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Preface

LINHAC 2022 took place from June 6-8, 2022, and was organized by Linköping Univer-
sity (Patrick Lambrix and Niklas Carlsson) and Linköping Hockey Club (Mikael Vern-
blom). LINHAC brought together professionals and academics with an interest in hockey
analytics. It featured the latest research in hockey analytics in academia and companies,
discussions with analysts and coaches, industry sessions with the latest hockey analytics
products, and an analytics competition for students.

The program included invited research talks by Oliver Schulte, Tim Brecht, Carleen Markey,
and Patrick Lambrix and Niklas Carlsson. Further, seven papers were selected for presen-
tation at LINHAC. These research track proceedings contain these research papers as well
as abstracts and papers related to the invited research talks.

In addition to the research track, Dan Tagnes, head coach of EV Zug, who won his sec-
ond consecutive title in Switzerland, talked about the use of data and analytics from a
coach perspective. Sean Tierney from Sportlogiq talked about the state of the art in hockey
analytics from an industry perspective.

Further, there were four panel discussions moderated by Mike Helber. The first panel was
made up of analysts from different SHL teams (Petter Carnbro from Leksands IF, Patrik
Hall from Växjö Lakers, Erik Lignell from Frölunda Hockey Club, and Erik Wilderoth
from Färjestad BK) as well as a representative from Sportloqiq (Sean Tierney). The second
panel with Adam Albelin (Swedish Ice Hockey Association), Meghan Chayka (Stathletes),
Erika Holst (Frölunda Hockey Club) and Carleen Markey (Carnegie Mellon University),
discussed the state of the art and future of analytics for women’s hockey. Thorsten Apel
(Sportcontract), Martin Rumo (OYM), Sean Tierney (Sportlogiq), and Morgan Zeba (Spi-
ideo) discussed hockey analytics from the industry perspective. In the final panel repre-
sentatives from the entertainment industry discussed the use of analytics in TV broadcasts.
The panel members were Mike Kelly (NHL Network), Alison Lukan (ROOT Sports NW
and Seattle Kraken), Björn Oldeen (CMORE) and Håkan Södergren (Viaplay).

There were several discussion sessions. Mikael Verblom led a discussion on analytics
for goaltenders with Justin Goldman (The Goalie Guild), Thomas Magnusson (Swedish
Ice Hockey Association) and Jonas Gustavsson (former NHL and SHL goaltender). Mike
Helber discussed with Karl Schwarzenbrunner from the German Ice Hockey Association
about knowledge transfer and coaching the coaches. Adam Albelin, Adam Almqvist An-
dersson, Mikael Vernblom and Matheus Vieweg, coaches on different levels of the Swedish
national teams, discussed the use of hockey analytics in their jobs.

Several companies presented their products: PwC Hungary - Sports Advisory, Spiideo,
Sportcontract, Sportradar, Stathletes, Stretch On Sense AB, and Wisehockey.

Finally, there was a student competition where the task was to provide insights based on
sequences of events in a hockey game. Data was provided by the SHL and Sportlogiq.



This conference was the first in its kind in Europe and as far as we know the first hockey
analytics conference that dealt with all aspects related to hockey analytics.

We thank our collaborators the Alliance of European Hockey Clubs and the City of Linköping,
as well as sponsors the Swedish Research Council for Sport Science and Stretch on Sense
AB.

June 2022 Patrick Lambrix,
Niklas Carlsson,

Mikael Vernblom
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Valuing Actions and Ranking Hockey Players

With Machine Learning (Extended Abstract)

Oliver Schulte
School of Computing Science

Simon Fraser University
Burnaby, Canada

Linkökping Hockey Analytics Conference
May 2022

Abstract

A fundamental goal of sports analytics is to rank player performance.
A common approach is to assign a value to each player action and rank
a player by their aggregate action value. A recent AI-based approach is
to measure the value of a player’s action by how much it increases their
team’s chance of success, that is, their team’s chance of scoring the next
goal. This requires a model that outputs a success probability estimate,
given a match context and an action. This talk describes machine learning
techniques for building success probability models from data. The tech-
niques range from easy-to-implement probabilistic classifiers to advanced
reinforcement learning methods. The results of success probability mod-
els are illustrated with action values and player rankings for the National
Hockey League.

1 Introduction: Success Probabilities in Sports
Analytics

During a match, each action by a sports team is directed towards maximizing
the chance of future success. Therefore the probability of (future) success is a
key statistical quantity for evaluating the strength of a team, the impact of an
action, and the contributions of a player. This note accompanies a talk that
shows how success probabilities can be used to value actions and ranking players,
and describes techniques for estimating them from data.

2 Defining Success Probabilities

For the purposes of this note, success is flexibly defined as a binary event that
a team seeks to bring about. An analyst is free to define success in different

Linköping Hockey Analytics Conference 2022 2



ways depending on the question they are investigating. Examples of success
concepts that have appeared in the literature include the following (using hockey
examples where possible).

• Winning the Match [Pettigrew, 2015].

• Scoring a goal within a short time interval (e.g. 1 minutes) [Schuckers and
Curro, 2013].

• Scoring a goal within the next 5 actions [Decroos et al., 2019].

• Scoring the next goal in the match [Routley and Schulte, 2015].

• Drawing the next penalty [Routley and Schulte, 2015]. This is a failure
event that would be interesting to a coach who is concerned to minimize
the number of penalties incurred by their team.

The notation

P (Si|Xt)

denotes the probability that i achieves (future) success given the current
match context Xt. We discuss in Section 5.1 below how a context vector can
be computed from play-by-play data.

A success probability is a dynamic quantity; a success probability ticker
shows an estimated probability for each time in a match [Liu and Schulte, 2018];
see Figure 1.

3 From Success Probabilities to Action Values

From success probabilities we can assign a value to actions called the impact
of an action occurring at time t+ 1 [Liu and Schulte, 2018].

impact i(t+ 1) ≡ P (Si|Xt+1)− P (Si|Xt)

Thus the impact of an action is the difference in success probabilities before
and after the action occurred. Figure 3 shows boxplots for impact values. Note
that impact values can vary widely for the same action, depending on context.

4 From Action Values to Player Ranking

We can compute a player performance metric from impact values in a straight-
forward way: for each player, and for each of their actions, we can compute
the impact of the action. The goal impact metric (GIM) is simply the total
impact of the player’s actions.

Our metric can be used to identify undervalued players. For instance, Johnny
Gaudreau and Mark Scheifele drew salaries below what their GIM rank would
suggest. Later they received a $5M+ contract for the 2016-17 season.

Valuing Actions and Ranking Hockey Players With Machine Learning
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Figure 1: A success probability ticker for a match between the Penguins and
the Blue Jacket. The y-axis shows the estimated probability of scoring the next
goal.

While we do not have ground truth for evaluating player rankings, the goal
impact player rankings have been validated indirectly in several ways.

1. GIM correlates well with standard success metrics (e.g., Points) [Liu and
Schulte, 2018].

2. GIM converges close to half-way through the season. This means that the
beginning of the season can be used to evaluate player strength (predict
the player’s final ranking).

3. The GIM values per player correlate well across different seasons [Rout-
ley, 2015, Pettigrew, 2015], which is evidence that they measure a stable
quality of players.

The impact metric approach has also been validated in other sports, such
as soccer [Decroos et al., 2019, Liu et al., 2020a, Fernández et al., 2021] and
basketball [Cervone et al., 2014].

5 Learning Success Probability Models

Given the usefulness of success probability models, a major concern of machine
learning for sports analytics is to develop machines for building such models from
data. In the following I will discuss methods for building success probability
models from event data, also known as play-by-play data. Estimating success
probabilities from tracking data is less studied because tracking data is less

Valuing Actions and Ranking Hockey Players With Machine Learning
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Figure 2: Impact on the probability of Scoring the Next Goal. Higher numbers
are better for the team that performs the action. Action Impact Values vary
with context. The central mark is the median, the edges of the box are the 25th
and 75th percentiles. The whiskers are at the default value, approximately 2.7
s.d. Based on the model of [Routley and Schulte, 2015].

commonly available (but see [Dick and Brefeld, 2019, Fernández et al., 2021]).
Table 2 illustrates play-by-play data.

5.1 Classifier Approach

A straightforward approach is to annotate each event at time t with a binary
target Yi,t ∈ {0, 1} that denotes whether team i acting at time t achieved future
success after time t. For example in the game of Figure 1, the Penguins scored
around time t = 3, 900 sec. So for all previous times 2, 400 < t′ < 3, 900,
we would have YPenguins,t′ = 1 and YFlyers,t′ = 0. Then estimating success
probabilities can be modelled as predicting a binary label given the information
Xt available at time t.

It is straightforward to include in the context vector Xt values for time in-
dexed features score differential, manpower differential, time remaining, location
etc. [Routley and Schulte, 2015, Liu et al., 2018]. The main difficulty is how to
include the match history prior to time t. A simple approach is to fix a window
size k and then to append to Xt the time-indexed features for the previous times
t− 1, . . . , t− k. See [Decroos et al., 2019] for a model of this approach applied

Valuing Actions and Ranking Hockey Players With Machine Learning
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Table 1: 2015-2016 Top-20 Player Impact Scores. Based on the model of [Liu
and Schulte, 2018].

Name Impact Assists Goals Points +/- Salary
Taylor Hall 96.40 39 26 65 -4 $6,000,000
Joe Pavelski 94.56 40 38 78 25 $6,000,000

Johnny Gaudreau 94.51 48 30 78 4 $925,000
Anze Kopitar 94.10 49 25 74 34 $7,700,000
Erik Karlsson 92.41 66 16 82 -2 $7,000,000

Patrice Bergeron 92.06 36 32 68 12 $8,750,000
Mark Scheifele 90.67 32 29 61 16 $832,500
Sidney Crosby 90.21 49 36 85 19 $12,000,000
Claude Giroux 89.64 45 22 67 -8 $9,000,000
Dustin Byfuglien 89.46 34 19 53 4 $6,000,000

Jamie Benn 88.38 48 41 89 7 $5,750,000
Patrick Kane 87.81 60 46 106 17 $13,800,000
Mark Stone 86.42 38 23 61 -4 $2,250,000

Blake Wheeler 85.83 52 26 78 8 $5,800,000
Tyler Toffoli 83.25 27 31 58 35 $2,600,000
Charlie Coyle 81.50 21 21 42 1 $1,900,000
Tyson Barrie 81.46 36 13 49 -16 $3,200,000

Jonathan Toews 80.92 30 28 58 16 $13,800,000
Sean Monahan 80.92 36 27 63 -6 $925,000

Vladimir Tarasenko 80.68 34 40 74 7 $8,000,000

to soccer (they used k = 3 as the window size). After extracting the window
information as context, the data will be a list of ⟨Xt, Yi,t⟩ pairs, which is the
standard format for any classifier package available in systems like R, Weka,
scikit-learn.

An alternative to using a fixed window size is to apply a recurrent neural
network, which can take as input a sequence without the need for preprocessing.

5.2 Reinforcement Learning

Reinforcement learning (RL) is the branch of machine learning that studies
learning to act [Sutton and McCallum, 2007]. Estimating success probabili-
ties from sequential data is one of the basic well-studied problems in RL. In
RL, a mapping from match states to success probabilities is known as a value
function and estimating a value function is called the prediction problem.
The classifier approach described in the previous subsection (implicitly) treats
all match states as independent, and hence ignores the correlations between
success probabilities due to the temporal dynamics of ice hockey. In contrast,
reinforcement learning seeks to exploit the temporal dynamics to efficiently learn
success probabilities.

