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Abstract. In this position paper, we define two new metrics: net visibility (the
fraction of the net that can be seen from the perspective of the puck) and net
reachability (the fraction of the net that could be reached by the puck). Reach-
ability is slightly different from visibility because even though there might be a
small portion of the net visible in a certain area (a hole), that hole may not be large
enough for the puck to pass through and reach the net. We describe a framework
for computing our metrics using a combination of puck and player tracking (PPT)
data and video analysis (image processing). We use data and video from an NHL
game to provide a proof of concept for computing net visibility and reachability.
We also describe areas where more work can be done to improve the accuracy
of the results and allow the computations to be fully automated. Our position
is that these metrics would be valuable in studying shooter decisions and skills,
goaltender and player locations and that the technologies could be used to create
virtual reality images or videos.

1 Introduction

Ice hockey players often score by shooting through small spaces that appear for only
a fraction of a second. We propose that one way to characterize this space is through
the concept of net visibility which we define to be the fraction of the goalmouth that is
visible from the perspective of the puck. We define net reachability to be similar to net
visibility with the difference being that it accounts for the size of the puck and the fact
that the puck may not be able to reach all areas of the net that are visible. For example,
the goaltender may expose a hole that is visible but smaller than the puck.

The key insight in this paper is that we can use a combination of puck and player
tracking (PPT) data from devices embedded in the players’ sweaters and the puck, and
video analysis to detect player locations and poses to construct a 3D-model of players
and the net. Once that model is constructed, we can generate a projected image of the
players onto the goalmouth (from the point of view of the puck). That resulting image
can be used to determine which parts of the net are visible and which parts are ob-
structed. From that image we can calculate the portion of the net that is visible and,
considering the size and shape of the puck, determine which portion of the net is reach-
able. Additionally, because we have a 3D-model of the players and net we can generate
images or videos from any point of view. Two views that we think are particularly use-
ful are the shooter’s view (which can be quite different from the puck’s view) and the
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goaltender’s view. The goaltender’s view allows one to understand the impact of traffic
on their ability to locate and track the puck. We believe these metrics could help with
coaching and player development.

2 Related Work

To our knowledge, we are the first in any sport to propose metrics that determine and
quantify how much of the net is visible and reachable.

Prior work in football (soccer) examines the impact of defensive players positioned
between the shooter and the goal (sometimes called traffic). That work often incorpo-
rates such information into shot prediction, or expected goals (xG) models [11] [9].
López-Valenciano et al. [12] examine the goaltender’s perspective during free kicks.
Using virtual reality to simulate and study the impact of occlusions, they found that de-
fensive walls during free kicks impair goalkeeper performance. In contrast, we calculate
metrics for shots in actual game situations, enabling realistic analysis.

Recent work in hockey analytics uses puck and player tracking (PPT) data to de-
termine the amount of traffic in front of the net and study the impact of that traffic
on shot attempts [15]. After controlling for shot angle and distance from the net, this
work shows that traffic has a significant impact on the number of blocked shots and
as a result, the likelihood of the shot being on goal, and the shot resulting in a goal.
Interestingly, they find that most goals are scored when there is no traffic and that when
shooting through traffic, the chances of scoring increase if the shot makes it through the
traffic. That work uses the location of all players on the ice to determine if they would
be considered in the traffic lane and does not consider how players that are closer to
the puck may have a more significant impact. Additionally, the PPT data does not pro-
vide information about player orientation or pose. In contrast, our work in this paper
recovers player locations and poses and can produce images to show what the traffic
looks like. This includes the larger impact of players that are closer to the puck. Most
importantly, we quantify how much of the net is visible and reachable.

For us to construct a 3D model of the scene, players must be detected in the video
image and their stance (or pose) must be determined. Player pose estimation has been
extensively explored with applications to player performance analysis and game under-
standing. A variety of sports, including ice hockey [2], [19], [13], [14], baseball [4],
[3], and soccer [20], [21], [1], have used human pose estimation techniques. For ice
hockey, GoalieNet [19] and HyperstackNet [14] are two monocular 2D techniques to
estimate the poses of goaltenders and players. Recently, TokenCLIPose [2] examines
pose estimation methods for players and their stick. 3D parametric human models are
widely used for robust 3D human reconstruction and understanding [8], [6].

