Math.E, - degradation / FIXED_TEMPERATURE);

return acceptanceProbability > 0.0085
&& random.nextDouble() < acceptanceProbability;

}
}
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Figure 1: CT2 – Cryptanalysis of Playfair with Crib

Figure 2: CT2 – Cryptanalysis of the Double Transposition Cipher
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9 Appendix – Challenges

Ciphertext Length Key Crib
1 QONACDBLNKHIOTWDUEISOITFIDQBVOUTNRZOUCPC 40 From key phrase PLAYFAIR
2 LVNXDNMHHLHIUIEGENXTHEGQHXUHFQ 30 From key phrase PLAYFAIR
3 HNGFDIRFAMAVHFOVXLGLTVOAZMYLQGRXHAHRNHGF 40 Random key PLAYFAIR
4 ZAYNWPSYEMYQTIRXICMCKVHQHTHUKY 30 Random key PLAYFAIR
5 IROAWMDQLRNCTUOCFHMQQKMAALCQMGHIQOQKLCAP 40 From key phrase
6 BQUWLODQTOODLXWKEGAQOGHQQTOQZI 30 From key phrase
7 ILPMPEOIIZIRTPPRQRUYFUVXLIRCVANBVTPRWRCE 50 Random key

CRVSLIQOVS
8 TVCIYVGFVOGWPEFPDASNIXWKDISDRQVQLGSDZQXB 40 Random key
9 PBILKMXFPGDMDHCYHIVECOOUTGBNUC 30 Random key
10 PROMGDUGVBNYXKEADCHTHM 22 Random key

Table 1: New Playfair Challenges
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Abstract

Ernest Rinzi (1836-1909), a London-
based jeweler, goldsmith and miniaturist,
left behind an encrypted journal, which
went unsolved until 2017. Dozens of artis-
tically designed illustrations, which inter-
act with text written in tiny letters, make
this 175 pages journal one of the most
outstanding cryptograms in existence. In
2017 one of the two authors of this pa-
per brought Rinzi’s journal to the atten-
tion of a wider audience, which led to
the other author examining and breaking
the encryption. The cipher Rinzi used
proved a monoalphabetic substitution ci-
pher (MASC) that replaces letters and
numbers. The cryptanalysis work was
complicated by the unusual and hard-to-
read miniature writing.

1 Introduction

Ernest Rinzi (1836-1909), born as Ernesto Rinzi
in Milan, Italy, was a jeweler, goldsmith and
miniaturist of Italian decent. He was brought
to London by the renowned jeweller Alessandro
Castellani around 1859 and became a naturalized
British citizen in 1867. Rinzi’s oevre mainly
consists of miniature paintings (mainly portraits)
that were used as necklace pendants. He had a
wealthy clientele and was very prolific. His works
were exhibited at the Royal Academy, the Modern
Gallery, the Royal Colonial Institute and other art
galleries. Rinzi was a member of the Society of
Miniature Painters.

Today, Rinzi’s works can be found in art
databases like MutualArt, Blouin, or Artnet. His
creations are frequently traded at auction houses
like Woolley & Wallis, Lofty’s, and Bonham’s.
Nevertheless, there seems to be as good as no lit-
erature about Ernest Rinzi. The only owner of a

Rinzi miniature we have found is The Royal Col-
lection Trust (Royal Collection Trust, 2019). We
are not aware of a museum or gallery that currently
exhibits a Rinzi work.

2 The Encrypted Journal

The Rare Book & Manuscript Library at the Uni-
versity of Illinois at Urbana-Champaign owns a
175 pages hand-written journal Rinzi left behind
(Rinzi, 1903). Rinzi created it from 1898 to 1903.
He started in the age of 62, which means that this
journal belongs to Rinzi’s late work (he died in
the age of 73). As is easy to see, Ernest Rinzi’s
manuscript is encrypted. Only small parts of the
text have been left in the clear.

The Rare Book & Manuscript Library acquired
Rinzi’s manuscript a couple of years ago from the
Librairie Paul Jammes in Paris. They inquired
about additional provenance information but the
book dealer did not know much, except that he had
obtained the manuscript as part of the remaining
stock of a fellow bookseller who had specialized in
all things “curious, mysterious and unusual.” No
other other writings by Rinzi are known to us, let
alone encrypted ones.

Rinzi wrote his enciphered journal in a mi-
nuscule hand that requires magnification to see
clearly. While each journal page (sized 18 cm x
12 cm) is ruled with twenty-one lines, Rinzi man-
aged to fit over a hundred lines of text. Based on
these numbers, we estimate that the total amount
of characters contained in the manuscript is about
1.5 million, which corresponds to a novel of about
800 pages. Rinzi used a non-standard alphabet
consisting of astrological symbols as well as Chi-
nese, Greek and Hebrew letters. It can be assumed
that Rinzi assembled this alphabet himself. The
first page of the manuscript appears to contain a
list of the characters used, but no substitution ta-
ble.

Among the passages in Rinzi’s journal that are
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Figure 1: A typical page from Ernest Rinzi’s encrypted journal. There are about 100 written lines per
page.
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Figure 2: Rinzi’s miniature writing is hard to read. There are up to eight lines per centimeter. Rinzi
used a non-standard alphabet containing of astrological symbols as well as Chinese, Greek and Hebrew
letters.

left in the clear are some names and events, such as
the assassination of King Umberto I in 1900, the
death of British queen Victoria in 1901, the coro-
nation of British king Edward VII in 1901, and the
death of Rinzi’s wife Jessie in 1902. Rinzi’s writ-
ing and drawing shows religious devotion. Most
pages are topped with illustrations that feature the
Holy Spirit in the form of a dove, angels, or ban-
ners, and the motto “All from God, all for God,
all to God” (written in English, Italian, or French).
While the angels first appear mostly in black and
white, they become progressively more colorful
throughout the journal. Apart from the “All from
God, all for God, all to God” illustrations on many
pages, there are other drawings spread throughout
the manuscript. Illustrations and text always form
a unity – sometimes the pictures are integrated into
the text, sometimes it’s the other way round.

3 Analysis

As far as we know, Ernest Rinzi’s journal is not
mentioned in the crypto history literature. The
only public source mentioning it originally were
two blog posts published by the Rare Book &
Manuscript Library in 2017 (Anonymous, 2017)
(Anonymous, 2017). David Scheers, a fellow
crypto history scholar, made the second author of
this paper aware of these posts. This second au-
thor subsequently informed other crypto history

scholars via his blog (Schmeh, 2017). The two
blog posts described Rinzi’s journal as unsolved.
A Google search we conducted did not reveal any
other sites mentioning it, let alone the solution.
Later an employee of the Rare Book & Manuscript
Library told us: “We’ve puzzled over this docu-
ment for the last couple of years, and come up
with all sorts of guesses and fantasies as to what
its content might be.”

What is especially fascinating about Rinzi’s
journal, is the combination of art and encryp-
tion. The drawings are of high artistic quality.
Rinzi’s encrypted journal reminded us of a number
of other notable encrypted books (which doesn’t
mean, of course, that a similar encryption method
was used):

• The Voynich Manuscript: The Voynich
Manuscript is the most famous unsolved
cryptogram in the world. Like Rinzi’s jour-
nal, it combines text written in an unknown
script with illustrations. However, the artis-
tic quality of the illustrations is considerably
lower.

• The Rohonc Codex: Similar as the Voynich
Manuscript, the Rohonc Codex is written in
an unknown script and contains illustrations.
A solution was recently published but is not
generally accepted to date (Király and Tokai,
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Figure 3: Most pages in Rinzi’s journal are topped with illustrations that feature the Holy Spirit in the
form of a dove, angels, banners, and the motto “All from God, all for God, all to God”.

2018).

• Charles Dellschau’s books: The manuscripts
created by US outsider artist Charles
Dellschau contain encrypted text and illus-
trations, just like Rinzi’s journal (Schmeh,
2017). However, the focus in Dellschau’s
books lies on the paintings, while (encrypted)
text plays only a minor role. Dellschau’s
ciphertexts have been solved.

• James Hampton’s journal: US outsider artist
James Hampton left behind a journal of
over 100 pages written in an unknown script
(Schmeh, 2018). This journal mainly consists
of text; there are only few drawings. Hamp-
ton’s notebook as well as a few other writings
in the same script he left behind have never
been deciphered.