If we discretize the spatial rink coordinates, we can model hockey dynamics

Valuing Actions and Ranking Hockey Players With Machine Learning
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Table 2: Sample Play-By-Play Data in Tabular Format.

gameId playerId period teamId xCoord yCoord Manpower Action Type

849 402 1 15 -9.5 1.5 even lpr
849 402 1 15 -24.5 -17 even carry
849 417 1 16 -75.5 -21.5 even check
849 402 1 15 -79 -19.5 even puckprot.
849 413 1 16 -92 -32.5 even lpr
849 413 1 16 -92 -32.5 even pass
849 389 1 15 -70 42 even block
849 389 1 15 -70 42 even lpr
849 389 1 15 -70 42 even pass
849 425 1 16 -91 34 even block
849 395 1 15 -97 23.5 even reception

in a framework known as a discrete Markov decision process [Routley and
Schulte, 2015, Schulte et al., 2017a,b]. The key parameters in a Markov decision
process are state transition probabilities that describe what is likely to happen
next in a hockey game. Given an estimate of state transition problems, the
dynamic programming algorithm can be used to compute success probabilities
for any match state.

While discretization can simplify learning and in many cases increases the
interpretability of success probabilities, it also loses information and introduces
unnatural discontinuities in a success probability model. Reinforcement learning
provides so-called model-free methods for learning success probabilities that do
not require discrete state transition probabilities. Combining model-free meth-
ods with neural networks provides a method for learning success probabilities
that can take as input continuous spatio-temporal data “as is” without the need
for discretization or fixing a window size. Model-free deep RL has been devel-
oped in several recent approaches for sports dynamics [Liu et al., 2018, 2020b,a].
Figure 3 summarizes the options for learning success probabilities discussed.

6 Conclusion

Estimating success probabilities is a basic statistical problem in hockey ana-
lytics. A good success probability model can be leveraged to solve important
analytics problems such as quantifying the value of an action and the contribu-
tions of a player. Machine learning models can include rich match contexts to
provide useful success probabilities. Probabilistic classifiers based on a sliding
window are relatively straightforward to implement and can serve as a strong
baseline for evaluating the usefulness of success probabilities in an application.
Reinforcement learning is especially suitable for handing complex dynamic do-
mains like ice hockey and provides a powerful set of tools for increasing the
complexity and accuracy of a hockey model.

Valuing Actions and Ranking Hockey Players With Machine Learning
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Figure 3: Approaches for Learning Success Probabilities
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Puck and Player Tracking:
Challenges and Opportunities

Tim Brecht

Cheriton School of Computer Science
University of Waterloo, Waterloo, ON, Canada

Abstract. The National Hockey League (NHL) is using a puck and
player tracking (PPT) system that records the location of the puck and
players during games. Data is recorded 12 times per second for each
player on the ice and 60 times per second for the puck. There are tremen-
dous opportunities for the use of this data, including the development of
new metrics that can be used for a variety of purposes. However, there
are also significant challenges that need to be overcome. In this talk I first
describe several such challenges and opportunities. I then focus on one
of the opportunities we have been exploring, which is to develop several
passing metrics. I briefly describe some of these metrics, the intuition
behind them and outline some possible uses for a few metrics.
This is talk is based on joint work with David Radke, Daniel Radke and
Alex Pawelczyk.
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Performance Metrics for Ice Hockey
Accounting for Goal Importance

Patrick Lambrix Niklas Carlsson

Linköping University, Sweden

Abstract. The evaluation of player performance is an important topic
in sports analytics and is used by coaches for team management, in
scouting and in sports broadcasts. When evaluating the performance of
ice hockey players, many metrics are used, including traditional metrics
such as goals, assists, points and modern metrics such as Corsi. One
weakness of such metrics is that they do not consider the context in which
the value for the metric was assigned. Other advanced metrics have been
introduced, but as they are not easily explainable to practitioners, they
may not make it into the hockey discourse.
In this paper we introduce new goal-based metrics that (i) are based on
traditional and well-known metrics, and thus easily understandable, (ii)
take context into account in the form of time, manpower differential and
goal differential and (iii) add a new aspect by taking into account the
importance of the goals regarding their contribution to team wins and
ties. We describe the intuitions behind the metrics, give formal defini-
tions, evaluate the metrics using the eye test and show correlations to
the traditional metrics. We have used data from the NHL seasons 2007-
2008 to 2013-2014 and show which players stand out with respect to the
number of goals and the importance of goals.1

1 Introduction

When evaluating the performance of ice hockey players, it is most common
to use metrics that attribute a value to the actions the player performs (e.g.,
scoring a goal for the goals metric or giving a pass that leads to a goal for the
assists metric) and then compute a sum over all those actions. Some extensions
to these traditional metrics have been proposed, e.g., for the +/- metric [7, 1].
There is also work on combining metrics such as in [2]. Some of the approaches
for player performance metrics take game context into account such as event
impacts [11]. Other works model the dynamics of an ice hockey game using
Markov games where two opposing sides (e.g., the home team and the away
team) try to reach states in which they are rewarded (e.g., scoring a goal) [14,
3, 9, 12, 13, 5, 10, 6]. One critique of these more advanced metrics is that they are
not easily understandable by or explainable to practitioners such as coaches,
players and GMs. An approach to predict the tier (e.g., top 10%, 25% or 50%)
to which a player belongs is presented in [4].

1 This paper is a revised and extended version of [15].
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Although some metrics take context into account for goals, e.g., the location
of the shot, few take into account the importance of goals. For instance, a goal
scored when the team is in the lead with 5–0 at the end of the game is most
likely not crucial for winning. In contrast, scoring a goal when the score is tied at
1–1 with some seconds left of the game is of more importance for winning. Fur-
thermore, some players have a reputation to often make important goals, while
others may have the reputation to mainly score when the team is playing ’eas-
ier’ games. For instance, during the 2013-2014 season the Washington Capitals’
Alexander Ovechkin ranked the highest regarding game-tying and lead-taking

goals while he only ranked 29th regarding goals scored when the team is already
in the lead. The importance of goals was taking into account in the added goal
value metric in [8].

In this paper, our aim is to introduce new goal-based metrics for evaluating
the performance of players. The metrics should take into account the importance
of the goals in the sense of having important contributions to winning or tying
games. Further, the metrics should be easily understandable and based on well-
known traditional metrics. To achieve these goals, we introduce variants of the
traditional goals, points2, assists and +/- metrics that take into account the im-
portance of the goals. By accounting for the importance of each goal, compared
to these traditional metrics, our metrics better capture how much each player’s
goals, assists, or on-ice presence may have contributed to a positive game out-
come (e.g., by scoring game deciding goals) and give less weight to players that
score most of their goals when the outcome of a game may already be decided.

2 Defining a metric

When defining a metric, several questions must be addressed. First, there are
some questions regarding the purpose of the metric and its definition.

– What are the intuitions behind the metric? It is important to know why a new
metric is introduced. Usually, interesting observations regarding the game,
that are not addressed by existing metrics, lie at the base of introducing
new metrics. Therefore, a new metric should measure something that is not
already measured by other metrics.

– How is the metric defined? Once the intuitions and purpose of the new
metric are clear, a formal definition of the metric is needed that allows us to
compute the values for the metric.

Further, we need to evaluate the metric. This is not a simple task as we
usually do not have a gold standard against which to evaluate. Therefore, the
metric’s behavior is usually considered from different points of view, including

2 Defined as the number of goals plus the number of assists for the player and often
denoted by P or TP. In this paper, we also use the points that a team receives for
a win or a tie, which are used to produce a ranking of the teams, often denoted by
PTS. To avoid confusion, we call this latter kind of points ’game points’.

Performance Metrics for Ice Hockey Accounting for Goal Importance
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passing the eye test, finding correlations with existing metrics and looking at a
metric over different seasons.

– Does the metric pass the eye test? Although there is no gold standard, based
on the intuitions behind the metric, experts may expect a certain ranking
of the players based on the new metric. The eye test checks whether the
actual ranking according to the new metric makes sense according to the
expectations of the experts.

– Are there correlations with existing metrics? A perfect correlation to existing
metrics would mean that these metrics essentially measure the same thing.
This could be interesting as an insight or in the case that it is easier to
measure the new metric than existing metrics. However, as the intuitions
behind the new metric usually deal with aspects that were not taken into
account by existing metrics, there will not be a perfect correlation and this is
what we would want. However, it is still interesting to check the correlation
between the new metric and well-established metrics. A high correlation
would show that the metric behaves in a similar way to a well-established
metric, but still brings something new.

– Is the metric stable? The values for metrics will differ from each other over
different seasons. However, unless good reasons, they should not change too
drastically.

Finally, it is interesting to look at whether the value of the metric can be
predicted.

– Can one predict the value of the metric at the end of a season based on data
for part of the season? For some traditional metrics the value of a metric
after half of the season gives a good indication of the value at the end of
the season. Therefore, it is interesting to check whether data for part of the
season would allow to predict the value of the metric at the end of the season.

3 Data

We have used play-by-play data from the NHL, seasons 2007-2008 to 2013-2014.
The data was generated by Sportlogiq and used for the work in [9]. It is available
at https://www2.cs.sfu.ca/∼oschulte/sports/.

4 Intuitions - Game points importance value

The observations on which our new metrics are based, are the following. First, we
investigated when goals are scored. We did this for different time intervals from
seconds to minutes. Fig. 1 shows the results of goals per minute for the 2013-2014
season and this is representative for all seasons and most time intervals. We note
that few goals are scored in the first minute of the game. Further, during the
last minute of the game, at least three times as many goals are scored than for

Performance Metrics for Ice Hockey Accounting for Goal Importance

Linköping Hockey Analytics Conference 2022 13



G
o
a
l

fr
eq

u
en

cy

0

200

Period 1 Period 2 Period 3

Fig. 1. Goal frequency for each minute of the first three periods in the NHL during
the 2013-2014 season.

any other minute in the game. A possible explanation is the higher frequency
of 6 on 5 situations at this time of game, in which a team’s gamble to pull
their goaltender often results in either them scoring a goal (in part helped by
their extra attacker) or the other team scoring an empty-net goal. We also note
that power-plays more often result in goals and that shorthanded goals are not
that common. A team’s strategy may also shift depending on the current score.
Our metrics therefore take time, goal differential and manpower differential into
account.

Another observation is that not all goals are equally important for producing
game points, i.e., 2 PTS for a win, 1 PTS for an overtime loss and 0 PTS for
a regular time loss in the NHL. For instance, scoring the 6th goal for the team
when already leading with 5-0, will most likely not be contributing much for
obtaining 2 PTS. The team would most likely win anyhow. However, a goal that
ties the game in the last second of the game normally secures 1 PTS (while just
before the goal the team would have 0 PTS) and therefore is an important goal.
Our new metrics take the importance of a goal for producing PTS into account.

5 Metrics definition - GPIV-weighted performance
metrics

5.1 Game Points Importance Value

As a basis for our new metrics we need to formally define the importance of a
goal. Our intuition is that the importance of the goal represents the change in
probability of the team taking points for the game (PTS) before and after the
goal has been scored.3 Further, as discussed earlier, we take into account time (t)
for which we choose one second intervals, goal differential (GD) and manpower
differential (MD). This we call a context.

3 In [8] only the change in win probability is considered.
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We note that in this paper we focus on regular time and leave overtime for
future work. That means that the outcome of a game is one of win, tie, or loss.

We next define the probability of an outcome of a game given a context, as
the ratio of the number of occurrences of the context that have resulted in the
outcome and the total number of occurrences of the context in our dataset:

P(outcome | context) = Occ(context with outcome)
Occ(context) .

We then attribute a game points importance value (GPIV) to a context. In-
tuitively, the GPIV represents how much a goal in a particular context increases
or decreases the expected game points taking into account that a win gives 2
PTS, a tie gives 1 PTS and a loss 0 PTS. When a goal is scored, the context after
the goal (context AG) has the same time as the context before the goal (context
BG), but the GD is changed by one and the MD may (minor penalty power-play
goal) or may not change (even strength, short-handed, or major penalty power-
play goal). Based on this intuition, we define the GVIP (for regulation time in
the NHL) as follows:

GPIV
reg
NHL(context BG)

= 2 · [P(win | context AG) - P(win | context BG)]
+ 1 · [P(tie | context AG) - P(tie | context BG)].