We utilize parametric human models to estimate the 3D position and shape of play-
ers, enabling the identification of the visible region of the net from the puck’s perspec-
tive. These and related future contributions (e.g., more accurately recognizing player
and goalie poses and equipment) could improve the accuracy of our metrics.

New Views of Shots - Towards Measures of Net Visibility and Reachability

Linköping Hockey Analytics Conference 2025 44



3 A Framework for Computing Net Visibility and Reachability

Our framework computes net visibility and reachability by explicitly reconstructing the
scene at the time of the shot. We first utilize the PPT data to determine when the shot
occurred and then obtain the puck and player on-ice locations and align this with the
video frame in which the shot occurs. The PPT data contains x, y, and z coordinates at
high frequencies (60 times per second for the puck and 12 times per second for each
player on the ice). Additionally, it contains information about shots and other events that
are derived from physics-based algorithms. We then construct a 3D parametric model
of all the players, scaled and positioned according to the PPT data. We use the 3D scene
to simulate a virtual camera to position it at the puck and then compute visibility via
rasterization and reachability by simulating direct trajectories to the net.

Figure 1 shows the four main steps in our framework, each containing several sub-
steps. Below, for each sub-step we: provide a description, explain how that step can be
implemented (labelled Current State), and point out areas where more work could either
improve the accuracy of the techniques or help in automating the computations (labelled
Opportunities). Opportunities are omitted if existing approaches seem sufficient.

Although we use some manual intervention in our proof of concept computation
in Section 4, technologies exist to fully automate all of these steps. Mature technolo-
gies exist for camera calibration, 3-D body pose recovery from images and video, 3-D
garment modelling and recovery, and 3-D scene rendering from an arbitrary viewpoint.
However, these technologies would benefit from fine-tuning for this particular appli-
cation. We have not found open source solutions for all steps so we have not yet fully
automated the framework. Additionally, we believe that the fine-tuning required for this
application is an important consideration before publishing metrics that might be used
to evaluate and compare teams and players.

1) PPT Data

Processing

2) Video

Processing

3) 3D Scene

Construction

PPT Data

Game Video

4) Visibility and

Reachability

Fig. 1. The framework for computing net visibility and reachability.

As a running example, we use the shot from Alex Ovechkin’s 856th career goal
(scored at 16:37 of the 1st period on October 29th 2024). The frame in the broadcast for
the beginning of the shot is shown in Figure 2. We use a video sequence of the goal,
along with puck and player tracking data as input, to compute net visibility and reacha-
bility. For our example computation, some sub-steps were performed manually (where
noted) because either existing techniques are insufficient or we were not able to find
open source software that could be easily used. Note that we selected this shot from
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publicly available game video based on the ability of existing technologies to recog-
nize players and poses. While existing technologies work in many cases, scenes where
players are heavily obstructed can be more challenging. The steps in our framework
are:

1) PPT Data Processing The first step in our framework is to process the puck and
player tracking (PPT) data (unofficial data from the NHL) for the game of interest.

(a) Determine the time of the shot in the PPT data (call this Ts). Description: To
determine what parts of the net are visible and reachable, we need to know the precise
time of the shot, Ts. Current State: Shot events and precise UTC times are labelled in
the PPT data, however, some shots are undetected and for some shots adjustments to the
shot time is required (to ensure that the puck is not too far from the shooter at the time
of the shot) [17]. Opportunities: Automating shot detection and precise release times
are continually being improved.

(b) Obtain on-ice location for players in the PPT data. Description: To correctly
place the 3D models on the rink we need their precise on-ice locations. Current State:
The on-ice (x, y, z) coordinates of all players at the time of the shot is available from
PPT data. Opportunities: Although the precision of the PPT location coordinates, is
typically within a few inches, improving that fidelity could increase the accuracy of our
metrics, as could the use of tracking devices on sticks or improved optical tracking.

2) Video Processing The second step involves finding the exact frame of game video
that corresponds to the shot release time and then identifying players in the video.

(a) Find the frame of the shot in the game video (call this Fs). Description: We need
to synchronize the PPT data for the time of the shot, Ts, with the frame of the shot in the
game video. There may be some ambiguity here because the PPT data contains data for
every one-hundredth of a second (interpolated), while game video is typically recorded
at 30 frames per second. Current State: In our example, we manually determine Fs by
looking for the last frame where the puck is touching the stick before release. Oppor-
tunities: For our approach to scale, we require a method to automatically determine Fs

and to synchronize Ts and Fs.