After having read the blog post about Rinzi’s
journal, the first author of this paper started to an-
alyze it. He assumed that the journal was writ-
ten in Italian, English, or French, as these are the
languages that appear in the cleartext passages of
the journal. Italian, which was Rinzi’s mother
language, appeared to be the most likely choice.
Considering the amount of text and the fact that
the journal probably was written for himself (and
not for an English-speaking audience), it seemed
likely that Rinzi wrote in the language he was most
fluent in. English appeared to be the second op-
tion. Rinzi emigrated to London in the age of 23,
and so it seemed plausible that after almost four
decades he spoke English well enough to easily
write such a huge amount of text. As Rinzi’s biog-
raphy is not documented very well, it was hard to
say whether French was another plausible option.
The French passages in the journal are not proof
that Rinzi really spoke this language.

The large amount of encrypted text the journal
contains made it unlikely that Rinzi had used a
complex encryption system. The first author of
this paper assumed that a Monoalphabetic Substi-
tution Cipher (MASC) had been applied, which
meant that each of the glyphs in the journal cor-
responded with a certain letter, number, or sign.
The number of glyphs in the alphabet Rinzi used is
36. The most obvious explanation was that these
glyphs stood for the letters from A to Z and the
numbers from 0 to 9.

4 Solution

One method to solve a MASC is to guess plain-
text words. When leaving through the journal,
the first author of this paper found that the lower
part of page 127, which is dedicated to the death
of Rinzi’s wife Jessie (figure 5), provided a mix-
ture of encrypted and non-encrypted content. This
looked like a good place for guessing words. The
lower part of page 127 can easily be located in
the journal, as it is this only passage with a black
background. Ten lines up from the bottom left of
this page there is a three-letter word followed by
a seven-letter word in the next line. Both words
occur numerous times in the journal. As the text
and the illustrations appeared to contain religious
content, DIO (Italian for “god”) seemed a good
candidate for the three-letter word. The English
translation GOD worked, too, while the French
equivalent DIEU did not fit. Substituting the let-
ters D, I, and O in the seven-letter word resulted
in DI?I?O, while G, O, and D rendered GO?O?D.
So, the first author of this work concluded that the
Italian variant (D, I and O) made sense and that the
seven-letter word was DIVINO (“devine”).

On the same page, just up and to the right be-
neath the flowers, the first author of this work
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Figure 4: Some of the 175 pages in Rinzi’s journal show additional illustrations. They are usually
integrated into the text.
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Figure 5: The first author of this work used two words on this page to break into the cipher.
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found a two-letter word that, assuming that the
Italian hypothesis was correct, became IN. Be-
neath this, an eight-letter word appeared, where
the initial letter occured twice more in the word.
The character used for this letter occurs in many
ancient alphabets and is the precursor of our mod-
ern M. Assuming that this character actually stood
for the M, the expression M?MO?I?M was re-
ceived. In context of the page it probably meant
“in memory of”, which is MEMORIAM in Ital-
ian. With nine letters identified, the remaining
ones could be guessed, too.

The first author of this work now assumed that
the ten symbols not standing for letters were num-
bers. The numbers under the flowers (? OCTO-
BER ????) on page 127 most likely indicated the
burial date. As Jessie Rinzi died in 1902, the ????
apparently stood for 1902, which rendered the 1st
October 1902 as the day when she was buried. The
time of death and her age also appear in this sec-
tion. Substituting the known digits gave the ci-
phertext representations of 0, 1, 2, and 9.

A fellow crypto history enthusiast provided us
the information that Jessie Rinzi was 33 years old
at the time of the British census of 31 March 1901.
As “September 27th” is written in the clear below
“R.I.P.” (at the top of the passage with the black
background), we concluded that Jessie died on 27
September 1902, at the age of 35. This is con-
firmed by the fact that above the second “R.I.P.”
(between the willows and the flowers) it reads
SATURDAY ???? AM (this is the only English
expression we have found in the encrypted text
so far) and 27 Sept 1902 was a Saturday. Based
on this information a few more digits could be
guessed. The lower line of figure 6 shows the sub-
stitution table we derived. It seems possible that
the digits 5 and 6 have to be switched. So far, we
haven’t found a number appearing in the encrypted
text that allows for a definite identification of these
two digits.

Figure 7 shows a part of the ciphertext that has
been decrypted. The first line reads as follows: O
DIVINO IDDIO SANTO BUONO O SALVATE-
RIO GRAZEI GRAZI. As far as we can tell based
on this short plaintext part, Rinzi’s religious be-
lieves play an important role in his journal.

5 Conclusion and Outlook

The encrypted journal of Ernest Rinzi is a remark-
able document. Especially, the amount of text

(probably about 1.5 million characters), the minia-
ture writing and the illustrations make Rinzi’s
journal something very special. The cipher Rinzi
used turned out to be a monoalphabetic substitu-
tion (MASC) with an alphabet of 36 letters. The
first author of this paper broke it based on word
guessing. The plaintext language turned out to be
Italian. Rinzi’s bad penmanship (probably owed
to the small size of the writing) complicated crypt-
analysis.

There are a number of open questions about
Rinzi’s journal. Especially, we ask ourselves the
following:

• What’s the content of Rinzi’s journal? So far,
only a few sentences of the journal have been
decrypted. Decrypting more, let alone the
whole journal, will require much more time
and effort. Perhaps, somebody interested in
Ernest Rinzi’s life will be interested in such a
project.

• Are there other encrypted documents Rinzi
left behind? The journal this article is about
was written between 1898 and 1903. Pro-
vided that we deal with a diary or a similar
document, it is well possible that other jour-
nals of this kind exist. In addition, Rinzi
might have created other encrypted docu-
ments. Perhaps, he even included encrypted
text in some of his artworks.

• Why did Rinzi write this book? Encryption
is usually used to hide information from oth-
ers. It is therefore an interesting question,
from whom Rinzi’s wanted to hide his writ-
ing. Did he want to keep his family members
from reading his journal? And why did he
include all these elaborate illustrations, if he
didn’t plan to reveal his journal to others? We
have no answers to these questions.

• Are works created by Rinzi on display in mu-
seums? Though we found many artworks
of Ernest Rinzi on the websites of auction
houses and art registers, we are still not aware
of a Rinzi creation that is on display in a mu-
seum or public collection.

• Can we find out more about Rinzi’s biogra-
phy? Finally, it would be interesting to know
more about Ernest Rinzi’s biography.

103



Figure 6: This substitution table shows how the cipher works. It is a simple substitution cipher (MASC),
but things are complicated by the facts that the writing is tiny and the alphabet contains 36 letters.

Figure 7: A piece of text from Rinzi’s journal that has been decrypted. Decrypting the whole journal
would be a laborious project.
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These questions have to be answered by histo-
rians, art historians, and psychologists. From a
cryptographers point of view, the case of Ernest
Rinzi’s journal is solved.
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Abstract

This paper describes the current progress
of our research in the area of breaking ho-
mophonic substitution ciphers. Further-
more, it presents the state-of-the-art of
cryptanalyzing this kind of cipher. There
is a huge gap between the success rate of
methods published in according research
papers and the success rate of already
available tools on the Internet. This paper
also presents a small general taxonomy of
monoalphabetic substitution ciphers. Fi-
nally, it shows how we broke different ho-
mophonic substitution ciphers in an auto-
matic as well as in a semi-automatic way.

1 Introduction

Homophonic substitution ciphers are, when used
with a considerably high number of homophones,
hard to break, even today. Since they were used in
many historical correspondences as the cipher of
first choice, many of these historical texts are still
unbroken. For example, the DECODE database
(Megyesi et al., 2017), which is a collection of his-
torical encrypted books and encrypted documents,
contains about 600 encrypted documents of which
22 also have an uploaded solution. Since the kind
of cipher is often unknown, only an estimation of
the number of homophonic encrypted texts can be
made. By assuming that texts consisting of more
than 26 (or 27 in Spanish) different ciphertext
symbols (letters, number groups, or arbitrary sym-
bols) are homophonically substituted, there are
about 480 homophonically encrypted documents
in the DECODE database.