Fig. 2. GPIV versus GD for the 2013-2014 season. Each bin is two minutes. Less than
two observations for each bin are left out.

In Figs. 2 and 3 we show representative visualizations of the characteristics
of GPIV. From Fig. 2 we note that the value of GPIV is high when the GD is
-1 or 0 at the end of the third period, as scoring then will tie the game (going
from 0 to 1 PTS) or result in a 1 goal lead (going from 1 to 2 PTS). However, as
the scoring frequency in the last minute is three times higher than at any other
arbitrary minute in the game (see Fig. 1), this increase in GPIV may not be as
high as expected.
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Fig. 3. GPIV versus MD for the 2013-2014 season. Each bin is two minutes. Less than
two observations for each bin are left out.

Fig. 4. Cumulative distribution function of GPIV.

Scoring goals is not always positive for the probability of taking game points.
We noted that, although this situation rarely appears, taking a 3-goal lead early
in the game may have negative consequences. This could be explained by the
possibility of the leading team becoming too complacent with a comfortable lead.
In general, negative consequences were limited to the first period or special MD
cases.

In Fig. 4 we see that the probability of a negative GPIV is 1.57%. Approx-
imately 86% of the GPIV range is between 0 and 0.5. Furthermore, 12% of the
GPIV range is from 0.5 to 1.64. What is interesting with this last group is that
they have the same or greater GPIV (0.5) as typical game deciding goals scored
in overtime (which results in the team directly being awarded an extra point
instead of - on average - getting the extra point with probability 0.5).

5.2 New metrics

We define new variants of the traditional metrics goals (G), assists (A), points (P)
and +/- which we call GPIV-G, GPIV-A, GPIV-P and GPIV-+/-, respectively.
In the traditional metrics the value is raised by 1 when a player scores a goal
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Table 1: Top 10 players for GPIV-P for the 2013-2014 season.

P-rank GPIV-P-rank Rank change Player Position P GPIV-P

1 1 0 Sidney Crosby C 102 34.698
8-9 2 7 Nicklas Bäckström C 78 29.038
12 3 9 Alex Ovechkin R 75 28.810

27-28 4 23 Blake Wheeler R 65 27.735
4 5 -1 Tyler Seguin C 83 27.264

2-3 6 -3 Claude Giroux C 85 26.524
10 7 3 Joe Pavelski C 77 26.404

23-24 8 14 Anze Kopitar R 67 25.901
6-7 9 -3 Phil Kessel C 77 25.871
29 10 19 Bryan Little R 64 25.170

(for G and P), a player gives an assist to a goal (for A and P) or the player is
on the ice when a goal is scored by the player’s team (for +/-). For the latter
when a goal is scored by the opposing team the value is decreased by 1. For the
variants of the metrics, instead of raising or decreasing by 1, we raise or decrease
the value by the GPIV of the goal. The new metrics value the amount of goals
as well as the importance of these goals. Some of the highest ranked players are
involved in many goals, while others may be involved in fewer goals, but with
higher importance.

6 Eye test for GPIV metrics

Table 1 shows the top ranked players for GPIV-P during the 2013-2014 season.4

Looking closer at the results, several players stand out. First, Alex Ovechkin
went from a rank 9 (P) to being ranked 3rd (GPIV-P) when using the new
metric. This is a considerable difference in rank, but can be explained by the
many important goals he scored that season. For example, as mentioned already
in the introduction, Alexander Ovechkin had the most game-tying and lead-
taking goals while he only ranked 29th regarding goals scored when the team is
already in the lead. Other players on the top-10 list that saw significant increases
in their relative point-based rankings were Blake Wheeler (Winnipeg Jets) and
Anze Kopitar (LA Kings). Similar to Alexander Ovechkin, the latter of these
has proven to take the game to the next level during the play-offs (when goals
are tougher to get by and each goal is typically considered of greater value).

Results for the other metrics and seasons are available at https://www.ida.
liu.se/research/sportsanalytics/projects/conferences/LINHAC-22

4 Note that we only take into account regular time, so the numbers for the traditional
metrics do not conform with the numbers at nhl.com that also include overtime data.
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7 Correlations of GPIV metrics with traditional metrics

Figs. 5-8 show for the top-30 players in the GPIV-based rankings for goals,
assists, points and +/-, respectively, what their change in rank is with respect
to the traditional metrics. Players on the black line have the same ranking.
Players in red have lower ranking in the new metric than in the traditional
metric and players in green have raised their ranking. Here, the points shows
the actual rank assigned with the different metrics and the length of the lines
indicates the absolute differences in rank (shown away from the black line so to
make the points close to the line easier to identify). The figures show that the
new metrics differ from the old metric and do lead to changes in rankings.

Fig. 5. Rank comparisons for traditional goals and GPIV-goals.

Fig. 6. Rank comparisons for traditional assists and GPIV-assists.
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Fig. 7. Rank comparisons for traditional points and GPIV-points.

Fig. 8. Rank comparisons for traditional +/- and GPIV-+/-.

In Figs. 9-12 we show the Spearman correlation of the traditional metrics and
their respective new GPIV-based metrics. For goals the correlation is between
0.915 and 0.968, for assists between 0.960 and 0.979, and for points between
0.972 and 0.987. These are high correlations, indicating that the new metrics
have a similar behavior as well-accepted metrics, but they do introduce new
insights. For +/- the correlation is lower being between 0.715 and 0.821.

8 GPIV metrics over different seasons

We check now how the metrics behave over different seasons. In Table 2 we show
the maximal values for the traditional goals, assists, points and their GPIV-
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Fig. 9. Correlation traditional goals and GPIV-goals.

Fig. 10. Correlation traditional assists and GPIV-assists.

based counterparts. The minimum values for the traditional metrics is 0, while
for the GPIV-based metrics there are a few players per season that receive a
negative value for the GPIV-based metrics.
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Fig. 11. Correlation traditional points and GPIV-points.

Fig. 12. Correlation traditional +/- and GPIV-+/-.

For the maximal values we note that there is a variation in values for the
traditional metrics for different seasons which is followed by the GPIV-based
metrics.5

5 The values for the 2012-2013 season are lower as it was a shortened season.
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Table 2: Maximum values for the metrics. Notes below table.

Goals GPIV-G Assists GPIV-A Points GPIV-P

2007-2008 63 19.311 67 23.689 108 34.322
2008-2009 54 16.091 77 24.493 110 (6) 35.601
2009-2010 50 15.056 81 (2) 23.740 110 (7) 33.164
2010-2011 48 (1) 13.115 73 23.411 102 33.355
2011-2012 55 16.255 65 (3) 23.530 108 31.799
2012-2013 29 10.482 43 (4) 13.300 57 (8) 18.305
2013-2014 48 18.580 67 (5) 21.657 102 34.698

Table notes:
(1) Corey Perry 48/12.621 vs Daniel Sedin 41/13.115
(2) Henrik Sedin 81/22.123 vs Brad Richards 67/23.740
(3) Henrik Sedin 65/22.447 and Claude Giroux 65/19.739 vs Joe Thornton 59/23.530
(4) Martin St. Louis 43/12.987 vs Sidney Crosby 13.300
(5) Sidney Crosby 67/21.222 vs Nicklas Bäckström 60/21.657
(6) Evgeni Malkin 110/33.443 vs Alex Ovechkin 108/35.601
(7) Henrik Sedin 110/31.210 vs Alex Ovechkin 106/33.164
(8) Steven Stamkos 57/18.150 vs Sidney Crosby 56/18.305

Table 2 (with accompanying table notes) also shows that the players with
the highest value for the traditional metric were not always the players with
the highest value for the GPIV-based counterpart and vice-versa. For instance,
Henrik Sedin topped the assists ranking in 2009-2010 and in 2011-2012, but did
not have the highest rank according to the GPIV-based assists. On the other
hand Ovechkin topped the GPIV-based points in 2008-2009 and 2009-2010, but
not the traditional points.

9 Prediction of GPIV metrics

In this section we investigate whether data from part of the season can be used
to predict the value of the metric at the end of the season. We do this by dividing
the data in partitions. For n partitions, we use the value of the metric after 1

n -th
part of the season, multiply with n and compare with the actual result of the
metric at the end of the season. We do this for the traditional metrics as well as
for the new metrics.

Fig. 13 shows for different seasons and different numbers of partitions, the
Pearson correlation between a metric (final result after the season) and a value
obtained by using the partitions (called ’generalized’ in the figure) for all players.

We note that for all metrics, the more partitions, the lower the correlation.
This is as expected. For instance, after half of the season (n=2) we have more
data to base our prediction on than after one tenth of a season (n=10).

Further, for traditional metrics (in red color) as well as the new metrics (in
orange) there is a high correlation between the final value and 2 times the value
after half of the season. When we have less data, i.e., the number of partitions
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becomes higher, there is a slightly higher correlation for the traditional metrics
than for the new metrics.

The other colors show predictability between traditional metrics and new
metrics, which relates back to the correlation between the metrics.

Fig. 13. Correlations for partitions for different metrics.

10 Conclusions

In this paper we have introduced new metrics that are variants of the well-known
traditional metrics G, A, P, +/-. In addition to the number of goals scored,
these new metrics also take into account the importance of goals with respect
to earning PTS. This ensures that the metrics favor players that have greater
impact on the outcome of the game (e.g., by scoring game deciding goals) over
players that score most of their goals when the outcome of a game may already
be decided. As the metrics are based on well-known metrics, they are easily
understandable for the practitioners. The new metrics also pass the eye test. For
G, A and P there is a high correlation between the traditional metrics and the
GPIV-based counterparts.
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Abstract. Women’s hockey analytics has historically lacked a central-
ized repository for research, data, and other projects, despite other ar-
eas of hockey analytics having such central resources. In this paper, we
attempt to fill in this missing piece of women’s hockey analytics by hold-
ing an archiving event in which volunteers methodologically gathered as
many details on past women’s hockey research and data as possible. Each
piece of research and data was then turned into an entry on MetaHockey
according to standardized instructions. This event resulted in almost
one hundred new women’s hockey focused entries on MetaHockey, whose
characteristics largely align with trends in men’s hockey analytics. Ex-
amining these entries also empirically reveals an exponentially increase
trend in women’s hockey analytics entries year-over-year, demonstrating
that both continuing to archive works and taking advantage of this new
research in the private and public spheres is conducive to the growth of
the field.

Keywords: Women’s Hockey · Hockey Analytics · Archiving.

1 Introduction

Women’s hockey has gained considerable momentum in recent years internation-
ally, and the men’s hockey analytics movement has followed a similar trajectory
in the same timeframe. The women’s hockey analytics research and data sources
have grown exponentially thanks to these explosions in popularity of the two
central components. However, this community has historically lacked easily ac-
cessibly centralized sources of data and projects, raising the barrier of entry of
an already niche subject. Additionally, events focusing on women’s hockey an-
alytics have begun to occur, such as the Big Data Cup [15] and WHKYHAC
[8]. Building off of previous works is a crucial aspect to both events and to the
progress of this field of research, growing the need for an easily accessed archive
of projects.

There have been several websites that have attempted to create such a cen-
tralized resource. Even-Strength [1], TheirHockeyCounts [14], CWHL Tracker
[2], and pick224 [9] have centralized summary statistics, respectively for ad-
vanced PHF statistics, SDHL & NCAA D1/D3 counting statistics, and vari-
ous leagues’ & international competitions’ counting statistics. While being quite
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thorough in their compilation of current women’s hockey statistics, they do not
document the research and projects being developed in this space.