(b) Identify the players in the game video. Description: We need player identifica-
tion to place each player’s pose at the correct on-ice coordinates. We also use Player
identifications to appropriately scale players using their height from the PPT data. Cur-
rent State: In our example, we use a player tracking algorithm developed by Prakash
et al. [16] to get approximate on-ice locations of players using the game video. These
approximate locations are then matched to our precise PPT locations by calculating the
Euclidean distance between the video-based estimates and the PPT coordinates. Player
matching allows us to scale each player properly and provides a check that Ts and Fs

are matched. We believe that this step can be automated to find the appropriate frame
in the game video using the time of the shot event in the PPT data. The player tracking
algorithm also generates bounding boxes for each player, which we later match with the
bounding boxes provided by the 3D player modelling software, allowing us to assign
the proper mesh (i.e., player model) to each player. Opportunities: Player tracking is an
active area of research and new techniques are being developed to better handle player
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occlusions in the game video. 3D models could be tailor-made for each player. Placing
the player’s model in their on-ice location, in the proper pose, could eliminate scaling.

3) 3D Scene Reconstruction In the third step, we utilize our processed PPT and game
video data to reconstruct a 3D representation of the scene.

(a) Build a 3D model of players and the goaltender. Description: The idea of net
visibility relies on the assumption that we can reconstruct accurate 3D models of the
players and goaltenders using game video. These models capture the full shape of the
body, which is crucial for determining occluded parts of the net from the puck’s per-
spective. Current State: Using the game video frame at the time of the shot (Fs) and
an image recognition tool, we retrieve players and their poses. In our example, we use
open-source software called 4DHumans [8]. This provides us with a 3D model for all
players in the frame, including the goaltender. Figure 2(a) shows the original game
video frame and Figure 2(b) shows the estimated 3D model of all the players. Players
shown in grey do not impact net visibility or reachability. We currently omit the play-
ers’ sticks since, to our knowledge, the only work in pose reconstruction for hockey
sticks has been in 2D [2]. Opportunities: Human 3D pose reconstruction is an active
area of research. The inclusion of stick positions would also benefit our metrics. Due to
constraints on how sticks can be held, and because we have information about whether
a player is a left or right handed shot (in the PPT data), we believe that this should not
be too difficult.

(a) Original video image (b) Image with player and pose recognition

Fig. 2. (a) Alex Ovechkin’s 856th career goal. (b) approximate meshes of the players and goal-
tender overlaid. The goaltender is coloured in red, the defender in blue, and Ovechkin in orange.
These players reappear in later visualizations as the same colour. NHL EDGE visualization for
this goal: nhl.com/ppt-replay/goal/2024020151/172.

(b) Scale the players. Description: The reconstructed player models are not properly
scaled relative to the size of the rink. As a result, the size of the players needs to be
scaled. Current State: We scale each player mesh using the z-coordinate (the distance
from the ice surface), from the PPT data. This value is relative to the player’s right
shoulder. 4D-Humans outputs each player as a SMPL mesh [10] allowing us to ob-
tain coordinates for the right shoulder. SMPL stands for “Skinned Multipurpose Linear
Model” and it produces models that include bodies with clothing, rather than stick fig-
ures. We then scale the mesh so that its right shoulder aligns with the height of the
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player’s in-sweater device in the PPT data. Each player’s height is available in the PPT
data. Opportunities: Systems like SMPL could be fine-tuned to include player’s equip-
ment (including goaltenders).

(c) Determine the camera parameters. Description: The reconstructed 3D human
models generate 3D meshes (of each player) relative to the camera model (using the an-
gle of the camera used to capture the video). To correctly orient players on the rink, we
need to determine several camera parameters (some examples include the focal length,
as well as the angle and height relative to the ice surface). Current State: In our ex-
ample, we approximate these camera’s parameters manually. However, techniques to
calibrate sports broadcast cameras do exist [5][7][18]. See Figure 3 for a comparison
of the broadcast video image with players and poses recognized and the view from the
puck’s perspective with orientations corrected. Opportunities: Sports broadcast camera
calibration is an active area of research.

(a) (b)

Fig. 3. (a) The view from the broadcast camera’s perspective. (b) The view from the puck’s
perspective with orientations corrected.

4) Net Visibility and Reachability In the final step of our framework, we compute
measures of net visibility and reachability using the reconstructed 3D scene.