Efficient and easy-to-use tools that help re-
searchers cryptanalyzing the texts and revealing
their contents are needed. Within the DECRYPT
project, one goal is to research and develop such
tools. For that purpose, we created an analyzer

and integrated it in the open-source software Cryp-
Tool 2 (Kopal, 2018). The analyzer is based on
simulated annealing with a fixed temperature and
allows the user of CrypTool 2 (CT2) to break ho-
mophonic substitution ciphers in a semi-automatic
as well as in a full-automatic way. Using the an-
alyzer, we were able to break all (already solved)
ciphers available on the wiki of the (ZKC, 2019).
Additionally, we tested our solver with ciphers
from (MTC3, 2018) (i.e. the Spanish Strip Cipher
challenges and the Zodiac cipher challenge) and
were able to successfully break these as well.

The rest of this paper is structured as follows:
Section 2 presents a small taxonomy of substitu-
tion ciphers. Section 3 discusses the related work
in the area of analyzing homophonic substitution
ciphers. Section 4 briefly presents CT2, a tool
which is the framework in which we integrate our
research results. Section 5 presents our own ap-
proach for breaking homophonic substitution ci-
phers using CT2. Section 6 shows an example of a
real-world cipher (Zodiac-408) broken in the full-
automatic mode of our analyzer. Finally, Section 7
gives a brief outlook what is planned within the
DECRYPT project with regards to the analysis of
historical ciphers.

2 Substitution Ciphers Taxonomy

Substitution ciphers in general replace plaintext
letters defined by a plaintext alphabet with cipher-
text letters defined by a ciphertext alphabet. Sub-
stitution ciphers are divided in two general types:
(1) monoalphabetic substitution ciphers and (2)
polyalphabetic substitution ciphers. With monoal-
phabetic substitution ciphers, the cipher only uses
a single ciphertext alphabet. With polyalphabetic
substitution ciphers, the cipher uses more than one
ciphertext alphabet. An example for the polyal-
phabetic substitution cipher is the Vigenère cipher.
As we focus on homophonic ciphers in this paper,
we do not further specify or analyze polyalpha-
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betic ciphers from now on.
Monoalphabetic substitution ciphers can be fur-

thermore divided into different classes: (1) sim-
ple monoalphabetic substitution ciphers (the Cae-
sar cipher is a very simple variant of it; from
now on we always consider the general case of
monoalphabetic substitution ciphers), (2) homo-
phonic substitution ciphers, (3) nomenclatures,
and (4) code books.

Simple Monoalphabetic Substitution (maS):
A simple monoalphabetic substitution cipher re-
places each plaintext letter using always a single
and always the same ciphertext letter. Plaintext
letters can be Latin letters but also any kind of
symbols. The keyspace of the simple monoalpha-
betic substitution cipher is, having 26 plaintext/-
ciphertext alphabet letters, 26! ≈ 288. Despite the
huge key space, simple monoalphabetic substitu-
tion ciphers can easily be broken, also by hand. As
the letter distribution of the ciphertext is the same
as the one of the corresponding plaintext, language
statistics are used to break the cipher. Computer-
ized methods to break simple monoalphabetic sub-
stitution ciphers already exist. CrypTool 2 con-
tains powerful algorithms, that break also short
(less than 60 letters) simple monoalphabetic sub-
stitution ciphers in milliseconds. (Kopal, 2018)

Homophonic Substitution: A homophonic
substitution cipher tries to eliminate the afore-
mentioned possibility to analyze the ciphertext
using simple language statistics. To do so, it
flattens the frequencies of single letters, thus,
in the perfect case, the ciphertext letters are
uniformly distributed. For example, instead of
encrypting the letter ’E’ only with one ciphertext
letter, it can now be encrypted using one of
several different “homophones”, e.g. ’01’, ’02’,
’03’, ’04’, ’05’. Then the ciphertext consists of
different pairs of digits – this method was often
used in history, i.e. in letters kept in the Vatican’s
secret archive (Archivio Segreto Vaticano, 2019)
or in messages of the Spanish Civil War encrypted
with the Spanish Strip Cipher (Soler Fuensanta
and López-Brea Espiau, 2007). The keyspace size
of a homophonic cipher can be calculated by 26n

where n is the number of homophones. For exam-
ple, a homophonic encrypted text having only 52
homophones has a keyspace size of 2652 ≈ 2244,
where each homophone may be mapped to one of
the 26 letters of the Latin alphabet.

Simple monoalphabetic substitution ciphers as
well as homophonic substitution ciphers can be
extended to polygraphic ciphers like Playfair,
where instead of single letters group of letters are
encrypted. This further increases the keyspaces of
the ciphers. For example, a simple monoalpha-
betic substitution cipher that works on 2 instead of
1 letters has a total of 26 · 26 = 676 plaintext and
ciphertext ”symbols” in their corresponding alpha-
bets. Each symbol consists of two Latin letters, eg
’HE’. The overall keyspace of such a cipher would
be 676! ≈ 25375. Despite this number sounds in-
credible huge, most of the plaintext alphabet sym-
bols would not be used in practice, since many
combinations are seldom or never used in a real
language, e.g. ’WX’. This ciphers can still be at-
tacked using language statistics, but are harder to
break than their simple cases.

It is also possible to disrupt frequency analysis
by adding nulls to a message. Nulls are ciphertext
symbols which are added to veil the meaning of
the message. They just have to be deleted before
decrypting. For example, every second letter in a
ciphertext could be a null. If the attacker knows
this, the cipher isn’t more secure than without, but
harder to handle for authorized users.

Nomenclature: A nomenclature cipher is a kind
of extension of a simple monoalphabetic or of a
homophonic substitution cipher. Additionally to
substituting single letters, a nomenclature substi-
tutes groups of letters, like the polygraphic ci-
phers. On top of that, a nomenclature also substi-
tutes complete words. Nomenclatures are usually
built by creating a ciphertext alphabet that con-
sists of groups of letters, often of different lengths.
For example, names of persons, objects, or places
are substituted using special number groups, e.g.
“Pope” → 34521, “Rome” → 82355, etc. Often,
cryptanalysts are able to break nomenclatures par-
tially, but these decryptions have “holes” of such
still encrypted words. These holes can sometimes
be “filled” using the context of the document, or
having other broken documents encrypted with the
same key, or even having the original key, e.g. ob-
tained from an archive. Nomenclatures were often
used in history. An example for such a nomen-
clature, which was already broken in its time, is
the one used by Mary, Queen of Scots, to commu-
nicate with Anthony Babington to plan a complot
against Elizabeth I of England. (Kahn, 1996)
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Code Book: A code book consists of code
words for nearly all words of a language. Both,
sender and receiver need the same code book. The
sender encrypts the plaintext by replacing each
word with the appropriate code word, e.g. “We”
→ 46621, “need”→ 12315, “supplies”→ 75123.
Often, the corresponding numbers were super-
encrypted with a second key changing the num-
bers using special rules. Code book ciphers are,
without being in the possession of the used code
book, very hard to break. Things could become
easier, if the original code book is sorted based
on rules: If two codewords begin with the same
letter, e.g. a “T” (“transport”→ 5100 and “tools”
→ 5200), then a cryptanalyst could assume that
a codeword 5150 is “between” the words “trans-
port” and “tools”. In history, code books often
based on older ones. This made it easier to break
a new cipher if the older code book is known. Al-
ready broken code words can be put into a list of
known code words. Thus, the next time a cipher
has to be analyzed, this list could also be used.
For further information on breaking code books,
see the excellent discussion in (Lasry, 2018b).

3 Related Work

We made extensive investigations concerning re-
search papers and tools about cryptanalysis of ho-
mophonic substitutions. In general, there are not
many research papers dealing directly with the
cryptanalysis of homophonic substitution ciphers.
Also, there are not many tools available for break-
ing homophonic substitution ciphers. Our related
work investigation also shows that there is a huge
gap: The success rate of methods in the published
papers is much worse than the success rate of ac-
tual existing tools available on the Internet.

