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Abstract. Measuring the individual performance of players is an im-
portant task in sports analytics. Traditional statistics-based approaches
for evaluating hockey players fail to account for context and long-term
impact. Recent advances in data gathering have enabled valuing posses-
sions and actions directly to address these issues. This talk describes the
implementation of the first real-time possession value framework for ice
hockey.
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1 Introduction

Being able to objectively quantify performance in ice hockey has important im-
plications for player evaluation and acquisition. Traditional goal- and shot-based
statistics are problematic in this regard as they ignore the impact of preceding
plays and do not differentiate between situational contexts. Advanced metrics
derived from expected goals address the latter issue by incorporating informa-
tion on how dangerous the shots a team takes or faces, but are unable to directly
measure the value of non-shot actions and fail to consider situations where no
shot is taken.

With the increasing availability of high-granularity event data streams and
tracking data in recent years, various approaches in different team sports have
been proposed for directly modeling the value of individual actions or posses-
sions [1, 2, 4]. Related work in ice hockey has been scarce [5, 6], however, owing
to a lack of the aforementioned data at least in the public domain. Our work in-
tends to bridge this gap by proposing and implementing the first hockey-specific
framework for deriving the total value of any given possession in real time, as
well as valuing the risk and reward of individual actions separately.

2 Methodology

Estimating the value of possessions can be framed as a Markov decision process
(MDP) where the possible actions a player in possession of the puck can take
is represented by the discrete set A for all possible match states S. The actions
we consider to be part of this action space are shots, passes, moving with the
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puck, dump-ins and dump-outs. Each action can be further separated depending
on their outcome: whether a shot results in a goal, a pass reaches its intended
target, a player maintains possession while moving with the puck, a dump-out
is recovered by a teammate or a dump-out successfully exits the zone.

Players can be assumed to perform actions that intend to increase the prob-
ability of scoring for their team and decrease the probability of conceding a goal.
Some actions that are valuable offensively, however, are inherently more risky
despite their greater reward. To represent this trade-off we model the return of
an action separately for both outcomes with success states yielding the proba-
bility of a team in possession scoring and failure states the probability of a team
in possession conceding. We assume that only successful actions have positive
returns and unsuccessful actions have negative returns, as even though some
failed actions may lead to a positive outcome (e.g. a missed pass is received by
another teammate in a relatively good position), from a modeling standpoint we
want to consider only the intended target.

A common approach for representing the immediate and future impact of an
action has been to use either a time window or a fixed number of future actions
to assign positive labels for actions that end up affecting the score and negative
labels for actions that do not [3, 4]. We experiment with different approaches and
observe in our data that using a fixed window of eight seconds from the start of
an action provides the best balance between short- and long-term return. When
modeling reward actions we label actions that lead to the team in possession
scoring a goal in the next eight seconds as positive, and when modeling risk we
label actions that lead to conceding a goal in the next eight seconds as positive.

To formalize this we follow the definition of Fernández et al., where the value
of a possession Pt is taken to be the total expectation of all actions in a given
state [4]. The probability to take action a and its expected value are learned
from Xt, which is the feature vector representation of state s derived from a
tracking data snapshot at time t.

E[Pt] =
∑

a∈A

[
E[A = a|Xt] P(A = a|Xt)

]
(1)

As the outcome of successful and unsuccessful actions is modeled separately
for all actions except shots (which we assign a fixed value of zero risk due to
lack of a true failure condition), the expectation of an action can be generally
decomposed as the difference between its expected reward and risk and how
likely it is to succeed or fail. Because we assume a single end location for moves,
the expected value of a move action follows this formulation exactly.

E[A = Move|Xt] = E[A = MoveSuccess|Xt] P(A = MoveSuccess|Xt)

− E[A = MoveFailure|Xt] P(A = MoveFailure|Xt) (2)

Because any teammate excluding goalies can be considered as the possible
receiver of a pass, we take the expected value of a pass action to be the total
expectation of all possible passes. We define an additional transition probability
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P(Rt|Xt) for all receivers Rt to represent how likely player r becomes the receiver
of a pass.