(a) Add the net to the 3D model. Description: To determine which parts of the net are
visible and reachable we need to place the net into the 3D scene. Current State: The
net’s size and location are known, making it straightforward to add the net to the scene.
For the purpose of visibility and reachability, we only need to construct the net open-
ing. In our proof-of-concept implementation, the net opening is comprised of 10,000
non-overlapping, equal sized polygons, which are used to compute visibility and reach-
ability. Figure 4(a) provides an example of how a smaller number of polygons could be
mapped to the net opening.

(b) Adjust the camera view to that of the puck. Description: To determine net visi-
bility, we need to be able to view the scene from the perspective of the puck (using the
centre of the puck). Current State: We position the camera in 3D space at the location
of the puck. We then perform perspective projection using a pinhole camera model with
the optical axis aligned with the centre of the net opening.

(c) Determine the Visibility of the Net. Description: We want to calculate the percent-
age of the net that is open from the perspective of the puck. Obstructions between the
puck and the net, like players and the goaltender, reduce net visibility. Current State:
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Our proof-of-concept implementation uses perspective projection to map polygons to
the puck’s view of the plane formed by the net opening. We perform rasterization to
convert these polygons into pixels. By examining the resulting image we can determine
which pixels are the open net and which pixels are obstructions. Net visibility is the
number of net polygons mapped to unobstructed pixels, divided by the total number of
net polygons.

(d) Determine the Reachability of the Net. Description: We recognize that there can
be areas of the net that are visible but too small for the puck to fit through. Therefore, we
introduce a new metric, net reachability, defined as the fraction (or percentage) of the net
that the puck can pass through unobstructed. Current State: We construct an algorithm
to determine net reachability by dividing the net into 10,000 non-overlapping, equal
sized polygons. For each polygon, we calculate the puck’s trajectory when aimed at the
polygon’s centre, assuming a linear path with no puck tilt or flutter. If there are any
obstructions in the trajectory, we deem the polygon “not reachable”. Finally, we define
net reachability as the percentage of polygons that are reachable. See Figure 4(b) for
a visualization of net visibility and reachability calculated for Ovechkin’s goal. Notice
there is a small opening between the goaltender’s left arm and his chest (labelled R3)
which is visible but not reachable (because the puck is too small to fit through that gap).
This highlights the importance of net reachability.

(a) Finding reachable portions

R1

R2
R3

R4

R5

Defender’s 
Hand 

Defender’s 
Skate

(b) Visible and reachable regions

Fig. 4. View from the puck (zoomed and cropped version of Figure 3(b)). In image (b) the net
is not rectangular because the shot is coming from an angle to the left of the net and from that
perspective the right post appears shorter than the left post because it is farther away. Image (a)
has been modified to show a straight on view of the net to more easily illustrate the concept of
dividing the net into polygons of equal sizes. Green indicates unobstructed net, yellow signifies
visible but not reachable, and red denotes neither visible nor reachable. The puck entered the
net in Region R5. One can see the impact of the defender’s hand on reachability in R1. It has a
larger influence on reachability than the post because it is closer to the shooter. The position of
the defender’s skate may be incorrect due to inaccuracies in the pose recognition software and the
fact that it does not know that a person may be wearing skates. Additionally, the player and pose
recognition software does not handle player equipment. Research is being conducted to recognize
goaltender poses and equipment that could be used to augment current approaches [19]. Building
3D models of goaltenders with their equipment and placing the model in the 3D scene at the
specified location may be another way to improve accuracy.
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4 Example Computation of Net Visibility and Reachability

For our proof-of-concept implementation we use a simplifying assumption that if any
part of the puck hits a post or obstruction, it will not reach the net. This could be easily
modified to assume, for example, that shots with half of the puck inside the post reach
the net. Interesting future work would be to better understand and model the interaction
between the puck and a post and the impact of the puck’s spin (spinning towards the
interior or exterior of the net). Naturally one would also want to study interactions with
all types of obstructions (e.g., the crossbar, players, goaltenders, and equipment).

Figure 4(b) shows the different regions of the net that are visible and reachable,
along with labels for each of the regions. Green signifies areas that are visible and
reachable, yellow denotes visible but not reachable areas and red shows areas that are
obstructed and therefore, are not visible or reachable. Table 1 shows the results of our
computations for the percentage of the net that is visible and reachable in each region
as well as the overall values. Notice that regions R4 and R5 are separate regions for
reachability but become merged for visibility. This occurs because there is a small area
beneath the goalie’s left foot that is visible but not reachable, connecting R4 and R5.