3.1 Research Papers

We found different research papers dealing with
cryptanalysis of homophonic substitution ciphers:

The first paper (Dhavare et al., 2013) is called
“Efficient Cryptanalysis of Homophonic Substi-
tution Ciphers”. As baseline for their algorithm
the authors use a nested a hill climbing approach.
The goal of their research was to solve Zodiac-
340, a message sent by the infamous Zodiac killer,
which is possibly encrypted using a homophonic
substitution cipher. Despite their approach did
not decrypt the message, they improved the state-
of-the-art of cryptanalyzing homophonic substitu-

tion ciphers. Having a ciphertext with a length of
1000 letters, their algorithm has a success rate of
about 100% when there are 28 homophones, about
78% with 35 homophones, about 78% with 45 ho-
mophones, about 40% with 55 homophones, and
about 45% with 65 homophones (see Figure 6 of
(Dhavare et al., 2013)).

The second paper (Campos et al., 2013) is
called “Genetic Algorithms and Mathematical
Programming to Crack the Spanish Strip Cipher”.
The Spanish strip cipher is a homophonic cipher
used during the Spanish Civil War. It encrypts a
plaintext using 3 to 5 different homophones per
plaintext letter resulting in a total number of ho-
mophones between 27 · 3 = 81 (since the Span-
ish alphabet has 27 different letters) and 100. The
maximum number is 100, since there are 100 pos-
sible homophones (00,01,02, ...,99). The authors
present two different methods for analyzing the ci-
pher: (1) a genetic algorithm and (2) mathemati-
cal programming. The genetic algorithm performs
best in their analyses. To further improve the ge-
netic algorithm, they added a dictionary search
that searches for already correct words in their so-
lutions which then are used for new generations in
the genetic algorithm. The authors do not present
an extensive evaluation of their results nor did we
found their code or tools, thus, it is impossible for
us to give a success rate. Nevertheless, the authors
present an execution time analysis that the genetic
algorithm needs about 7 minutes to find a solution.

The third paper (Sanguino et al., 2016) ana-
lyzed the Spanish Strip Cipher, but used a differ-
ent approach compared to Campos et. al. Their
attack is based on a three phase attack which con-
sists of (1) homophones-table analysis, (2) letter-
frequency analysis, and (3) a dictionary search.
Their method is able to successfully analyze and
decrypt texts encrypted with the Spanish Strip ci-
pher having a length of 201 letters with a success
rate of ≈ 90% in an average of about 2 minutes.

The fourth paper (Oranchak, 2008) presents a
method for the decryption of Zodiac-408. His
method is based on an evolutionary algorithm and
uses a word dictionary. He uses a genetic algo-
rithm to optimize word mappings onto the cipher-
text that don’t conflict each other by overlapping.
Therefore, he uses a small part of the ciphertext
that covers over 90% of all homophones of the
408-cipher. He maps words from the dictionary
onto that part and then analyzes the rest of the ci-
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Figure 1: Screenshot of the Tool “Zodiac Decrypto”

Figure 2: Screenshot of the Tool “AZdecrypt”
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phertext with respect to minimizing the collision
of words. Having 1000 generations in the genetic
algorithm and a minimum dictionary size of about
1300 words, he is able to decrypt the 408-cipher
by 60%. Having a dictionary with only about 850
words, he is able to decrypt the 408-cipher using
600 generations by 100%.

The fifth paper (Ravi and Knight, 2011)
presents a Bayesian approach for deciphering
complex substitution ciphers. The authors com-
bine n-gram language models and word dictionar-
ies. They were able to decipher Zodiac-408 by
97.8%. They claim, that their solution is the first
method that was able to automatically decipher the
Zodiac-408 cipher.

The sixth paper (King and Bahler, 1993)
presents an algorithm for breaking a special case
of homophonic ciphers: sequential homophonic
ciphers. With this type, the homophones are not
selected randomly but sequentially. This means,
if ’E’ has homophones ’01’,’15’, and ’25’, a let-
ter ’E’ is first encrypted using ’01’, then ’15’, and
then ’25’. After that, the sequence is repeated.
Their algorithm reduces the homophonic substi-
tution to a simple monoalphabetic substitution by
finding those sequences. Remarkable is, that find-
ing the sequences does not need any language fre-
quencies.

Other publications we found are dealing with
(putative) homophonic encrypted ciphertexts, in-
cluding Zodiac ciphers. An example is the mas-
ter thesis “Analysis of the Zodiac-340 Cipher”
(Dao, 2008) or the paper “How I reconstructed
a Spanish cipher from 1591” (Tomokiyo, 2018)
in which Tomokiyo analyzed and decrypted an
encrypted letter written by Alessandro Farnese,
Duke of Parma and sent to Filippo Sega, Bishop of
Piacenza. Tomokiyo decrypted the letter by hand.
The ciphertext was written using a simple substitu-
tion (with some homophones) and vowel indicator
symbols.

Clearly, there are more scientific reports about
successfully decryptions of homophonic ciphers
(by hand), but as this paper focuses on computer-
ized cryptanalysis methods, these reports are not
relevant for this paper.

All mentioned papers make use of n-gram
statistics wit n > 1 as the homophonic substitution
only flattens the 1-grams.

3.2 Tools

Additionally to searching for research papers deal-
ing with cryptanalysis of homophonic substitution
ciphers, we also investigated different tools avail-
able on the Internet. As mentioned before, the
success rate of finding the correct decryption of
homophonic encrypted texts that these tools of-
fer surpass the success rates of the aforementioned
methods in the research papers. Nevertheless, the
authors of the tools never published the algorithms
nor a scientific analysis dealing with their meth-
ods, and only rarely their code.

Many tools are listed on the Zodiackillerciphers
website (ZKC, 2019). The purpose of the tools on
the list is to support the decryption of the messages
of the Zodiac killer. However, the forum of the
website also contains useful information for crypt-
analyzing homophonic ciphers in general.

In the following, we show the two tools which
were cited most often on the Zodiackillerciphers
website. One of the two outperforms the other
concerning success rate and analysis speed.

The first tool is called ZKDecrypto1 which
stands for “Zodiac Killer Decrypto” and was writ-
ten by Hopper in 2008. Figure 1 contains a screen-
shot of the tool which consists of two separate
windows. The first window (left) is used to set
parameters and load a ciphertext (from text file),
while the second window (right) shows it. The
tool also allows to select a homophone and see
where else it appears in the ciphertext. To test the
tool, we used a ciphertext2 from the Zodiackiller-
ciphers website. According to the Zodiackiller-
ciphers website the “program’s original purpose
was to attempt to solve the Zodiac killer’s un-
solved 340-length cipher ... The program has since
been advanced to being able to solve general-case
homophonic and monophonic ciphers”. Unfortu-
nately, we were not able to break the test cipher
with ZKDecrypto.

The second tool “AZdecrypt”3 was written by
Eycke since 2016. The newest version (1.13) was

1ZKDecrypto can be downloaded from: https://
code.google.com/archive/p/zkdecrypto/

2We used number 35 of the list obtained from
http://zodiackillerciphers.com/wiki/
index.php?title=Cipher_comparisons
The test text has a length of 340 letters and consists of 65
homophones.

3AZdecrypt can be downloaded from: http:
//www.zodiackillersite.com/viewtopic.
php?f=81&t=3198. There is also a web-based version of
this solver.
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Figure 3: A CrypTool 2 Workspace with a Caesar Cipher

published together with the source code (written
in FreeBASIC) in January 2019 in a forum thread
of the zodiackillerciphers forum. Despite not pub-
lishing a scientific publication, Eycke gives in-
sights in his analyzer in that forum. Figure 2
shows a screenshot of the analyzer. Similar to
ZKDecrypto, AZdecrypt presents the ciphertext/-
plaintext next to each other. At the top, it shows
additional information about the currently per-
formed analysis. We used the same ciphertext2 to
test AZdecrypt as we did for ZKDecrypto. Af-
ter hitting the “Solve” button, the tool presented
the valid decryption in less than a second. To our
best knowledge, this tool is the most powerful ho-
mophonic substitution analyzer publicly available.
According to the author, it uses a simulated an-
nealing approach and a combined fitness function
using pentragram statistics normalized with the In-
dex of Coincidence.