MetaHockey [4], a site for archiving men’s hockey analytics projects, was
founded to fill this void in hockey analytics in general. Until October 2021
however, the website contained only seven entries and data sources related to
women’s hockey [5]. As documented in the WHKYHAC presentation "Contextu-
alizing Historical Data and Current Projects in Women’s Hockey" in July 2021,
well over ten times that many public women’s hockey analytics projects have
been created since 2015 alone [10]. Additionally, the authors of this paper, as
major participants in the women’s hockey analytics research, determined that
MetaHockey’s organizational system in it’s current form, does not adequately
serve the women’s hockey analytics researchers’ current needs of an archival
website. Among other things, the website is hard to navigate when trying to
find code repositories in data, the tagging system does not differentiate between
various women’s leagues as it does with men’s leagues, and documented ad-
vances in women’s hockey analytics often do not take the form of formal books
or articles, which are the two categories available for publications submitted
to MetaHockey. Published advances in women’s hockey often take the form of
twitter threads or Tableau-based tools, which to not fall under either of these
categories.

In this project, we take the first step towards fully satisfying the need for easy
access to historical women’s hockey projects and data sources, as well as contin-
uing MetaHockey’s original purpose of serving all sides of hockey analytics. We
do this by compiling a detailed list of as many women’s hockey analytics projects
as possible that were publicly accessible as of October 2021 and adding them
to MetaHockey’s article repository, with permission and help of MetaHockey
site owners and editors. Modifying the MetaHockey website itself to serve users
better is left to a future project.

2 Methodology

To proceed with adding women’s hockey analytics works to MetaHockey, we
followed the methods below in designing the archiving process, designing the
archiving materials, putting on the archiving event, and uploading everything to
MetaHockey.

2.1 Designing the Archiving Process

Since the authors observed that there is no common publication spot for women’s
hockey analytics works except for Twitter threads, the most effective way of
obtaining the maximum amount of publications, events, and resources was first
creating a collaborative list of the people who have created women’s hockey
analytics projects and compiled data sources, a list of known websites of compiled
data sources, a list of direct data sources, and a list of events featuring women’s
hockey, such as conferences. This is the "To Archive" document [3]. Then,
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specific publications, events, and data sources that would become MetaHockey
entries would be gathered by searching Twitter and Google for each person/data
source/event on the four lists, and creating entries in a Google Sheet ("Whockey
MetaHockey Entries") for the publications, events, and data sources found to
be related to them [16]. The "Whockey MetaHockey Entries" would then be
copied into the Google Sheets-based MetaHockey back-end to get all the entries
onto MetaHockey.

This is a time- and labor-intensive process, and the authors recognized the
expedited need for the completion of this project by the beginning of the Big
Data Cup in spring 2022. As a result, a call was put out for volunteers to help
with the searching for and creating MetaHockey entries, and a date was set for
an event in which some of the authors would be available over Zoom to help
with both [13].

An additional note on this method: simply searching something like "women’s
hockey analytics" or "women’s hockey data" in Twitter’s or another website’s
search engine would have not returned the maximal results for archival entries,
as creators tend to title their projects and datasets with the relevant league
and area of study/statistics, as seen in entries 714-812 of now-archived women’s
hockey analytics projects [4].

2.2 Designing the Archiving Materials

Once the three lists were compiled and the overall methodology distilled, an
instructional guide, "How to Archive", was designed for volunteer archivists to
use for each entry type [11]. The first three pages outline exactly how to go about
gathering entry details and adding them into the central archival spreadsheet for
each list [16]. The first page of the guide is shown in Fig. 1 and was designed
to be used to search for entries using the "people" list from the "To Archive"
document.

The second and third pages of this guide are similar to the first in general
flow, but with specific modifications for collecting entry data using the "events"
list and the "websites"/"direct data sources" lists respectively.

The fourth page, "Creating Entries", continues the workflow from pages 1-3,
and outlines how to format the details for each possible entry into the Meta-
Hockey specific format and enter it to the "Whockey MetaHockey Entries" sheet.
This fourth page can be viewed in Fig. 2. It is important to note here that volun-
teer archivists chose the keywords for each entry, as they were women’s hockey
analytics researchers and therefore familiar with the source material or had help
from members like this.

The fifth and final page contains an appendix of common terms used in the
"How to Archive" document and instructions on how to select keywords from a
suggested list. Keywords not on this list were also able to be added manually for
an entry.
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Fig. 1. The first page of the "How to Archive" instructional guide designed to guide
a layperson through how to start with a name from the people section of the "To
Archive" document, search for the publications, data sources, and events they have
been involved with and create detailed MetaHockey entries from those search results.
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Fig. 2. The fourth page of the "How to Archive" instructional guide designed to guide
a layperson through how to format entries into acceptable MetaHockey format and
enter it into the "Whockey MetaHockey Entries".
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2.3 The Archiving Event and MetaHockey Upload

The archiving event that used this process and these materials occurred on
Oct. 23rd, 2021 from 5-8pm EST, with an option for volunteer archivists to
keep adding to the "Whockey MetaHockey Entries". Once the event was over,
duplicate entries were removed and chosen keywords were checked to be accurate
in the "Whockey MetaHockey Entries" Sheet.

Unfortunately at this point, the authors of this paper lost contact with the
main editor of the MetaHockey site, and spent the next several months reaching
out to various editors of MetaHockey to see if they had site access. The last step
of uploading entries onto MetaHockey was finally completed on Feb. 11, 2022
when an editor with site editing access was finally contacted and they agreed to
do the current Google Sheet upload, as well as future uploads of entries.

Inevitably with the method used in this paper, publications, data, and events
will be missed, since the three lists relies on the authors’ memories of such things
and ability of volunteers to get accurate search results. Nonetheless, we proceed
with this method because the goal is progress, not perfection.

3 Results

As a result of this archiving effort, there are 98 new women’s hockey analytics
projects, data sets, and research tools on MetaHockey, for a total of 105 entries
of the 812 existing MetaHockey entries in the Articles section being works per-
taining to women’s hockey. Given that this is the first quantitative survey of the
field of women’s hockey analytics, after qualitative examinations at OTTHAC
2022 [12] and WHKYHAC 2021 [10], it’s important to briefly examine these en-
tries statistically. Starting with Table 1, the counts of women’s hockey analytics
entries are broken down by MetaHockey category label.

Table 1. Popularity of MetaHockey categories among women’s hockey entries.

MetaHockey Category Label # of Entries
Article 33
Files - Raw Data 18
Files - Compiled Data 16
Website (Blog / Tableau Profile / Stats / Etc.) 14
Book 7
Conference 3
Project Code Repository 3

The object of note in this list is the prevalence of files of data, raw and
compiled. Several of the book entries are also compiled records of data. The
focus on data is likely caused by something the authors are familiar with: the
ever-looming possibility of data loss. The authors have heard anecdotes of years
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IIHF data being lost to a basement flood, experienced the loss of NWHL/PHF
play by play and location data from the league website, and lost access to CWHL
statistics when the league ceased operations. It has become a priority of women’s
hockey analytics researchers to preserve data whenever possible, as seen with the
websites mentioned in the introduction.

The other part of this table that may be surprising to some is the lack of
project code repositories. The proposed explanation for this a matter of common
practices in the community: project code does not often stand on its own and
are often linked within articles to support those projects. Therefore, there is a
fundamentally low amount of entries in this category.

Moving past the entry type and onto entry focus, Table 2 is a list of the top
25 keywords associated with entries, excluding the obviously highest use of the
women’s hockey tag.

Table 2. Top 25 most popular keywords for women’s hockey entries on MetaHockey.

Keyword # of Entries
Counting Stats 39
NWHL / PHF 32
CWHL 29
Goalies / Goaltending 23
Big Data Cup 16
NCAA 13
xG 13
Shots / Shooting 8
Passing 8
Central Ontario Women’s Hockey League 7
Western Women’s Hockey League 7
Pre-Shot Movement 7
National Women’s Hockey League (old) 6
PWHPA 5
Olympics 5
Prediction 4
Shot Quality 4
IIHF 4
Play By Play 4
Tracking 4
Advanced Stats 4
SDHL 3
Team 3
World Championships 3
Model(s) 3

The majority of these keywords are linked to either data sources or books,
which preserve leagues both defunct and active, as well. The non-data source
focused keywords are in line with general trends of hockey analytics study since

Keeping Count: Archiving Women’s Hockey Analytics for Accessibility

Linköping Hockey Analytics Conference 2022 32



2015, namely the focus on xG, shooting, passing, and pre-shot movement. Cu-
riously, goaltending makes a highly ranked appearance on this list. 20 of the 23
entries referencing goalies and/or goaltending can be attributed to one women’s
hockey analytics researcher who has been preserving goaltending data for the
CWHL, NWHL/PHF, and the SDHL since at least 2016 [6].

Lastly, Fig. 3 looks at the number of women’s hockey analytics projects
(including all projects under all MetaHockey Categories) published in each year
since 2014, which is the year of publishing of the oldest project found.

Fig. 3. A chart displaying an increasing trend of women’s hockey analytics projects
each year, with the exception of 2020. 2020 was when most women’s hockey leagues
and tournaments were inactive due to the COVID-19 pandemic [7], and therefore there
was no new data to work with.

As described in the introduction, women’s hockey analytics is on a trajectory
of exponential growth. Fig. 3 shows that this is not just conjecture or wishful
thinking. Teams, leagues, and researchers would be wise to turn attention to
this field of research as women’s hockey analytics continues on on the rise in the
public and private spheres.
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4 Conclusion

Women’s hockey analytics has a history of projects and data that needed to be
centrally archived in order for the community and research to continuing to grow.
Thanks to a volunteer-based effort, an integral first step has been made towards
fulfilling this need. By investigating all available avenues in which projects and
data might be found in a procedural manner, details and archived copies of
nearly one hundred women’s hockey projects, data, and events have made it
onto MetaHockey. This set of now-archived research and data reflect the recent
priorities of the women’s hockey analytics community of data preservation and
bringing the field up to speed with men’s hockey analytics. It also shows a
concrete trend of women’s hockey analytics research exponentially growing in
the last few years. In the future, we hope to continue archiving women’s hockey
analytics research in a more periodic manner and hope that as the community
gains more momentum, referencing previous works will become more prevalent
and will be used to accelerate the public and private development of the field.
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Abstract. The project serves a two-fold purpose: to reduce the time that scouts 

and coaches spend trying to identify what players have foundational on-ice hab-

its, and to streamline the process of evaluating the developmental progress of a 

players' habits. Essentially what we did was first look at the various national 

women's hockey teams and identify the set of "habits" a player regularly executes 

(i.e., edgework, catching the puck in the hip pocket, pass placement, etc). Com-

bining the dataset of players' habits with a set of players' microstats (entries via 

pass/stickhandling, exits via stickhandling/pass, accurate/inaccurate passes, etc.), 

we developed a random forest classification model to accurately predict if a 

player possesses a certain habit based on their set of microstats. We also used 

random forest regression on our data to see how habits impacted each specific 

microstat. Combining this with an estimate of how frequently players used each 

habit, we created a Player Development Matrix for a player's habits based entirely 

on their microstats. To help coaches, scouts, and anyone else access & use these 

tools, we've also created an interactive visualization for these models using our 

training dataset of national women's hockey teams in the last Worlds and Olym-

pics. 

 

Keywords: Player Development, Analytics, Coaching, Scouting. 

1 Introduction 

This paper provides a comprehensive overview of a newly designed player-evaluation 

framework for women skaters at the 2021 IIHF tournament and 2022 Olympic games 

using a ‘habit-tracking’ system. Building on the work of Bryce Chevallier[1], Jack 

Han[2], and Darryl Belfry[3], the goal of this study is to explore the validity of using 

micro habit-tracking as a supportive scouting technique (player-ranking system) and 

utilize habit-tracking as a foundation to uncover the highest priority areas for player 

development staff to hone in on meaningful skill improvements in their players or cli-

ents. 
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Our study demonstrates a statistically significant ability to accurately link a player’s 

“habit-score” to statistical events for scouting purposes (micro stats such as zone exits, 

zone entries, type of pass,...), and uncovers ‘habits-of-focus’ for player development 

staff based on a player's advanced stats. Lastly, the study explores a habit-improvement 

framework using a Player Development Matrix[4] to analyze the habits of highest im-

portance for development staff relative to the rest of that player’s skill set. 