To provide a high-level understanding of the idea of reachability and how it could be
computed, we superimpose a grid of equal sized polygons onto the image of the net (see
Figure 4(a)). To compute reachability we count the number of polygons that are green
and compare that with the total number of polygons comprising the net. Table 1 shows
that for this shot, 65.97% of the net was visible and 50.32% was reachable (Overall).

Region R1 R2 R3 R4 R5 R4 +R5 Overall

Visible 14.97 % 0.97 % 0.03 % — — 50.0 % 65.97 %
Reachable 8.82 % 0.15 % 0.00 % 22.92 % 18.43 % — 50.32 %

Table 1. Percentage of the net that is visible and reachable for each region, as well as overall.
Note: regions R4 and R5 are part of the same visible region, but form separate reachable regions.
There are two separate reachable areas in visible region R1; they are both part of R1.

5 Potential Applications

The technology required to implement these metrics, a 3D model of players along with
their and the puck’s locations, could be used to produce virtual reality video simulations
of any window of time (not just shots) from any desired point of view (or continually
changing points of view). This could be used to increase fan engagement or the con-
struction of new metrics that take advantage of the 3D scene. In Figure 5 we show the
3D scene for our running example from the point of view of: the puck (Figure 5(a)),
the shooter (Figure 5(b)), and the goaltender (Figure 5(c)). Notice the difference in
visibility between the puck’s view and Ovechkin’s view.
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The methods used in this paper to construct a 3D scene are generalizable to other
sports. We envision that our net visibility and reachability metrics could also be ap-
plied to sports like football (soccer) and lacrosse, with additional considerations such
as individual player’s ability to bend (curve) the ball.

(a) Puck’s view (b) Shooter’s view

Puck

(c) Goaltender’s view

Fig. 5. Using the 3D model of the scene to generate different views. Note that in (c) Ovechkin (the
light orange player) is barely visible, due to the defender’s (blue player’s) position, highlighting
the value of this view.

Our position is that, given enough samples for each player and goaltender, our net
visibility and/or reachability metrics could be beneficial to players, coaches, and ex-
ecutives to improve offensive and defensive tactics and overall team performance. The
metrics provide information about how much of the net each defender is obstructing,
aiding in defensive positioning and decision making. It can be used to evaluate which
body positions (poses) are most effective for shot blocking, such as standing versus
kneeling. Metrics could even be adjusted to account for whether players are attacking
or defending. For example, one could assume that attacking players would move out of
the way of a shot, and by removing them from the scene, make the portion of the net
they are occluding reachable.

Additionally, our metric could be used to evaluate and provide insights into a player’s
shooting decisions and precision. Because hockey is dynamic and since we can con-
struct a 3D model at any point in time (and view it from any viewpoint), we could
examine whether players are shooting at appropriate times. This could be done by com-
paring the portion of the net that is reachable at instances in time prior to the actual shot
where the player could shoot with that portion of the net that is reachable from the time
of the shot. This would allow one to study, for example, if more or less of the net was
reachable if the shot had been taken sooner. Similarly, one could reposition the shooter
(and other players) to show how much of the net would have been reachable had the
shooter taken a different path, and comparing that with the reachable portion of the net
for the shot the player took. Examining whether players are shooting at smaller or larger
reachable regions would also be informative, especially if a player often shoots at and
misses smaller regions when there are larger regions that are reachable. Another possi-
bility would be to study shooting skills by determining which players are able to score
when there are only small reachable regions available (e.g., on the short side between
the goaltender’s head and the post).
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These metric could also be used to analyze goaltender positioning to identify if they
consistently leave regions of the net open and vulnerable to exploitation, determine if
they “cheat” by presenting areas where they want a shooter to shoot because they be-
lieve they can make the save, and understanding whether they are successful. A simple
but powerful example would be to show how the reachable portion of the net changes if
the goaltender more aggressively moves towards the shooter. This could provide quan-
titative insights into goaltender positioning. Additionally, generating the goaltender’s
view would permit us to compute the amount of time (or portion of the shot duration)
that the goaltender would have been able to see the puck. For example, the puck was
visible for 80 milliseconds from the time of release to the end of the shot (or 44% of
a shot that took 180 milliseconds to reach the goaltender). This would provide insights
into goaltenders’ abilities to make stops on shots through traffic or possibly absolving
them of fault for not stopping shots that they could not see.