4 CrypTool 2

CrypTool 2 (CT2) (Kopal et al., 2014) is an open-
source e-learning tool aiming to help pupils, stu-
dents, and crypto-enthusiasts to learn cryptology.
Lately, CT2 was enhanced to contain the state-
of-the-art cryptanalysis tools for analyzing classic
and historic ciphers. CT2 is part of the CrypTool
project that was initiated in 1998.

CT2 realizes the visual programming concept,
displaying always the process workflow. One of
the easiest workflows within CT2 is the Caesar ci-
pher, shown in Figure 3. In the TextInput com-
ponent on the left the user can enter plaintext,
the Caesar cipher component in the middle is the
processor, and the TextOutput component at the
right displays the encrypted text. The connectors
are the small colored triangles. The connections
are the lines between the triangles. The color of
the connectors and connections indicate the data
types (here text). To execute the graphical pro-

gram, the user has to hit the Play button in the top
menu of CT2. Currently, CT2 contains more than
150 different components for encryption, decryp-
tion, cryptanalysis, etc. For example, there is a
component which can add space between words at
the appropriate places after decrypting a ciphertext
which didn’t contain any blanks.

In the DECRYPT project, CT2 is the main soft-
ware for collecting and implementing cryptanaly-
sis methods and algorithms suitable to break his-
torical ciphers. The goal is to extend CT2 with
efficient methods and algorithms for analyzing ho-
mophonic substitution ciphers. We started our on-
going research in that area in Dec 2018.

5 Our Approach

This section explains our approach to cryptanalyze
homophonic ciphers. First, the requirements for
the analyzer are listed. Then, the implementation
is described in detail and the intermediate results
are discussed.

5.1 Requirements

The requirements for an analyzer for homophonic
substitution ciphers are:

1. implement the state-of-the-art cryptanalysis
methods and algorithms for breaking homo-
phonic substitution ciphers.

2. be “easy-to-use”, thus, also non-computer
affine people can use it.

3. allow different plaintext languages.
4. allow the manual change of (wrongly)

mapped homophones to plaintext letters dur-
ing the analysis.

5. show ciphertext and plaintext in parallel,
thus, making it easy to identify mappings of
homophones to plaintext letters.

6. allow different types of input ciphertexts, i.e.
number groups and arbitrary ciphertext let-
ters (UTF-8 transcribed texts).
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The quick brown fox jumps over 
the lazy dog. 

44 characters 1 ·ne 
0% 

Plaintext ----

~ ---~ Ca .•. CJ:C 

0% 

Caesar 

Text Output 

Dro aesmu lbygx pyh tewzc yfob dro 
vkji nyq. 

44 characters, 1 line 
0% 

Ciphertext 



Figure 4: Analyzer Tab of the Homophonic Analyzer in CrypTool 2

7. support spaces between words in the plain-
text.

Requirement 4 means to have an interactive
mode in addition to the full-automatic mode. This
additional interactive mode is the main difference
compared to tools described in Section 3.2.

5.2 Implementation
The analyzer is implemented as an CT2 compo-
nent and allows the visual analysis of homophonic
substitution ciphers. Figure 4 shows the current
state of the “Homophonic Substitution Analyzer”.

The analyzer has three “tabs”, each tab shows a
different user interface. The tabs can be changed
by clicking on the tab names on the top of the win-
dow (this is a maximized view of the component).

In Figure 4, the “Analyzer” tab is selected,
which consists of three main parts: (1) the top part,
framed with with a red rectangle, contains some
control buttons and an indicator field, showing the
status of the cryptanalysis (percentage value of
done hillclimbing cycles), (2) the given ciphertext,
which is framed with a blue rectangle, and (3) the
putative plaintext, which is framed with a purple
rectangle.

Depending on the mode in which the analyzer
is executed (see the component’s parameters), the
user can start and stop the analysis manually by
clicking on the “Analyze/Stop” toggle button. This

is only possible in the so-called semi-automatic
or interactive mode: When stopped the user can
“lock” already correct letters, which then appear
with a green background. Non-locked letters ap-
pear with a white background. “Locked” means,
that the analyzer won’t change these plaintext let-
ters during restarts of the further analysis process.
Also, the user is able to connect a dictionary to the
analyzer. Then, the analyzer automatically locks
words of defined lengths, that it reveals during the
analysis. The user can set a minimum, how of-
ten a word has to appear in the plaintext, before
the analyzer locks it. Thus, “random words” that
may appear during the start of the analysis won’t
be locked since these are most probably wrong.

The third tab of the analyzer shows a collec-
tion of “best” putative plaintexts (and the accord-
ing keys) found during the analysis so far. This tab
has the title “Bestlist”.

As it is also possible to start the analyzer in
a full-automatic mode, this bestlist will probably
contain a text close to the correct plaintext after
several automatic “restarts”.

In the following, we describe the current state
of our cryptanalyzing algorithm.

Baseline Algorithm (for one restart)
1. Initialize a counter c with 0
2. Set a fitness value fglobalbest to the smallest
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Figure 5: Bestlist Tab of the Homophonic Analyzer in CrypTool 2

possible value that the variable can hold
3. Create a global “best key” Kglobalbest
4. Create a data structure for memorizing

“locked mappings” of homophones to plain-
text letters

5. Create a random key Krun using the letter dis-
tribution of the plaintext language (e.g. ’E’
will appear more often in the created key than
’X’) with length of key = number of homo-
phones multiplied by 1.3

6. Set a fitness value frun to the smallest possi-
ble value that the variable can hold

7. For each combination of the index i and j
from 0 to length of Krun -1 do the following
(a) Swap two elements i and j of Krun

(b) Calculate a fitness value f based on the
decryption of the ciphertext using Krun

(c) Check using a simulated annealing
based accept-function if the algorithm
should keep the change

(d) If the accept-function returns false, re-
vert the changes in the key

(e) If the accept-function returns true, set
frun := f

8. If frun > fglobalbest

(a) Set fglobalbest := frun

(b) Set Kglobalbest := Krun

(c) Optional: lock words already revealed
in the “locked mappings” data structure

(d) Present a new global best key and fitness
value to the user

9. If no better global optimum was found dur-
ing the last 100 tries, change the last 3 letters
of the key to other random letters from the
plaintext alphabet

10. Increment the counter c by 1
11. If the counter c is below a maximum cycle

number, goto step 7
12. The algorithm terminates here

Concept of the Algorithm The idea of our base-
line algorithm is hill climbing and a simulated
annealing-based accept-function. A key in our al-
gorithm is a mapping of ciphertext homophones
array V (defined by a ciphertext alphabet CA) to
plaintext letters (defined by a plaintext alphabet
PA, for example, the Latin alphabet). An exam-
ple for such a mapping is

CA = ABCDEFGHIJKLMNOPQRST...
V = THEPOPEALSOKNWASESTZ...

Here, the ciphertext homophones ’A’ and ’S’ are
mapped both to ’T’, the ’B’ to ’H’, and so on.
Our algorithm starts with a random key Krun, thus,
letters in V are chosen randomly from PA. The
choice is done in such a way, that the distribu-
tion of letters in V is close to the assumed plain-
text language. We furthermore extend the cipher-
text alphabet with homophones, which do not ex-
ist in the current ciphertext. Thus, it is possible
for our algorithm to remove and add plaintext let-
ters to the actual used part of the key that were
not used in the previous version of the key. Our
hill climber then tries to exchange all possible i
and j positions in the key, each position defining a
different homophone. The fitness function of our
algorithm is the sum of all loge-pentagrams of the
putative plaintext multiplied by a user-defined fac-
tor (in our tests 500000). If our algorithm does not
find any improvement in 100 steps, it changes the
last 3 letters of the key, which are actually not used
in decryption, to new random letters. This is done,
to get “new letters” into the key which may be ex-
changed afterwards with letters on the left (which
exist in the given ciphertext).

5.3 Key Acceptance Function

In each step (exchange of two key elements), a
simulated annealing function (with fixed temper-
ature) accepts or rejects the new key by:
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Figure 6: Breaking Zodiac-408 with the New Homophonic Substitution Analyzer in CT2

• if newKeyScore > currentKeyScore return
true
• degradation = currentKeyScore −

newKeyScore
• acceptanceProbability = e

−degradation
f ixedTemperature

• if acceptanceProbability> 0.0085 and a ran-
domly chosen value between 0.0 and 1.0 is
smaller than the acceptanceProbability re-
turn true
• return f alse
The f ixedTemperature value is also user de-

fined (in our tests 15000). We obtained the ac-
ceptance function from (Lasry, 2018a).