E[A = Pass|Xt] =
∑

r∈R

[
E[A = Pass, Rt = r|Xt] P(Rt = r|Xt)

]
(3)

For dump-ins we consider all players except the goalie of the team in posses-
sion to be able to recover the puck. As dump-ins do not always have an intended
receiver, but a general location instead, we model their success probability as
P(A,Rt|Xt) to represent how likely player r is to recover the dumped-in puck
first. We take the expected value of a dump-in action to be the difference be-
tween the total expectation of all teammates T and all opponents O that can
recover a dump-in.

E[A = DumpIn|Xt] =
∑

r∈T

[
E[A = DumpIn, Rt = r|Xt] P(A = DumpIn, Rt = r|Xt)

]

−
∑

r∈O

[
E[A = DumpIn, Rt = r|Xt] P(A = DumpIn, Rt = r|Xt)

]
(4)

For dump-outs we consider all opponents except the goalie to be able to
intercept the puck in the offensive zone. We model P(A, It|Xt) to represent how
likely opponent i is to intercept the dump-out and use the total interception
probability to determine the success probability. The expected value of a dump-
out action is taken to be the difference between expected reward from successfully
exiting the zone and the total expectation of risk for each possible interceptor.

P(A = DumpOutSuccess|Xt) = 1−
∑

i∈I

P(A = DumpOut, It = i|Xt) (5)

E[A = DumpOut|Xt] =

E[A = DumpOutSuccess|Xt] P(A = DumpOutSuccess|Xt)

−
∑

i∈I

[
E[A = DumpOut, It = i|Xt] P(A = DumpOut, It = i|Xt)

]
(6)

3 Data & Modeling

We use event and tracking data from the Liiga regular season matches 2020-
21 and 2021-22 provided by Wisehockey. The player and puck tracking data is
gathered using an indoor positioning system and sampled at a frequency of 20
Hz. The tracking snapshots are automatically synchronized by the system to
align with the start timestamps of the events. We split 75% of the 872 matches
in our data to train our models and use the remaining 25% as the test set.
Events where the team whose scoring probability is being modeled faces an
empty net are omitted due to the dynamics of scoring changing significantly in
such situations. An overview of the events is presented in Table 1.
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Table 1. Event data counts for the Liiga seasons 2020-21 and 2021-22.

Event type Success Total Training Test

Pass 79.87% 535,449 401,583 133,866
Move 95.35% 899,809 674,851 224,958
Shot 5.29% 78,141 58,608 19,533
Dump-in 39.67% 86,579 64,931 21,648
Dump-out 69.88% 48,836 36,630 12,206

Because the system provides situations where players move with the puck as
continuous sequences, we split the puck controls into discrete one-second length
actions. We assume that moves have one possible end location and set this as the
player’s position one second into the future based on their velocity at the time
of the event. For unsuccessful passes we determine the intended receiver using
a nearest-neighbor approach. We take the direction and velocity of the known
trajectory of the pass and project it forward from the starting position of the
pass at different time steps. The intended receiver is then chosen as the player
who is closest to the projected end positions most frequently.

Each model uses positional features engineered from tracking data like lo-
cation, velocity, direction, distance to goal, angle to goal, distance to puck and
angle to puck for the player in possession of the puck and the target of the ac-
tion (if applicable). To represent the local context of an action these features are
calculated for the closest teammate and opponent of the player and the target.
We also adapt the pressure model of Andrienko et al. to a hockey context and
to consider the velocity of the players [7]. For the global context of an action
we derive features using hierarchical clustering with two clusters on the players’
locations to represent the tactical structure of both teams.

For the pass and shot expectation models we calculate features relating to
the positioning of the goalie and how much of the net the goalie has to cover
to make a save against the shooter or pass target. Pass expectation models also
include information about the crowdedness and width of the pass lane between
the passer and the target. The dump-in models have additional features based
on the area where the puck is estimated to be played in for a given target. We use
a simple convolutional neural network that takes raw tracking data snapshots
as its input to estimate this end location. Finally, we include game and score
state features in the action probability model to represent how teams adjust
their playing style depending on the overall match situation.

We train our models using XGBoost[8] and optimize hyperparameters for tree
depth and various regularization parameters using Bayesian optimization with
cross-validation. To prevent overfitting into particular feature combinations we
use moderate to high regularization parameter bounds for each model. As many
of the learning tasks for our models consist of imbalanced data, we use a low
max delta step parameter to ensure well-calibrated posterior probabilities. Based
on domain knowledge we enforce monotonicity constraints on some features like
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distance to goal as this improves predictive performance and helps in dealing
with outliers like goals scored from the neutral zone. Model metrics on the test
set are presented in Table 2. We summarize the calibration of the models us-
ing expected calibration error (ECE), which takes the weighted average of the
difference between binned output probabilities and data points.