The core technique of this study is the novel development of a complete list of habits 

and categorization of those habits into 7 different skill set areas. A comprehensive 

tracking model was used to obtain a baseline habit-score of all players, this data (com-

bined with enriched data from InStat[5]) was used as the basis for the two models and 

the development matrix outlined below. 

 

1.1 Motivation 

The aim of this study is to offer a quantitative tool to both player evaluators (coaches 

and scouts) and player development staff as they are challenged with examining/im-

proving the skill sets of large groups of players. 

 

Scouting. The motivation for the study is to attempt to add a complimentary quantita-

tive approach to traditional scouting and player evaluation analysis. Under the current 

model of scouting across hockey leagues, scouts are faced with a tremendous challenge 

of ranking players across broad skill categories, as evidenced by the sheer number of 

NHL draft rankings alone [6,7,8]. It is a significant challenge to rank a player’s skill set 

(i.e. passing) on a scale from 1-10 and subsequently justify why a player’s rating in that 

category will vary so significantly across scouts watching the same player.  

The goal of the study with the creation of a binary habit-tracking system (said habit 

positively impacts a player’s game or not) will enable certain player evaluators to bring 

a more quantitative approach to their rankings and give teams an edge in their scouting 

process. 

 

Player Development. Similarly, player development staff are facing a tremendous 

challenge in trying to prioritize their limited time with each player and design a person-

alized skill development plan to drive improvement in their game[9]. The binary track-

ing system will allow player development staff to hone in on more exact skill gaps and 

work directly on improving those habits. Additionally, as a larger dataset of player 

habit-tracking is built over time, player development coaches can uncover which groups 

of habits are most critical to player success at different points in their careers, and how 

player habits may evolve over time. 

2 Methodology 

2.1 Statistical Methodology 

The core statistical methodology/tracking technique used in this study is a novel binary-

habit evaluation model developed below. In lay terms, the contributors of this study 
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developed a list of habits (edgework, neutral zone angling etc.) and categorized those 

habits into different skillset areas (skating, puck reception, stickhandling, physicality, 

play away from the puck, passing & shooting) in an attempt to break down a player’s 

game into micro attributes. 

The selection of these various habits cover a broad spectrum of skills that may be 

displayed over the course of a hockey game (both offensive and defensive) but are 

highly specific in nature. Each habit was selected only if it can be measured clearly in 

the tracking process and the presence of that habit in a player’s game is associated with 

driving impactful results during their time on ice. The following table summarizes the 

different skill sets and habits identified as part of the project. Refer to Appendix for a 

brief description of each habit identified as part of this project. 

Table 1. Skill Sets & Habits 

 
 

2.2 Tracking Technique 

In order to build a sample with over 7500 observations to train the models on a period 

per period basis, the tracking technique used for the study relied on observing a mini-

mum of three periods of a player’s ice-time and assigning a binary score for each of the 

habits underscored above. The sample time-on-ice from the three periods were each 

tracked from three different games to adjust for strength of opponent and variances in 

a player’s effort and effectiveness from game to game. In total, the data set included 

habits for 262 players from 12 different teams. 

Based on whether a player demonstrated that habit more often than not when given 

the opportunity to do so during their observed ice-time, they were given a score of ‘1’ 

(habit positively impacting a player’s game) or ‘0’ (habit not positively impacting a 

player’s game). This resulted in a total unweighted score out of 30 for each roster player 

based on the number of habits they possessed during the sample period. 
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Table 2. Skill Sets & Habits 

 
 

2.3 Modelling 

SARAH 1 - Identifying events or advanced metrics expected based on player hab-

its. The first model used in this project (random forest regression model[10]) was cre-

ated to identify the different events or advanced statistics that one would expect to see 

a player possess based on whether they have a given habit. The random forest used in 

SARAH 1 and 2 consists of generating a number of decision trees, each of which are 

only given a random part of the dataset. Each decision tree then decides how each in-

dependent variable affects the dependent variable based on the random subset of the 

data it sees and makes predictions for each player in the entire dataset based on their 

independent variable data. The predictions from all the trees are then averaged to create 

one prediction for each player. 

This model utilizes the event specific data from InStat (i.e. controlled entries and 

inner slot shots etc.)[5] for each player, with the intended goal of finding which habits 

yield results in specific advance statistics or event categories.  Subconsciously, 

scouts complete this same exercise when evaluating a player’s effectiveness and in-

stincts. For example, one would expect a player who exhibits linear crossovers and 

keeps their feet in motion following a puck catch, to complete successful controlled 

entries at a higher rate than a player without these habits. In this model, the independ-

ent variables are the habits (variables X), with event data being treated as the dependent 

variable (variable y). 

SARAH 1 included 17 separate sub-models, with each of the sub-models represent-

ing one of the 17 different event types adjusted per 60 minutes that were observed in 

the study. This is also referred to as “event-based advanced stats” later in the paper. 

The events included in the model are the following: 
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Table 3. Event Types (Microstats) 

 
 

Significance Threshold for Linking Habit to Event and Selection Process. A critical 

component of this event-to-habit linking methodology is to identify habits that mean-

ingfully impact the event/advanced statistical metrics. In this study - any habit with an 

importance above the 0.0325 threshold is considered having a strong influence on the 

likelihood of a player-habit meaningfully impacting that statistic or advanced stat cat-

egory. Below is an example of the 10 main habits that meet the threshold for the event 

pertaining to “puck battles won”. 

 

 
Fig. 1. An example of the 10 main habits that meet the threshold for the event pertain-

ing to “puck battles won” 

 

The considerations used in selecting the threshold of 0.0325 include; 

 
1. Finding a threshold figure that aligns with the knowledge of the contributors to the report 

and removes results that do not align with hockey-logic (i.e. neutral zone angling should 

have no relation to shots statistic). 

 
2. We wanted to select a threshold that ensured each habit would be meaningfully connected 

to a minimum of five events. If this was not the case - the habit was removed for lack of 

importance to the model 
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Weighted Average Consideration for Event Statistics. Lastly, a weighted-average ac-

counting for both the number of events completed and time-on-ice in the period was 

relied on in the SARAH 1 analysis.  

This was done to adjust for problematic tracking outcomes when a player may have 

a high volume of events on a low base of ice-time (i.e. 4 successful completed passes 

in 3 minutes of ice-time in a given period) that would result in non-representative per/60 

minute data. Therefore, greater weight was assigned to events that occurred over a 

larger period of ice time than in smaller sample sizes. 

 

SARAH 2 - Predicting the probability of a habit meaningfully impacting a player’s 

game. After establishing the impactful event-habit relationships in the first set of mod-

els, SARAH 2 reverses the variables and attempts to make a prediction about the prob-

ability of a habit successfully being completed by a given player. 

This second set of models serves a dual purpose. First, it provides scouts with a base-

line to precisely quantify habit evaluation. In other words, if the event-based advanced 

stats are available, this model can be seen as an automated habit-evaluation tool. How-

ever, SARAH 2 can also be used in conjunction with video scouting, allowing player 

evaluators to compare the statistical results versus their personal assessment of habits 

for different skaters.  

Secondly, by precisely evaluating the success probability of various habits for skaters 

through the steps described below, this set of models enables skills coaches to uncover 

development opportunities for players and measure their progress over time in a sys-

tematic way. 

The starting point of SARAH 2 is the meaningful event-habit relationships identified 

as part of SARAH 1, based on the 0.0325 threshold discussed in the previous section. 

However, flipping the variables in the case of SARAH 2 allows us to statistically esti-

mate the probability of successful habit completion based upon a set of event-based 

advanced statistics for a given player. 

For instance, when attempting to predict the success probability of the “outside edge-

work” habit, the first step is to highlight that this habit is strongly impacting the follow-

ing 8 event-based advanced stats in SARAH 1. After identifying these strong event-

habit relationships, the idea of SARAH 2 is to use these events to predict the successful 

completion of the “outside edgework” habit, as exemplified below: 
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Fig. 2. An example of the 8 main events that meet the threshold for the “outside edge-

work” habit 

 

In this example, as part of SARAH 1, we had identified that the “puck battles won-

outside edgework” event-habit relationship was meaningful. For this reason, as part of 

SARAH 2, the “puck battles won” statistic is incorporated, among other events, as one 

of the predictors of the “outside edgework” habit.  

While not visualized in the previous section, similarly for the 7 other events listed 

above (e.g., breakouts via pass, puck recoveries,...), it was established in SARAH 1 that 

the “outside edgework” habit is also meaningfully driving part the results for these other 

events. As such, in addition to “puck battles won’”, these 7 other event-based advanced 

stats are also incorporated as predictors in SARAH 2 for this specific habit. 

In short, SARAH 2 is built as a random forest classification model [11] in which the 

event-based advanced statistics are the independent variables (X variables) and the 

habits are the dependent variable (y variable). 

SARAH 2 included 30 separate sub-models, with each of the sub-models representing 

one of the 30 different habits that were tracked in the study. 

The outcome of SARAH 2 is that for each player, all of the habits measured will be 

assigned a value between 0 and 1 (considered a percentage probability) that a respective 

habit yields positive results while on ice.  

For instance, in the case of Laura Stacey, a Canadian forward who initiates a high 

volume of controlled exits, dump entries and puck recoveries, the probability that she 

successfully completes the “outside edgework” habit is around 80%. 

It is important to note that the outcome of this model is only identifying the success 

probability of a habit completion (i.e. a 0.8 score is not necessarily better than a 0.65), 

it is only significant in that it creates a probability based prediction on which habits are 

likely strengths and weaknesses for a given player. 

For this random forest model, any habit with a score above 0.5 implies that when a 

player has the opportunity to exhibit this habit, they are more likely to complete this 

micro-ability well. As we had established that the event-habit relationships are mean-

ingful, the successful completion of said habit is inherently related to driving impactful 

results on the ice. 
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SARAH 2 Testing - Hyper-Parameter Tuning. SARAH 2 went through hyper-parameter 

tuning in order to optimize the number of trees to use for probabilistic prediction of 

habits. The process described below yielded an accuracy score 82%. 

For this hyper-parameter tuning, part of the data was used as the test set and was 

separated from the training data. The test set was utilized to compare predictions to 

tracked habits.  

The resulting closeness of the predicted outcomes made by the training data set com-

pared to the actual test-data enables us to be confident in the prediction made by our 

model. 

3 Outcome - Player Matrices of Success Probability and 

Frequency 

The outcome of this study is that each player will have their habits mapped out in a 2x2 

matrix based on the amount of times that habit is exhibited (driven by event-data) and 

the success probability expected when that habit is completed (probabilistic figure un-

covered in SARAH 2). 

 

3.1 Frequency and Success Probability – Measurement Techniques 

Frequency. This number is driven by the number of times a player exhibited that habit 

- which is uncovered through their time adjusted event data. 

Example - A player with a significant volume controlled entry via pass or stickhan-

dling (after establishing the connection between those events and the efficient use of 

crossovers as a habit) allows us to conclude that crossovers are frequently utilized by 

this player.  

We can predict that a player will utilize crossovers habit more often because of this 

higher volume of event data. 

 

Success Probability. The probabilistic figure between 0-1 discussed in SARAH 2 that 

provides a percentage probability that a player will complete that habit successfully 

when the opportunity presents itself, which is inherently related to driving impactful 

results on the ice. 

 

3.2 Matrix Deep Dive - Quadrant Breakdown (Player Development Matrix) 

As introduced in the public sphere by Jack Han in his newsletter[4], the matrix pre-

sented below has four quadrants, which is designed to enable player-development staff 

and scouts to identify the habits of strength and weakness for players. In its current 

form, skills on the the Player Development Matrix are estimated qualitatively and plot-

ted on the chart. To instead quantitatively determine where skills should go on this 

matrix, we plot the calculated frequency against the success probability for each player. 