5.4 Discussion
Using this analyzer, it was possible to decrypt even
difficult (e.g. 81 homophones, 500 letters cipher-
text) homophonic ciphertexts. The example ci-
phertext2, used also for the tests of the tools in the
related work Section 3.2, needed manual input of
the user (locking already correctly decrypted parts
of plaintext). The quality of the full-automatic
mode of our analyzer is between the two tools
shown in Section 3.2. Nevertheless, by integrat-
ing the analyzer in CT2, a user is able also to use
the interactive mode.

In the following section, we show how a user
may use our tool to break a real-world ciphertext
encrypted homophonically.

6 Breaking a Real Homophonic
Substitution Cipher

During the development of the analyzer, we broke
the original Zodiac-408, which was sent by the Zo-
diac killer to different newspapers in 1969.

We used a transcription from the zodiackiller-
ciphers webpage, copied it into a TextInput com-
ponent in CT2 and connected it to the Homo-
phonic Substitution Analyzer component (see Fig-
ure 6). Additionally, a dictionary component (with
ca. 41,000 English words) was connected to the
analyzer. The analyzer was set to semi-automatic
mode with 1000 cycles. By chance, we got some
parts of partial words, i.e. PEOPLE or AFTER-
LIFE, that the analyzer either automatically locked
or we locked them manually. Then, with these
locked words, we incrementally restarted the an-
alyzer and fixed other parts. The final result of our
semi-automatic analysis is shown in Figure 6.

Often, having a good random starting key, the
analyzer finds a nearly complete solution instantly,
so we do not need to fix many letter mappings by
our own. If not, the cryptanalyst is able in the
semi-automatic mode to correct partially correct
found words by himself. To change the mapping
of homophones he has just to right click the ac-
cording plaintext letter.

Our analyzer is able to solve the Zodiac-408
completely on its own in the full-automatic mode.
Also two Spanish Strip ciphers from (MTC3,
2018) (the two where the solution already has been
known) have been analyzed successfully.

7 Conclusion

This paper shows the current state of develop-
ing an analyzer for cryptanalyzing homophonic
substitution ciphers in CrypTool 2 (CT2) within
the DECRYPT project. Right now, the analyzer
is already able to full-automatically and semi-
automatically break real world homophonic ci-
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phers like Zodiac-408, which is often used as a
default test case for homophonic analysis. The
used algorithm consists of hill climbing, uses pen-
tagram language frequencies in a fitness function,
and a simulated annealing-based acceptance func-
tion with fixed temperature. A dictionary is used
to automatically lock already revealed words. Ad-
ditionally, the current state of the art of cryptana-
lyzing homophonic ciphers is presented. The best
currently available tool is AZdecrypt. Our ana-
lyzer is almost comparable in its success rate, but
additionally offers an easy-to-use UI to manually
change and lock revealed parts of the plaintext. In
future work, we’ll improve the success rate of the
analyzer by investigating the usage of hexagram
statistics and more deeply evaluating the parame-
ter sets and the possibilities of other fitness func-
tions. Also, we want to analyze all (homophonic)
encrypted ciphertexts of the DECODE database.
Finally, we will extend the analyzer to support
nomenclatures and code books.
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Abstract
The present paper uses information theo-
retic entropy as a means to evaluate the au-
thenticity of homophonic substitution ci-
phers. We motivate the use of entropy on
n-grams and then validate its applicabil-
ity, by using it on various true ciphers and
pseudo-ciphers. Differences in entropy al-
low us to apply further formal analyses,
e.g. support-vector machines, in order to
make predictions about a potential cipher’s
status. We train several support-vector ma-
chines and validate them. We then ap-
ply the models to two classic ciphers, the
Zodiac Killer’s first major cipher, z408,
which has been solved, and his second ci-
pher, z340, which remains unsolved. The
models correctly identify z408 as a substi-
tution cipher. z340 is classified as an ad-
vanced cipher or pseudo-cipher.

1 Introduction

For unsolved ciphers, it is often difficult to de-
termine which type of cipher is applicable. A
seemingly encrypted text might be a simple homo-
phonic substitution cipher, a transposition cipher,
a Vigenère cipher, and the like, or it might not even
be a bona fide cipher at all. Even if one suspects
that a cipher is a simple homophonic substitution
cipher, then there are only a few known analyses
that count as formal evidence, such as e.g. Ravi
and Knight (2008), Corlett and Penn (2010), and
Ravi and Knight (2011).

The present paper presents another formal
measure that can be used to detect underlying
language-like information in a possible homo-
phonic substitution cipher (in the following short-
ened to just substitution cipher). The measure
quantifies differences in (information theoretic)
entropy between a cipher and a meaningless base-
line. Critically, in contrast to previous analyses,

the measure can be used to train classifiers like
support-vector machines or k-means clusters to
make predictions about the status of a text.

The present paper is structured as follows: In
Section 2, we review common types of substitu-
tion ciphers, including one-to-one ciphers, one-to-
many ciphers, and many-to-many ciphers. Our fo-
cus is on one-to-many ciphers and many-to-many
ciphers.

The Zodiac Killer’s second major cipher, z340,
is often assumed to be a substitution cipher, but it
is generally accepted that it has not been solved
yet. Section 3 briefly introduces z340 and com-
pares it to the Zodiac Killer’s first major cipher,
z408, which has been deciphered, cf. Graysmith
(1987).

We give basic analyses of z340 and z408, viz.
character frequency analyses and n-gram analyses,
in Section 4.1. We compare the two ciphers to a
pseudo-cipher that we have created, to illustrate
the limitations of character frequency analyses. N-
gram analyses, on the other hand, give useful hints
about the authenticity of a cipher. However, even
more powerful measures are needed to give more
definite insights.

For this, we use the information theoretical
measure of entropy, cf. Shannon (1948). We cal-
culate entropy based on bigrams and trigrams and
we apply the measure to various texts and ciphers.
To be able to train a classifier model, some sort
of baseline is needed and we establish such base-
lines for plain texts and ciphers. All this is done
in Section 4.2. In Section 4.3, we then use the re-
sults to train a support-vector machine, which we
validate on further test data. The classifiers give
very good results for plain texts and one-to-many
substitution ciphers and good results for many-to-
many substitution ciphers. The models correctly
classify z408, the Zodiac Killer’s solved cipher, as
a substitution cipher. z340, the unsolved cipher, is
classified as an advanced cipher or pseudo-cipher.
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Section 5 discusses a few issues with the measure
and Section 6 concludes the paper.

2 Substitution ciphers

Common substitution ciphers include one-to-one
ciphers, one-to-many ciphers, and many-to-many
ciphers. For an introduction to ciphers (and cryp-
tography in general), see e.g. Hoffstein et al.
(2008). In the following, we use “letter” to refer to
a unit of an unencrypted plain text, “symbol” for a
unit of a cipher, and “character” for both.

In a one-to-one cipher, any plain text letter is
mapped to exactly one cipher symbol, e.g. “A” to
“X”, “B” to “ϒ”, etc. Let l be a letter of the set of
letters L, s a symbol in the set of symbols S. This
is expressed through the relation r in Equation 1:
Any given letter l maps to exactly one symbol s;
and any given symbol s maps to exactly one letter
l.

In a one-to-many cipher, some or all plain text
letters are mapped to more than one cipher sym-
bol, e.g. “A” might be mapped to both “X” and
“Ω”, “B” might be mapped to “ϒ” and “Ψ”, etc.
Here, too, each cipher symbol is used for one plain
text letter only. In our example, “Ω” is always “A”,
etc. One-to-many ciphers are expressed through
the relation in Equation 2: Any given letter l maps
to at least one symbol s; but any given symbol s
maps to exactly one letter l.