Some simple examples of these applications are provided in the Appendix. There
we demonstrate how potential changes in goaltender positioning impact net visibility
and reachability. Additionally, we show how these metrics would be impacted if the
defender were positioned more directly in the shooting lane.

6 Discussion

We recognize that 3D human pose estimation, sports camera calibration, and video
player tracking are active areas of research. Our method of calculating net visibility
and reachability relies on the precision of these tools and their ability to generalize to
hockey. In particular, 3D human pose estimation does not identify the player’s equip-
ment or stick, which is a limitation we would like to address in future work. Moreover,
in many shots, influential players or the goaltender are obstructed from the broadcast
camera’s view or positioned outside the frame. This may hinder our ability to capture
accurate 3D poses. Furthermore, for our net reachability metric, we assume the puck’s
trajectory is linear (with no rise, fall or curve). In reality, a puck’s trajectory is parabolic,
but from close distances or with the high speed of most shots, it is likely sufficiently
close to linear. The puck may also wobble or reach the net tilted off axis, violating our
no tilt assumption used when computing reachability. There are also factors not cur-
rently captured by net visibility and reachability. One such factor is the difficulty of the
shot. For example, 5% of the net being visible from 60 feet away might be thought of
as “more difficult” than 5% of the net being visible from 10 feet away. Likewise, shots
from sharp angles may be considered differently than from the slot. Imagine an open
net from the slot and an open net from a sharp angle, both would have net visibility
values of 100%. However, from the sharp angle there may be only a small sliver of the
net opening to shoot at. In this example, the size of the net opening differs between the
two shot locations and that may not be fully reflected in our metrics. In the future, we
hope to add a metric for “scoreability” to accounts for such factors. One final challenge
is devising techniques to validate the values obtained from our computations.
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Appendix

Figure 6 is used to provide an example of one type of application for our framework and
metrics. This example focuses on one aspect of goaltender positioning, depth relative
to the net. The figure shows an example of different views from the puck’s perspective
with the goaltender located in slightly different positions. The left image, labelled “-4
feet”, shows net visibility and reachability with the goaltender moved 4 feet closer to
the net. The centre image, labelled “Original” shows the goaltender’s original position.
The right image, labelled “+4 feet”, shows the goaltender moved 4 feet closer to the
shooter. Below each image, V denotes the portion of the net that is visible R denotes
the portion of the net that is reachable, Dpuck denotes the distance from the goaltender
to the puck and Dnet denotes the distance from the goaltender to the centre of the net.
Note that the -4 feet and +4 feet are changes in the x value in the x,y coordinate system,
which is why Dnet does not change by exactly 4 feet.

As one expects, if the goaltender is positioned closer to the net they obstruct less of
the net, resulting in larger visibility and reachability values. If the goaltender is posi-
tioned closer to the puck visibility decreases as does reachability. Note that in reality, a
goaltender may change their stance when they are farther into or out of the net, which
could also alter these metrics. Note that the defender’s impact does not change as their
location remains the same in each case.
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Original

V = 66 %

R = 50 %

Dpuck = 30.0 ft

Dnet = 6.5 ft

-4 feet

V = 71 %

R = 57 %

Dpuck = 34.3 ft

Dnet = 2.4 ft

+4 feet

V = 62 %

R = 45 %

Dpuck = 25.7 ft

Dnet = 10.9 ft

Fig. 6. Example application of net visibility and reachability. Comparing metrics with different
goaltender locations.

Figure 7 provides another example of a potential application. In this case we demon-
strate how net visibility and reachability would change if the defender were positioned
more directly in the shooting lane. The left image shows the original position of the de-
fender with only a part of their hand and skate seen in the left side of the image, along
with the net visibility and reachability values. The right image shows how net visibility
and reachability decrease substantially if the defender is more directly in the shooting
lane. Note that while this increases the chance of blocking the shot, it may also partially
obstruct the goaltender’s view. Since one can not see all of the goaltender’s face from
the puck, they may not have a clear line of sight to the puck with both eyes.

Original

V = 66 %

R = 50 %

D (#55) in shooting lane

V = 46 %

R = 26 %

Fig. 7. Example application of net visibility and reachability. Comparing metrics with a different
defender location.

We believe that being able see and quantify changes in net visibility and reachability
with different locations for players and goaltenders can provide valuable insights to
goaltenders, defenders, shooters, coaches and fans.
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