An example of this novel quantitative iteration of matrix is included below. 
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Fig. 3. The development matrix of Vendula Pribylova. Her data and development matrix has 

been included in this publication with her permission. The development matrix is used with per-

mission from its creator, Jack Han. 

A breakdown of the interpretation of the four quadrants is provided below: 

 

Green Quadrant (LEVERAGE) - High success probability and high frequency; a 

player is expected to use this habit quite frequently and when completed it is done well 

(these are the skills that enable them to drive strong play). 

 

Blue Quadrant (EXPAND) - High success probability and low frequency; these are 

habits completed well when attempted, but player development staff should encourage 

these habits to occur more often because they are being underutilized. 

 

Red Quadrant (ADDRESS) - High frequency and low success rate; highest priority 

items to fix for player development given it occurs often but is done very poorly (high 

failure rates and likely holding the player back). 

 

Black Quadrant (DEVELOP) - Low frequency and low success probability; staff 

should target long run improvement for these habits, the player does not have the op-

portunity to complete these habits often, but they are not executed well when the situ-

ation presents itself. This should be the lowest priority items for player development 

staff and may be unimportant to a player’s archetype (i.e., grinder does not need to 

exhibit x skill). 

 

Each matrix is relative to only that player’s broader skill set. For example, Marie-Philip 

Poulin’s red quadrant habits may still be elite in comparison to 95%+ of her opponents 

but it is weak relative to the rest of her habit score. The reason this matrix was created 

Scouting Automated Ratings Analyzing Habits (SARAH)

Linköping Hockey Analytics Conference 2022 45



on a relative basis was to allow player development staff to focus on a personalized 

plan for each player, rather than the most elite players having almost no areas of im-

provement. 

 

3.3 Skill Set Scores Methodology 

In order to estimate the score on different skill sets, a weighted average calculation was 

used to incorporate both the effects of success probability and frequency of habits. As 

initially outlined in the tracking methodology, 7 different skill sets were determined 

with the goal of linking statistical techniques to more traditional scouting techniques 

(video analysis) containing the following habits. 

As such, weighting was applied to the frequency of different habits in each skill set 

to calculate the average success probability for the skill set. 

4 Conclusion and Future Works 

In short, this paper introduces a new approach to linking traditional scouting methods 

to advanced and micro stats in hockey through an automated scouting tool that can be 

used to improve the quantitative evaluation and player development processes of or-

ganizations. In terms of future work, three possible model expansions that could be 

explored are the following: 

 

• Developing a multi classification model combined with a non-binary habit tracking 

system would allow the incorporation positive impact (or lack thereof) of a habit to 

different degrees. For instance, a player that is developing a habit, while not fully 

mastering it could receive a score of 0.5 for said habit instead of simply limiting the 

choices to binary options (0 or 1). 

 

• The current model could also be extended to identify player archetypes at the micro-

habit level in order to characterize the strengths and the weaknesses of different 

groups of players more precisely. 

 

• Finally, the idea of skill stacking could be incorporated into the modeling process 

in the form of interactions between the different habits and multilevel targets in 

SARAH 1 and 2 respectively. 

5 Appendix 

The code for this project can be found at https://github.com/mnahabedian1/WHKY-

Player-Development-Project. The interactive player development matrix tool can be 

found at https://public.tableau.com/app/profile/mikael.nahabedian1483/viz/PlayerDe-

vProject-PublicVersion/Dashboard32. 
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Below are the definitions for the habits included in Table 1. 

 

5.1 Skating 

 
Edgework Outside – Ability to access outside edges with ease (usually with a bow-legged basic 

posture). 

Backwards Skating – Focus on pivot (without crossing feet) + stride mechanics yielding grip & 

smoothness. 

Stride Recovery – Back leg just under full extension and recovers underneath the body to allow 

for recovery in the next stride. 

Skating Mechanics – Knee flexion to generate power on each stride. Joints are stacked (shoul-

ders, knees and toe caps form a line). 

Crossovers – Use of crossovers when carrying the puck to change direction or build speed (every 

4 to 5 strides). 

Shouldering Speed – Movement patterns allowing smooth transition during changes of direction 

or to move from one play to the next. 

Feet in motion – Following cutbacks or puck receptions, ability to create separation with the 

opponent. 

 

5.2 Puck Reception 

 
Catching puck in Hip Pocket – Ability to receive the puck on the side of the body (let it through 

body). 

Dynamic Catch – Feet position (open) + catch in a weight shift or crossover. 

Getting off the boards – Ability to catch the puck along the boards in a favourable posture to 

get away. 

 

5.3 Stickhandling 

 
Loading Puck to Hip Pocket – Ability to load the puck on the side of the body (good attack 

position). 

Underhandling of Puck – Handling the puck efficiently without unnecessary stick motions. 

Handedness Versatility – Being able to play the puck both on the forehand and backhand. 

Deception w/ puck – Able to pull in players with the puck or give the illusion of making a 

specific play. 

 

5.4 Physical 

 
Initiating Contact – In board battles, willingness to initiate contact with the opponent to win the 

puck. 

Puck Protection with Body – Ability to use body as a shield between puck and opponent. 

Fitness Level – Overall ability to keep up with the pace of the game (& have reasonable shift 

lengths). 

 

5.5 Play Away from Puck 

 
Shoulder Checks – Making meaningful checks behind the play before retrieving the puck/in the 

DZ. 
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NZ Angling – Close space to ensure that threats are angled and neutralized in the NZ. 

Unassisted Stops – Getting out of structure and swiftly killing plays early without opening seams 

in DZ. 

Jumping in Shot Lanes – Purposefully & voluntarily jumping in front of shots in DZ. 

Awareness without puck – Reading plays correctly yet understanding the purpose of playing 

inside structure. 

Net Front Presence – Box out + goalie presence in DZ and OZ respectively. 

 

5.6 Passing 

 
Slip Passes – Ability to identify seams under or above the stick of opponents. 

Leveraging & creating seams – Ability to create seams through movement and accurately lev-

erage them. 

Pass Placement – Ability to provide good pucks to teammates. 

Vision – Ability to identify the best passing option. 

 

5.7 Shooting 

 
Coordination – Feet placement (front towards net) + application of downward force for accu-

racy/power. 

Weight transfer – Transfer of weight to generate velocity on the shot. 

Tip – Ability to tip shots/generate shots that are tip-able (usually low and through the defense).  

 

References 

1. Chevallier, B, Architecte Hockey, https://architecte-hockey.com/methods/  

2. Han, J., The Hockey Tactics Newsletter, https://jhanhky.substack.com/ 

3. Belfry, D., Belfry Hockey, https://belfryhockey.com/ 

4. Han, J., https://jhanhky.substack.com/p/how-to-ruin-a-player?s=r 

5. InStat Hockey, https://instatsport.com/hockey 

6. NHL Central Scouting, http://www.nhl.com/ice/draftprospectbrowse.htm 

7. Pronman, C.https://theathletic.com/3297887/2022/05/10/nhl-draft-lottery-ranking/ 

8. Mckeen’s Hockey, https://www.mckeenshockey.com/draft/ 

9. Han, J. https://jhanhky.substack.com/p/upgrading-the-player-development 

10. Scikit-learn, https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.Random-

ForestRegressor.html  

11. Scikit-learn, https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.Random-

ForestClassifier.html 

Scouting Automated Ratings Analyzing Habits (SARAH)

Linköping Hockey Analytics Conference 2022 48



How Analytics is Changing Ice Hockey

Ulf Johansson, Erik Wilderoth, and Arsalan Sattari

Dept. of Computing, Jönköping University, Sweden
ulf.johansson@ju.se, erik.wilderoth@gmail.com, arsalan.sattari@ju.se

Abstract. While ice hockey is often considered to lag behind the other
major sports in advanced analytics, the relatively straightforward metric
Corsi has now been used for more than a decade. In this paper, we
investigate how the introduction of Corsi and later xG has affected ice
hockey. As seen from an extensive quantitative study, two different eras
can be identified; the Corsi era, where the number of shots is the most
important criterion, and the xG era where shot quality is prioritized.
Looking at how the teams later performed in the playoffs, the analysis
show that until approximately five years ago, regular season Corsi was
the best indicator, but now it is instead xG. In the study, we specifically
identify and reason about differences and similarities between NHL and
SHL.

1 Introduction

Originating in Major League baseball, the utilization of advanced data-driven
analytics has during the last decades become the norm in all major sports. While
the derived information is valuable in itself, in particular for evaluating players,
it is also obvious that the use of analytics has changed the approach of both
players and teams. In this paper, we investigate how ice hockey has changed the
last decade, arguing that the usage of analytics has played a big part in this.

More specifically, we look at two standard metrics often employed in ice
hockey, Corsi and expected goals (xG), and see how the awareness of their im-
portance has increased, ultimately affecting how ice hockey is played. Using Corsi
first, we demonstrate that relatively high values generally indicate a successful
season, in both the NHL and the SHL. After that, we see how the two leagues
have actually evolved quite differently when trying to maximise Corsi. Finally,
we show the rather significant effects of xG, over time, becoming recognized as
more important than Corsi. In summary, the overall purpose of this paper is to
look into how the number of shots taken in ice hockey has changed over time
based on the current understanding of what makes teams successful.

2 Background and related work

In baseball, Sabermetrics, as made popular with the Moneyball [4] phenomenon,
has lead to a number of drastic changes in team strategies. Two striking exam-
ples are the reduction in attempted sacrifice bunts and stolen bases. Looking at
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only the American League, where a designated hitter bats for the pitcher, the
number of attempted stolen bases per team and game was in 2020 0.59, while
the corresponding numbers for 1990, 2000 and 2010 were 1.01, 0.89 and 0.9. Sim-
ilarly, the number of sacrifice bunts per team and game was 0.07 in 2020, which
should be compared to 0.26, 0.20 and 0.24 in the years 1990, 2000 and 2010
respectively. The reason for this is that when analysing the effect of attempting
to steal a base, it became obvious that the chance of success would need to be
extremely high to make the decision to send the runner correct [2]. Regarding
the sacrifice bunt, analytics discovered that in a large majority of all situations,
even a successful sacrifice bunt will actually reduce the number of expected runs
in that inning [7]. Another example is the frequent use of the so-called defensive
shift, where the infield is positioned in an unorthodox way. Specifically, against
a left-handed batter prone to pull the ball, three infielders are positioned to the
right of second base, often with the second baseman playing very deep. While
the success of the shift is somewhat questionable, see e.g., [5], it was in 2010 used
in total 1707 times in the American League. In 2015, the number of at bats with
a shift on was 14147 and in 2019 27592. In fact, traditionalist are now arguing
for a ban of the shift.

In addition to these fundamental changes in strategy, it could be argued that
players now approach the game in a different way. Specifically, pitchers are look-
ing for more strike outs, and batters for more home runs. As a consequence, the
proportion of at bats ending with a ball put in play has gone down significantly.
The K%, i.e., the number of strike outs divided by the number of at bats, has
gone up from 17.5% in 2010 to 23.0% in 2019. At the same time, the proportion
of at bats ending with a home run has increased from 2.85% to 4.16%.

In basketball, analytics, very simply put, showed that taking relatively hard
shots inside the three-point line should generally be avoided. Instead, the shots
should either be for three points, or taken from very close to the basket. As
a consequence, the shot locations have changed dramatically during the last
decade. Fig. 1 below shows the 25 most common shot locations for the NBA
teams in the season 2006-2007 (Left) compared to the 2019-2020 season (Right).