In a many-to-many cipher, there is no restriction
of having exactly one mapping back from symbol
to letter. Each plain text letter can map to more
than one cipher symbol and vice versa. “A” might
be mapped to both “X” and “Ω”, “B” might be
mapped to “ϒ”, but also “Ω”, etc. “Ω” now repre-
sents both “A” and “B”. Many-to-many ciphers are
expressed in Equation 3: Any given letter l maps
to at least one symbol s; and any given symbol s
maps to at least one letter l.

r(l) 7→ ∃!s s ∈ S and r(s) 7→ ∃!l l ∈ L (1)

r(l) 7→ ∃s s ∈ S and r(s) 7→ ∃!l l ∈ L (2)

r(l) 7→ ∃s s ∈ S and r(s) 7→ ∃l l ∈ L (3)

Table 1 gives an example of a many-to-many
cipher. Note how e.g. “S” maps to both “10” and
“57” and how “31” represents both “Y” and “G”.

Figure 1: The beginning of the z340 cipher.

The text is the beginning of The Confession, the
first letter attributed to the Zodiac Killer, cf. Gray-
smith (1987). The letter can be found on Wik-
isource (The Wikimedia Foundation, 2018b). The
Confession also features as one of the texts used in
Section 4.2.

One-to-one substitution ciphers are relatively
easily detected – unless some other trick is em-
ployed. The focus of the present paper is on one-
to-many ciphers and many-to-many ciphers. Such
ciphers come in degrees. While weak instances
can be rather easy to decrypt, strong instances can
be very hard, sometimes virtually impossible to
decrypt (see below for details).

3 z340

The Zodiac Killer’s second major cipher, z340, is
often assumed to be a substitution cipher. How-
ever, even 50 years after its appearance, a gener-
ally accepted solution is lacking. Figure 1 illus-
trates the beginning of the cipher and the full ci-
pher can be found on Wikisource (The Wikimedia
Foundation, 2018b). This contrasts to the Zodiac
Killer’s first major cipher, z408. z408 is gener-
ally assumed to have been solved by Donald and
Bettye Harden. Parts of the cipher and the full
solution can also be found on Wikisource (The
Wikimedia Foundation, 2018b). Zodiackillerci-
phers.com (2012) contains the full cipher and the
Harden solution.

4 Analyses

4.1 Character frequencies and n-gram
frequencies

To gain first insights into a potential substitution
cipher, there are two basic analyses: A character
frequency analysis and an n-gram analysis. Char-
acter frequencies provide the number of occur-
rences per character of a plain text or cipher. N-
gram analyses of characters give the number of oc-
currences per n-gram (bigram, trigram, etc.) in a
text – see e.g. Jurafsky (2019) for an introduction
to n-grams.
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Plain text: S H E W A S Y O U N G A N D B E A U T I F
Encrypted: 10 21 48 40 57 47 31 53 51 28 31 7 44 26 6 25 4 30 1 8 29

Table 1: An example of a many-to-many substitution cipher. The top row is the plain text, below it is the
encrypted message, using the encryption algorithm described in Section 4.2.

For example, if the cipher text was sim-
ply “DADAISM”, then the character frequen-
cies are as follows: ‘A’:2, ‘D’:2, ‘I’:1, ‘M’:1,
‘S’:1. The bigram counts are as follows: ‘DA’:2,
‘AD’:1, ‘AI’:1, ‘IS’:1, ‘SM’:1.1 The trigrams are:
‘DAD’:1, ‘ADA’:1, ‘DAI’:1, ‘AIS’:1, ‘ISM’:1.

However, character frequency analyses are only
of limited value when one wishes to assess the
authenticity of substitution ciphers. When using
character frequencies, it is difficult to distinguish
a semi-random string that observes common char-
acter frequencies and that is then encrypted using
a true cipher. However, differences will show up
in an n-gram analysis. This is illustrated in Fig-
ure 2. Figure 2 (left) plots the character frequen-
cies of a true cipher, z408, and those of a com-
parable pseudo-cipher, which is based on a semi-
random string. The pseudo-cipher is comparable
in length and has a similar symbol set to z408.
For details regarding the encryption algorithm, see
Section 4.2.

Character frequencies of both ciphers are plau-
sible. However, as Figure 2 (right) illustrates, the
bigram frequencies reveal differences – while the
bigram frequencies of z408 are plausible, the bi-
gram frequencies for the pseudo-cipher fall “flat”,
i.e. the pseudo-cipher seems to lack a plausible bi-
gram count.

It has been noted that the Zodiac Killer’s un-
solved z340 also seems to lack plausible n-gram
counts (Knight, 2013, p. 91). Figure 3 gives the
character frequencies and bigram frequencies for
z340. Note how z340 rather resembles the pseudo-
cipher than the true cipher.

The n-gram analysis of z340 indicates that it
might not be a bona fide cipher. However, a more
formal analysis is needed for more conclusive evi-
dence. We provide such evidence by analysing the
entropy of various texts, including true ciphers and
pseudo-ciphers, and then training several support-
vector machines on the results.

1And ‘ˆD’:1 and ‘M$’:1 if one wishes to account for be-
ginning of line (“ˆ”) and end of line (“$”). In the following,
we will not include those two.

4.2 Entropy as a measure of authenticity

Entropy in information theory, as introduced by
Shannon (1948), is a measure of order of a system
and can be applied to various levels of a linguistic
sequence, including characters, n-grams, words,
multiple words, and entire sentences. The general
formula for entropy, H, is given in Equation 4. In
our case, F is the frequency of the respective bi-
and trigrams.

H =−∑
i

Fi log(Fi) (4)

For instance, the bigram entropy for
“DADAISM” is 0.68, the entropy for “IADS-
DMA” is 0.78. However, it can be difficult to
make sense of the values, especially when it is
compared across sequences with different symbol
sets and of different lengths. Consider the bigram
entropy for the pseudo-cipher from above: It
comes out at 2.52 – but it is not clear what this
exactly means.

Thus, for ease of interpretation, we compare
a sequence’s entropy, Hs, to the entropy of a
meaningless baseline, Hb. For any sequence, we
pseudo-randomly shuffle the sequence in question
and use the shuffle as the baseline. To avoid distor-
tions of an unlucky shuffle, we take 1000 shuffles
and average their entropy values. This is Hb. The
absolute difference between Hs and Hb is what we
abbreviate by |∆H |. Creating the pseudo-random
baselines and calculating |∆H | is done with a script
that we wrote in Python (Python Software Founda-
tion, 2018) (all scripts can be found on GitHub2.
|∆H | is easier to interpret: A value of 0 means that
the sequence lacks any order, just like the pseudo-
random baselines. The greater the value, the more
ordered a sequence is. Accordingly, the |∆H | for
“IADSDMA” is 0.0, but the |∆H | for “DADAISM”
is 0.1. |∆H | for the pseudo-cipher from above is
0.0, but |∆H | for the true cipher z408 comes out at
0.06.

However, even a |∆H | can be hard to interpret.
What does a |∆H | of 0.06 mean? Some contextu-
alisation is needed and in order to provide it, we

2https://github.com/superpumpie/z340 2.
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Figure 2: Left: The relative character frequencies, y-axis, for the true cipher z408 (top) and for a pseudo-
cipher based on a semi-random string (bottom). Items are ordered on the x-axis by their frequencies in
descending order. Right: The bigram frequencies, y-axis, for the same two ciphers, again in descending
order as per rank.

Figure 3: Left: The relative character frequencies, y-axis, for the unsolved z340 cipher. Items are ordered
on the x-axis by their frequencies in descending order. Right: The bigram frequencies, y-axis, for the
z340 cipher, again in descending order as per rank.

120



analyse various plain texts vs semi-random strings
and various true ciphers vs pseudo-ciphers. We
begin with a training set, which we then use to
train several support-vector machines. We later
validate the models with further test data sets.

As a first step, we analyse 32 plain texts and
32 semi-random strings. The majority of those are
snippets from the Top 100 books on Project Guten-
berg (2018), others were extracted from various
sources, incl. Wikipedia (The Wikimedia Foun-
dation, 2018a) and Wikisource (The Wikimedia
Foundation, 2018b). All data sets, whose length
varies between 255 and 459 characters, can be
found in the above mentioned GitHub repository,
including their sources. The semi-random texts,
with a length of 255 to 425 characters, were cre-
ated with a script that we wrote in Python (Python
Software Foundation, 2018). The texts are semi-
random in the sense that they observe English
letter frequency. The corresponding |∆H |’s for
bigrams and trigrams are illustrated in Figure 4
(left).