Table 2. Model performance on the test set.

Model Log loss AUC ECE

Action probability 0.186

Pass success 0.423 0.803 0.037
Pass receiver 0.422 0.892 0.007
Pass scoring for 0.071 0.823 0.018
Pass scoring against 0.045 0.757 0.008

Move success 0.155 0.856 0.008
Move scoring for 0.053 0.791 0.012
Move scoring against 0.026 0.764 0.005

Dump-in success 0.165 0.873 0.006
Dump-in scoring for 0.029 0.743 0.002
Dump-in scoring against 0.015 0.750 0.003

Dump-out success 0.207 0.858 0.008
Dump-out scoring for 0.019 0.735 0.002
Dump-out scoring against 0.032 0.755 0.005

Shot scoring for 0.174 0.827 0.015

4 Results

As we can determine the total value of any given possession Pt, we can use this
to evaluate the impact of each action. The value of an action is then defined by
taking the difference between total possession value at the start of the action
PStart and the total possession value at end of the action PEnd for all actions
except shots, for which the total value is defined as-is. We define actions that have
a positive impact as progressive and divide actions that have a negative impact
into three categories: regressive, lost and conceded. Regressive refers to how
much value is lost through successful actions that decrease the probability of the
team scoring, lost refers to how much value is lost through unsuccessful actions,
and conceded refers to the value gained by the opponent through unsuccessful
actions. To account for any possible error in the detection of the moment of
reception for passes, dump-ins and dump-outs, we take a one-second window
after the end timestamp of the action to determine its end value.

The value of move actions is calculated continuously during matches, so we
take the cumulative sum of a puck control sequence as the total value of a move
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action. As the value of move actions is the most sensitive to how other players are
positioned, and we do not want to punish the puck carrier for factors outside their
control, we limit the amount of regressive and lost value between two consecutive
puck controls by the average value of a move action in our data (approximately
one goal scored per 100 moves) and divide this limit by the sampling rate used
to generate tracking data snapshots.

Because there are no existing ground-truth labels for evaluating the quality
of a player’s actions, we compare the total estimated possession value of common
in-game situations and how often they have led to a goal being scored in the Liiga
playoffs 2022-23. A comparison of the best forwards and defencemen that shows
how their actions have added and lost value is also presented. We use playoff
matches as our out-of-sample prediction because there is a recognized difference
in play styles between the regular season and the playoffs, where players are
allowed by the referees to play a more physical and disruptive game. This is
illustrated by the fact that in our training data the average number of goals
scored per match is 5.3, while in the 2022-23 playoffs it was 4.6 goals. We surmise
that the features engineered from tracking data provide enough context to help
overcome this domain shift.

Table 3 displays the danger level between controlled zone entry types at even-
strength. We take the danger of a zone entry to be average of the total possession
value in a one-second window following the moment that the offensive blueline
has been crossed. We denote a zone entry to have resulted in a goal using the same
eight-second window as with our models. Our framework correctly identifies that
breakaways and odd-man rushes are likely to result in more dangerous situations
than entries where the team in possession has an equal or lower number of players
involved compared to the defending team. The estimated danger level generally
correlates well with how often the different entry types result in goals, though
some types are affected by the natural variance of goal-scoring in relatively small
sample sizes. Based on observing individual entries, it is also fairly common for
entry types to change a couple seconds after the entry is performed in the favor
of the defending team as their forwards hustle to join the backcheck.

Table 3. Even-strength controlled entry danger by type in the Liiga 2022-23 playoffs.