Fig. 1. NBA shot locations from NBA.com as posted on Instagram by Owen Phillips
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Ice hockey has traditionally been a conservative sport regarding analytics.
Since Plus/Minus was introduced back in the 1959/60 season in NHL, it took
more than 40 years for another metric to evaluate a player’s contribution to the
team except for scoring. When Alan Ryder came up with the Player Contribution
in 2003 [6] and Tom Awads the GVT (Goals versus threshold) [1], that were
two groundbreaking metrics. Both these metrics try to give one single value
describing how good players are. Technically, the two metrics were based on
goals, assists and Plus/Minus, i.e., still very rudimentary.

Since the 2010/11 season, NHL has published event data from all games. This
enabled data-driven approaches producing metrics like Corsi and Fenwick, see
[3]. According to Vollman [9] Corsi negates some of the major flaws of Plus/minus
including, e.g., sample size, team effects, zone starts and goalkeeping.

Following Bill James in baseball, Vollman, who is since 18/19 hired by LA
Kings as an senior analyst, started to write yearly editions of Hockey Abstracts
to highlight the advances of hockey analytics [8]. As in baseball, this made the
interest for quantitative approaches rise with both fans and teams. Consequently,
the NHL organisations have the last couple of years expended their analytics
departments a lot and by the season of 2021 there are 75 analysts hired by the
31 teams

3 Corsi in NHL and SHL - an historical view

The Corsi metric is very straightforward, simply calculating the attempted shots.
Often, it is broken down into CF (Corsi for) and CA (Corsi against) with the
obvious meaning. Sometimes it is aggregated into one number, CF%, which is
CF/(CF + CA), meaning that a team with a CF% over 0.5 has more shot
attempts than their opponents.

In NHL, the goal of course is to win the playoffs, becoming the Stanley Cup
champions. Table 1 below gives an overview of the importance of Corsi in the
NHL. Interestingly enough, we see that having a good CF% rank is often more
important than the regular season finish. This is true in particular for the earlier
years, i.e., up to 2016, where the Stanley Cup champion often had one of the
best CF% ranks in the regular season, and corollary, the best team according to
CF% in the regular season very often made it to the final four.
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Table 1. Corsi history NHL. Ranks are for the regular season.

Season Champions Regular Season Winner Best CF% Team
(Reg. seas., CF%) (CF%, end of the road) (end of the road)

07/08 DET(1,1) DET (1, champions) DET (champions)
08/09 PIT (8,19) SJ (5, 1st) DET (runner-up)
09/10 CHI(3,1) WSH(3, 1st) CHI (champions)
10/11 BOS(7,14) VAN(6, runner-up) SJ (conf final)
11/12 LA(13, 2) VAN(7, 1st) DET (1st)
12/13 CHI (1,4) CHI(4, champions) LA (conf final)
13/14 LA (9,1) BOS (4, 2nd) LA (champions)
14/15 CHI (7,2) NYR (20) LA (no playoffs)
15/16 PIT (4,2) WSH (14, 2nd) LA (1st)
16/17 PIT (2,16) WSH (4, 2nd) LA (no playoffs)
17/18 WAS (7,24) NSH (8, 2nd) CAR (no playoffs)
18/19 STL (12,10) TBL (9, 1st) SJ (2:nd)
19/20 TBL (3,5) BOS (13, 2nd) VGK (conf final)

We now, in Table 2 below, take a similar look at SHL (Swedish Hockey
League), often considered the third strongest ice hockey league in the world
after NHL and the Russian KHL. Here, Corsi data are only available for the
15/16 season and later, and it should be noted that for the 19/20 season, the
playoffs were cancelled due to Covid-19. While the sample size thus is very small,
it is interesting to see that the champions actually had the best regular season
CF% in three of the four years.

Table 2. Corsi history SHL. Ranks are for the regular season

Season Champions Regular Season Winner Best CF% Team
Regular season rank (CF% rank, end of the road) (end of the road)

15/16 Frölunda (2) Skellefteå (2, runner-up ) Frölunda (champions)
16/17 HV71 (2) Växjö (3, quarter-final) HV71 (champions)
17/18 Växjö (1) Växjö (1, champions) Växjö (champions)
18/19 Frölunda (3) Färjestad (5, semi-final) HV71 (quarter-final)

Based on this, the overall picture is that teams with high Corsi-values in the
regular season have generally been successful in the playoffs. Specifically, CF%
has been a much better indicator of how far the team will make it in the playoffs
than the regular season finish, despite the fact that a high finish in the regular
season by design leads to lower ranked opponents, and a home-field advantage.
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4 Corsi development in NHL and SHL

We now address the question of whether the importance of high Corsi values,
in particular CF%, has changed the way ice hockey is played. To answer this,
we first look into how the number of shots, i.e., CF has changed over the years.
To get unbiased results, we divide the number of shot attempts with the total
time played with both teams at full strength. The values in Table 3 represent CF
per 60 minutes. From these numbers, in particular when looking at the moving
averages over the last three years (MA-3), the trend in NHL is quite clear; teams
attempt more and more shots. In SHL, though, we see only small changes during
the five years.

Table 3. CF development in NHL and SHL

Season NHL SHL
CF/60 MA-3 CF/60 MA-3

07/08 50.5 50.5
08/09 53.1 51.8
09/10 53.9 52.5
10/11 55 54
11/12 54.1 54.3
12/13 53.8 54.3
13/14 54.4 54.1
14/15 54.4 54.2
15/16 54.1 54.3 50.68 50.68
16/17 55 54.5 51.65 51.17
17/18 57.4 55.5 50.86 51.06
18/19 56.9 56.4 50.26 50.92
19/20 55.6 56.6 48.55 49.89

To further analyze this, we divide the teams into four categories based on
their CF/60 and CA/60. In the NHL, we set the threshold to 55, i.e., Low
represents values smaller than 55, and High values over 55. We use the following
names for the categories:

– DULL: Low CF and Low CA
– BAD: Low CF and High CA
– GOOD: High CF and Low CA
– FUN: High CF and High CA

Fig. 2 below shows how the teams in NHL have developed over thirteen sea-
sons. Starting with the earlier seasons, most teams are actually DULL. Specifi-
cally, in 07/08, no team is categorized as FUN. After that, and until the 17/18
season, there is a clear movement from the top-left quadrant (DULL) towards the
lower right (FUN), i.e., most teams shoot more, but also receive more shots. In
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the 18/19 and 19/20 seasons, however, the trend is reversed, with teams leaving
the FUN quadrant. Actually, in 19/20, a number of teams are again categorized
as DULL.

Fig. 2. NHL team development

Fig. 3 below presents the corresponding development in SHL. Here, however,
since the number of shots is generally lower, due to the larger rinks, the threshold
was set to 50 instead of 55. In SHL, the trend is actually quite different, with
more and more teams appearing to minimizing the number of shots from the
opponent, rather than taking more shots of their own. So, the two leagues take
different approaches to maximizing CF%, in SHL the approach is more defensive,
and in NHL more attacking.
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Fig. 3. SHL team development

5 The quality of shots – incorporating xG

The Corsi metric is blind to the quality of the shots. All attempts, regardless
of the actual probability that it will score a goal, are taken into account. To
incorporate shot quality, we add expected goals (xG) to the analysis. The xG of
a shot is, loosely put, the likelihood of that shot scoring a goal, so the higher
xG per shot, the higher the quality. Just by inspecting the relationship between
CF/60 and xG/60 between the seasons 07/08 and 19/20 in Fig. 4, the change
in quality per shot is obvious. We argue that this graph shows the rise and fall
of the “Corsi Game”. Between the seasons 10/11 and 15/16 the two lines are
separated with CF/60 on top, i.e., while more shots were taken, the quality was
low. From the season 15/16, however, we can see the rise of xG, and in the
last seasons the xG line is for the first time actually higher than the Corsi line,
showing that the quality of the shots has increased.
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Fig. 4. Corsi vs. xG in NHL

Adding to this, we compare the success in the playoffs of the regular season
winner, the best CF% team and the best xGF%. For this, we use a linear scale:

– 5 points: Stanley Cup Champions
– 4 points: Runner-up
– 3 points: Conference final
– 2 points: Second round
– 1 point: First round

Using this scale, Table 4 below shows the average points for the regular season
winners, the best Corsi team and the best xG team, for the two different periods
before and after the 14/15 season. While it should be noted that we only look
at how individual teams fare in the playoffs, the differences between the two
eras are striking. Specifically, in the Corsi era, the best CF% team averaged
the conference final as the end of the road. In the xG era, it is barely a playoff
team. On the other hand, in the xG era, the best xG team reaches almost one
round further into the playoffs, on average. Actually, before the season 15/16 no
Stanley Cup champion had ever had a higher rank in xGF% than CF%. After
that season, no champion has had a higher CF% rank than xGF% rank.

Table 4. Corsi and xG eras

Regular season winner Best CF% Best xGF%
Corsi era (until14/15) 2.75 3.25 2.00
xG era (after 14/15) 1.80 1.20 2.80
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While a full analysis of how the quality of shots has increased is left for future
work, we give two important explanations. First of all, as seen in Figs. 5 and
6 below, where the most common shot positions for the 30 teams in 2010 and
2018 are shown, shots are now generally taken from closer to the goal. Second,
the number of one-timers has increased rapidly the last few years. Specifically,
in NHL the increase is 30.9% during the last three years, and in SHL it is 11.6%
for the last two seasons.

Fig. 5. NHL shot positions 2010
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Fig. 6. NHL shot positions 2018

6 Concluding remarks

We have in this paper described how advanced analytics has influenced ice
hockey. From the analysis, we identified two very different eras; the Corsi era
and the xG era. In the Corsi era, the teams strived to take many shots, resulting
in that the overall number of shots increased, especially in the NHL. In the last
five years, however, the quality of the shots, as measured by xG, has become
more important. The logic behind this is confirmed by comparing the playoff
success of the best Corsi, xG and regular season teams. For many years, the best
Corsi teams did in fact also have the most success in the playoffs, but now this
position is taken over by the best xG team. Another strong indication is that
shots in the NHL are now taken from closer to the net.
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Abstract. The National Hockey League Entry Draft has been an active
area of research in hockey analytics over the past decade. Prior research
has explored predictive modelling for draft results using player informa-
tion and statistics as well as ranking data from draft experts. In this
paper, we develop a new modelling framework for this problem using a
Bayesian rank-ordered logit model based on draft ranking data obtained
from scouting sites and media outlets. Rank-ordered logit models are
designed to model multicompetitor contests such as triathlons, sprints,
or golf through a sequence of conditionally dependent multinomial logit
models. We apply this model to a set of draft ranking data from the 2021
NHL draft and use it to provide a consolidated ranking for the draft and
estimate the probability that any given player will be selected at any
given pick.

1 Background and Motivation

Over the past two decades, the National Hockey League (NHL) has imposed a
hard salary cap to limit player salaries and control a team’s ability to retain and
add talented players in an effort to enforce competitive balance throughout the
league. This has forced teams to become increasingly savvy in how they allocate
resources. The NHL has three main outlets where a team can add, lose or main-
tain talent: free agency, trades, and the entry draft. Acquiring players through
free agency or trades can often be an expensive endeavour costing valuable cap
dollars or assets. On the other hand, the draft is a low-risk, high-reward way to
find and develop NHL-level talent.

Every NHL team employs a department of scouts to identify and evaluate the
top draft-eligible players throughout the season and inform the team’s draft se-
lections each year. To strategize and obtain the players they desire, teams make
assumptions on how long a player will last before being selected in the draft.
Previous research has explored predictive modelling approaches for the outcome
of the entry draft in both hockey [1] and other sports [2,3].

In this paper, we take a new approach to this problem by building a rank-ordered
logit (ROL) model to estimate the probability that any given draft-eligible player
will be selected at any given pick in the NHL draft. ROL models are typically
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used in sports that involve multicompetitor contests such as sprinting, triathlons,
or golf. Primarily, our work was inspired by a discussion with Tyrel Stokes on
this topic and his work with ROL models in the 100m dash [4].