We encrypt all true texts and pseudo-texts
with an algorithm modelled after the encryption
method used for z408, also using one of our
Python scripts. Each letter is, partly depending on
its frequency, pseudo-randomly mapped to one to
five unique symbols, resulting in one-to-many ci-
phers with symbol sets of 52 to 66 symbols. The
encryption script can also be found in the above
mentioned GitHub repository. The |∆H |’s in en-
tropy for the one-to-many ciphers are illustrated
in Figure 4 (right).

We also create many-to-many ciphers. The
encryption algorithm for this has two layers.
First, similar to the algorithm above, each let-
ter is, partly depending on its frequency, pseudo-
randomly mapped to one to five symbols. This
is the first encryption layer. Then, the first layer
is encrypted again: Each first layer symbol is
pseudo-randomly mapped to one to four second
layer symbols. The second mapping is not unique,
in the sense that most second layer symbols map
to more than one first layer symbol, resulting in
a many-to-many cipher. The ciphers have second
layer symbol sets of 60 to 64 symbols, which is
similar in size to the symbol sets of the one-to-
many ciphers.

The |∆H |’s for the many-to-many ciphers are il-
lustrated in Figure 5 (left). As Figure 5 (left) indi-
cates, the many-to-many encryption algorithm is a

lot stronger than the one-to-many algorithm. True
many-to-many ciphers and pseudo-ciphers over-
lap to some degree, illustrating that a very strong
many-to-many cipher might be indistinguishable
from a pseudo-cipher.

In a last step, we add the two ciphers by the
Zodiac Killer to the picture. Their |∆H |’s are il-
lustrated in Figure 5 (right), including a compar-
ison with our other ciphers. Z340 sits among the
pseudo-ciphers. And compared to our encryption
algorithms, z408 uses a fairly weak encryption
technique. The latter is not a surprise. In their
selection of symbols, humans are biased. For in-
stance, if the mappings for “A” are “X” and “Ω”,
then a human might tend to choose “X” if e.g. “A”
precedes an “N” but choose “Ω” if “A” precedes
a “T”. Our pseudo-random encryption algorithm
has no such biases.

4.3 Training and testing support-vector
machines for classification

We use the results from above to train three
support-vector machines (SVMs), cf. Ben-Hur et
al. (2002). One SVM for the plain texts vs the
semi-random strings, one for the true one-to-many
ciphers vs the one-to-many pseudo-ciphers, and
one for the true many-to-many ciphers vs the
many-to-many pseudo-ciphers. The one-to-many
SVM and the many-to-many SVM are illustrated
in Figure 6.

In a second step, we validate the SVMs on fur-
ther test data sets. We use another 32 true plain
texts and 32 semi-random strings, 32 true one-to-
many ciphers and 32 one-to-many pseudo-ciphers,
and 32 true many-to-many ciphers and 32 many-
to-many pseudo-ciphers. This gives us a 50-50
training-testing split. The texts and ciphers were
obtained in a similar fashion as described in Sec-
tion 4.2. The results of the testing phase are given
in Table 2.

5 Discussion

The SVM for plain texts makes excellent predic-
tions, the one-to-many SVM also makes very good
predictions. The many-to-many still makes good
predictions, but with a somewhat lower accuracy
than the other models, presumably because the en-
cryption technique is rather strong.

According to the one-to-many model and the
many-to-many model, z408 is classified as a true
substitution cipher. z340, on the other hand, is
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Figure 4: Left: The bigram |∆H |’s, on the x-axis, and the trigram |∆H |’s, on the y-axis, for the 32 plain
texts and 32 semi-random texts in our training set. Right: The |∆H |’s for the 32 true one-to-many ciphers
and the 32 one-to-many pseudo-ciphers in our training set.

Figure 5: Left: The bigram |∆H |’s, on the x-axis, and the trigram |∆H |’s, on the y-axis, for the 32 true
many-to-many ciphers and the 32 one-to-many pseudo-ciphers in our training set. Right: The |∆H |’s for
z408 and z340, with the results for the other ciphers for contextualisation.
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Figure 6: Left: The results of an SVM trained on the 64 one-to-many ciphers in our training data sets,
32 of which are true ciphers, the other 32 being pseudo-ciphers. The decision boundary is in grey. Items
left of the boundary are predicted to be pseudo one-to-many ciphers, items right of it true one-to-many
ciphers. Right: The same for the 64 many-to-many ciphers in our training set. Visualisation of the SVM
was partly done with code from https://jakevdp.github.io.

text predicted predicted
true pseudo

actual 32 0
true
actual 0 32
pseudo

F1 = 1.0

o-t-m predicted predicted
true pseudo

actual 30 2
true
actual 0 32
pseudo

F1 = 0.96

m-t-m predicted predicted
true pseudo

actual 25 7
true
actual 6 26
pseudo

F1 = 0.80

Table 2: Confusion matrices and F1-scores for the
three support-vector machine models. Top: The
model that classifies plain texts vs semi-random
strings (text). Middle: The model that classifies
true one-to-many ciphers vs one-to-many pseudo-
ciphers (o-t-m). Bottom: The model that classi-
fies true many-to-many ciphers vs many-to-many
pseudo-ciphers (m-t-m).

extremely close to zero and both models predict
that it is not a true substitution cipher. However,
it should be noted that z340 sits relatively close to
the decision boundary of the many-to-many model
and that in some of the re-runs of the procedure,
the many-to-many model places z340 right above
the decision boundary.

Considering that z408 is a rather weak one-to-
many cipher, we think that it is unlikely that the
same author had been able to produce another sub-
stitution cipher, i.e. z340, such that its encryption
mechanism became stronger by several orders of
magnitude. We interpret this as evidence that z340
is either not a bona fide substitution cipher or uses
a different, more sophisticated encryption mecha-
nism altogether. For instance, it might be a trans-
pose cipher or a Vigenère cipher.

There are a few things to note about the pre-
sented measure. First, the measure is not absolute.
Consider for instance Kryptos Passage 4 by Jim
Sanborn, also available on Wikipedia (The Wiki-
media Foundation, 2018a). Here are the first three
lines of Kryptos 4:

NGHIJLMNQUVWXZKRYPTOSABCDEFGHIJL

OHIJLMNQUVWXZKRYPTOSABCDEFGHIJL

PIJLMNQUVWXZKRYPTOSABCDEFGHIJLM

The entropy for Passage 4 comes out as 1.55
and the |∆H | is 0.92. This, of course, does not
mean that Passage 4 is a plain text or a substitu-
tion cipher. Upon visual inspection, it becomes
immediately clear that neither is likely. This is a
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limitation one has to keep in mind using entropy
on potential ciphers.

Another issue is that there is no definite cut off
point between strong many-to-many ciphers and
pseudo-ciphers. Very strong many-to-many ci-
phers can become indistinguishable from pseudo-
ciphers. However, this is a good reflection of the
underlying reality: As the strength of the encryp-
tion mechanism increases, the probability of being
able to make sense of it decreases. |∆H | reflects
this inverse relationship.

Finally, while we use SVMs, other analyses can
be used as well. For instance, one could use a
k-means clustering analysis, cf. Lloyd (1982) and
Forgy (1965), in addition to an SVM.

6 Conclusion

We have shown that using differences in informa-
tion theoretical entropy can be used to evaluate
the authenticity of substitution ciphers. We cre-
ated 64 true ciphers and another 64 pseudo-ciphers
and split those into training and test data sets. We
then trained and tested support-vector machines
on our data sets. The model for one-to-many ci-
phers makes very good predictions, the model for
many-to-many ciphers makes decent predictions.
We applied those two SVM models to the the Zo-
diac Killer’s two major ciphers, z408 and z340.
z408, which has been solved, is correctly predicted
to be a real substitution cipher. z340, which re-
mains unsolved, is predicted to not be a substitu-
tion cipher. We think that it is likely that z340 is
either another type of cipher, e.g. a transpose ci-
pher or a Vigenère cipher, or that it might not be a
bona fide substitution cipher after all.

As a next step, it would be interesting to apply
the measure to other, unsolved ciphers. Also, ide-
ally, further measures could be developed for other
types of ciphers, like transposition ciphers or Vi-
genère ciphers.
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