Entry type Count Danger Goal scored

1-on-0 18 12.7% 11.1%
2-on-1 24 7.4% 8.3%
1-on-1 43 5.4% 2.4%
3-on-2 70 4.6% 4.3%
2-on-2 146 4.3% 2.8%
1-on-2 90 3.6% 4.4%
3-on-3 473 3.3% 2.8%
2-on-3 310 3.1% 1.6%
1-on-3 101 2.6% 1.9%
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Table 4 displays the danger level of successful even-strength passes by type.
We take the danger level of a pass to be its progressive impact as defined above.
Passes into the slot, which end in the area between the goal and the first hash
marks of the faceoff circle, are intuitively the most dangerous with lateral (east-
west) passes and behind-the-net passes inside the offensive zone following suit.
We define entry passes as passes that facilitate a zone entry and outlet passes as
passes that lead to a zone exit. Low-to-high and high-to-low passes are passes
inside the offensive zone that do not cross the center line. It can be seen that the
value added by these pass types closely follows the true scoring probabilities.

Table 4. Even-strength pass danger by type in the Liiga 2022-23 playoffs.

Pass type Count Danger Goal scored

Slot 195 9.1% 9.2%
Lateral 994 3.6% 3.4%
Behind the net 226 3.3% 3.1%
Entry 611 2.3% 2.0%
Low-to-high 610 2.1% 1.8%
High-to-low 1142 1.4% 1.8%
Outlet 1631 1.1% 0.9%

Tables 5 and 6 represent the best-performing forwards and defencemen by to-
tal value added and lost at even-strength play. Passes, dump-ins and dump-outs
have been consolidated together into a single value. The positive impact of an
action indicates the progressive value added and the negative impact indicates
the sum of regressive, lost and conceded value as defined before. Forwards gen-
erate more progressive value on average, but tend to lose more as well through
attempting more ambitious and difficult actions. A greater proportion of the
negative impact by defencemen is through conceded value, however, as their
unsuccessful actions tend to occur closer to their defensive zone.

Table 5. Even-strength forward performance per 60 by possession value type in the
Liiga 2022-23 playoffs.

Player Team Pass+ Pass− Move+ Move− Shot+ Total

Eemeli Suomi Ilves 0.95 0.53 1.21 0.50 1.00 2.13
Anton Levtchi Tappara 1.08 0.52 1.16 0.26 0.59 2.05
Joona Ikonen Ilves 0.88 0.38 0.58 0.15 1.10 2.03
Waltteri Merelä Tappara 0.48 0.39 0.93 0.34 1.20 1.88
Kristian Tanus Tappara 0.91 0.49 0.91 0.24 0.73 1.82
Balázs Sebők Ilves 1.04 0.81 1.31 0.23 0.50 1.81
Santeri Virtanen Ilves 0.69 0.38 0.66 0.20 0.99 1.76
Matias Mäntykivi Ilves 1.03 0.45 1.00 0.44 0.59 1.73
Niko Ojamäki Tappara 0.75 0.35 0.44 0.15 0.97 1.66
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Table 6. Even-strength defenceman performance per 60 by possession value type in
the Liiga 2022-23 playoffs.

Player Team Pass+ Pass− Move+ Move− Shot+ Total

Les Lancaster Ilves 1.06 0.43 0.33 0.10 0.82 1.68
Tarmo Reunanen Lukko 0.76 0.28 0.68 0.20 0.58 1.54
Colby Sissons KalPa 0.69 0.31 0.79 0.17 0.40 1.40
Valtteri Kemiläinen Tappara 0.93 0.22 0.60 0.16 0.22 1.37
Maksim Matushkin Tappara 0.69 0.20 0.70 0.21 0.33 1.31
Ben Thomas Tappara 0.58 0.27 0.44 0.09 0.63 1.29
Leo Lööf Ilves 0.82 0.32 0.62 0.21 0.15 1.06
Casimir Jürgens Tappara 0.59 0.28 0.42 0.09 0.42 1.06
Thomas Grégoire Lukko 0.71 0.28 0.43 0.12 0.22 0.96

5 Conclusions

In this talk we have shown that a real-time possession value framework can be
implemented in an ice hockey context. The out-of-sample performance of the
framework in typical in-game scenarios and events as well as in differentiating
the value created by players in different positions matches both domain knowl-
edge and the true underlying scoring probabilities. In the future it would be
interesting to extend the framework to model defensive actions and the possi-
bility of shots being indirect passes. Similarly, considering banked and rimmed
passes separately would likely improve the performance of pass-related models
[9]. Another promising avenue of research would be to use graph-convolutional
neural networks with tracking data snapshots, which has been shown to improve
model performance over tree-based models and remove the need for advanced
feature engineering [10].
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