In multicompetitor sports, there are generally dozens of major events per year
that can be used to fit the ROL model and predict the outcome of future events.
However, the NHL draft only occurs once a year and has a completely differ-
ent crop of players each year. To address this issue we scrape draft rankings
from various draft experts that provide ranking lists on scouting sites (i.e., Elite
Prospects, Dobber Prospects, etc.) and media outlets (i.e., TSN, Sportsnet).
We will refer to these media outlets and scouting sites hereinafter as ‘agencies’.
Additionally, we will refer to each ranking list from an agency hereinafter as a
‘ranking set’. These ranking sets from various agencies are used as input into
our model.

2 Methods

2.1 Multinomial Logit Models

We begin with a brief review of multinomial logit models. A multinomial logit
(MNL) model is a method used in statistics to classify observations into one of
two or more discrete outcome categories.

In particular, we are concerned with a special case of the MNL where we con-
sider one trial (draft pick) being taken from c categories (available draft-eligible
players). The goal of this model is to predict probabilities that each player is
selected with a particular draft pick. In other words, we wish to estimate prob-
abilities, [π1, π2, . . . , πc]
such that πk is the probability of player k being selected with the draft pick of
interest out of the c available draft-eligible players.

In the MNL model, these probabilities are derived as

πk =
exp (θk)∑c
j=1 exp (θj)

(1)

where θk is an ‘ability’ parameter for player k that we wish to estimate by fitting
this model [5].

As an example, suppose we wish to model the outcome of the 1st overall pick
in the 2021 NHL draft given draft rankings from various agencies. By using the
1st overall ranked player from these ranking sets, we can estimate the values of
θk for all available players k = 1, . . . , c, and consequently, obtain estimates for
the probability that player k is selected 1st overall, πk from (1), for all available
players.
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2.2 Rank-Ordered Logit Model

The MNL provides us with a simple framework for estimating the probability
that a player is selected with the first pick in the draft, but there are still ques-
tions that this model cannot answer alone such as: What is the probability of
a player being drafted 2nd, 3rd or beyond? How would these probabilities dif-
fer depending on which player(s) were selected prior? If a player is consistently
ranked top 5 but is never ranked 1st, would his probability, πk, of being selected
1st be the same as a player rarely ranked in the top 200?

These questions can be addressed using a rank-ordered logit model. A ROL
model can be thought of as a series of conditional multinomial logit models
where the 1st overall pick is modelled as a MNL model with a single pick from
the pool of all draft-eligible players, then the 2nd pick is modelled as a MNL
model with a single pick from all draft-eligible players excluding the player se-
lected 1st, and so on until the nth player, who is modelled using the MNL model
with a single pick from all draft-eligible players excluding the n− 1 players that
have already been selected.

To define this model, let θi be the underlying ability parameter for player i and
let Yi be the latent evaluation of player i’s ability by the agency that developed
the ranking set.

A key assumption in this model is that the latent evaluation by the agency is
a realization from a Gumbel distribution with a location parameter of θi and
a scale parameter of 1. That is, Yi|θi ∼ Gumbel(θi, 1) [6]. If we let the true
performance Yi equal θi + ϵi, where ϵi is an error term, then this assumption
is equivalent to assuming that the distribution of the error is Gumbel with
µ = 0, β = 1 where µ and β are the location and scale parameters of the
Gumbel distribution, respectively. The convenience of this assumption is made
clear by Luce and Suppes [7], who show that a Gumbel assumption of the errors
implies a logit formula for the choice probabilities; furthermore a logit formula
for the choice probabilities implies a Gumbel distribution for the errors [8]. In
practice, this assumption is almost identical to an assumption of independent,
normal errors, although extreme value distributions have fatter tails [9]. This
assumption allows us to define the likelihood for a single draft ranking set in
this model as

P (Y1 > Y2 > · · · > Yn | θ1, . . . , θn) =
n−1∏

i=1

exp (θi)∑n
j=i exp (θj)

(2)

For example, consider a ranking set by TSN. Suppose TSN ranks Shane Wright
1st, Logan Cooley 2nd, and Juraj Slafkovsky 3rd, and θ1, θ2, and θ3 correspond
to Wright, Cooley and Slafkovsky’s underlying abilities, respectively. This im-
plies that Y1, Y2, and Y3 correspond to the TSN evaluation of Wright, Cooley
and Slafkovsky’s abilities, respectively, where Y1 > Y2 > Y3.
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We do not observe these scores directly from any ranking sets. However, we
operate under the assumption that some sort of rating scale exists for each
ranking set. To add some intuition behind the latent Yi’s, imagine that the
scouting team at Elite Prospects gets together and collaboratively comes up
with a player grading scheme with scores ranging from 0-100. They may have
scored Wright as 93/100, Cooley as 89/100, Slafkovsky as 88/100, and everyone
else as 86/100 or below.

2.3 Accounting for Unranked Players

We can improve on the basic rank-ordered logit model specified in Section 2.2
by accounting for unranked players in our model likelihood.

Consider two ranking sets. In ranking set A there are 32 players ranked; Aatu
Räty is ranked 8th while Fyodor Svechkov is ranked 20th. In ranking set B there
are also 32 players ranked; Aatu Räty is not ranked in the top 32 while Fyodor
Svechkov is ranked 22nd.

When we attempt to fit this model and estimate the θi’s, the likelihood from
the base ROL model as defined in Section 2.2 will take into account that Räty
ranked 8th in set A but will not penalize Räty for being unranked all together
in set B. On the other hand, the likelihood will take into account that Svechkov
was ranked 20th and 22nd in sets A and B, respectively.

This example highlights an issue with the basic ROL model in the NHL draft
setting. Players with more volatile rankings (i.e., players that are ranked highly
by some agencies and are left unranked entirely by others) will have overesti-
mated ability parameters because the cases where they are left entirely unranked
do not factor into the likelihood at all.

To address this, we leverage the extension to the rank-ordered logit model for
ranking the top m competitors out of a pool of M total competitors as outlined
by Fok et al. [10]. The likelihood for a single draft ranking set in this case is
expressed as follows:

P (Y1 > Y2 > · · · > Ym > max(Ym+1, . . . , YM ) | θ1, θ2, . . . , θM ) =

m∏

i=1

exp (θi)∑M
j=i exp (θj)

(3)

Here we assume that a ranking set ranks m players out of a pool of M total
players available. Referring back to the above example, this would now account
for the fact that Aatu Räty was unranked in ranking set B and adjust his θi
estimate accordingly.
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2.4 Considering Changes in Rankings Over Time

At the beginning of the 2020-21 season, Aatu Räty was ranked as a likely can-
didate for the 1st overall pick. However, Räty struggled to perform well in his
draft year and as the season wore on, he rapidly fell down every agency’s draft
rankings until he was eventually selected 52nd overall in the 2021 NHL draft.

Suppose we were in the days leading up to the draft in June 2021, and rank-
ing set A from September 2020 had Räty ranked 1st overall, while ranking set
B from May 2021 had Räty ranked 45th overall. Using the ROL model as we
have defined it so far would allow both ranking sets to influence the θi estimates
equally. However, ranking set B is likely more relevant to how the draft will play
out in reality since it was built with an entire season of information that ranking
set A did not observe.

This can be addressed by allowing player abilities to vary over time by assuming
that the θi’s follow an autoregressive process through the season as done in
Glickman and Hennessey [11]. To do so, we divide the season into time periods.
Typically, this could be done according to key dates throughout the season, but
the 2020-21 season had inconsistent scheduling across leagues due to COVID-19.
We thus split the season into four three-month time periods as follows:

t =





1, if between 2021-11-01 and 2021-02-01

2, if between 2021-02-01 and 2021-05-01

3, if between 2021-05-01 and 2021-07-23.

We define θt as the ability parameters for all players in time period t. Recall
that the autoregressive process assumes that

θt+1 = νθt + δt+1

δt+1 ∼ N (0, τ2I).

Essentially, the ability parameter from the previous time period, θit, is regressed
towards zero by the autoregressive parameter ν ∈ [0, 1] while varying by the
random δt+1 ∼ N(0, τ2) component to obtain the updated θi(t+1).

3 Model Setup

Now that we have laid out a ROL model for the NHL draft, we can move on
to implementing the model in R [12] and Stan [13]. We opted to use Bayesian
inference to fit this model as it involves a complex autoregressive hierarchical
structure that is beyond the scope of any current ROL model packages available
in R. The computation time for this model took approximately 55 minutes to
run using the ‘sampling’ function from the ‘rstan’ package in R [14].
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The likelihood used in our ROL model is simply the product of (3) from Section
2.3 over all draft ranking sets in all time periods as defined below. Here, Kt

represents the number of draft ranking sets from time period t with mkt and
Mkt representing the total number of players ranked and the total number of
draft-eligible players available to be ranked from our database, respectively, in
the kth ranking set of the tth time period.

L(θ, ν, τ) =

3∏

t=1

Kt∏

k=1

P (Y1 > · · · > Ymkt
> max(Ymkt+1, . . . , YMkt

) | θt) (4)

We assume a simple multivariate normal prior on the ability parameters in the
first time period, θ1. Each subsequent time period leverages the autoregressive
process described in Section 2.4 to set a prior on θt, t = 2, 3. Additionally, we
assume hyperpriors on ν and τ of Unif(0,1) and Inv-Gamma(2,1), respectively.

Since the variance of Yi|θit ∼ Gumbel(θit, 1) will remain constant at π2

6 for any
value of θit [15], θt is only identifiable up to an additive constant. To address
this, we impose a constraint on the model that all player ability parameters in a
given time period must sum to zero. As a result, the ability parameters should
be interpreted as ability relative to the other players being considered.

4 Results

4.1 Parameter Estimates

We obtain estimates for the player ability parameters, θit, in each time period via
posterior distributions from our Bayesian ROL model. Figure 1 displays the top
32 players based on their posterior means of θi3. These ability estimates allow
us to get a consolidated draft ranking based on our input data and determine
the most likely draft outcome (by ordering abilities from greatest to least).

4.2 Draft Simulations

These player ability parameter estimates are much more powerful than a tool
for basic comparison between players. We can also use these abilities to estimate
the probability that player i will be selected with the next pick given the re-
maining pool of players i+1, . . . ,M available at that pick. This probability can
be expressed as the following equation:

P (Yi > max(Yi+1, . . . , YM ) | θt, Y1 > Y2 > · · · > Yi−1) =
exp(θit)∑M
j=i exp(θjt)

(5)

With the player ability parameters estimated, we can now use (5) to simulate
entire drafts. At each pick we use (5) to calculate the probability of each remain-
ing player being selected at the pick of interest, then use these probabilities to
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Fig. 1. Top 32 players in the NHL draft based on ability parameter posterior estimates
from our rank-ordered logit model in time period 3 (2021-05-01 to 2021-07-23). Points
represent the posterior means of θi3 for player i; lines represent the corresponding 95%
credible intervals of the posterior.

take a multinomial draw of size 1 from the remaining players to simulate the
next player selected.

Figure 2 provides an illustration of the probability distribution of pick/player
combinations in the 2021 NHL draft as determined by these draft simulations.
The probabilities are determined by taking the total number of cases where a
player was drafted in a certain position and dividing it by the total number
of simulations. We ran 10,000 simulations of the NHL draft based on posterior
draws to produce this visual.
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Fig. 2. A visualization of the probability that any of the top 32 players are selected
with any of the top 32 picks; the colour of a square indicates the probability that the
corresponding player will be picked with the corresponding pick.

The purpose of these draft simulations is to estimate the probability that a
player is selected at any given draft pick. Ideally, we would compute this directly
by calculating the probability for every possible permutation of the draft then
summing up the total probability that player i is selected at pick j for all pairs
of i, j; however, this is computationally infeasible. Assuming we consider 400
draft-eligible players and select 224 (7 picks for each of 32 teams), there are

400P224 = 3.23565×10548 possible draft outcomes. By simulating the NHL draft
10,000 times we can gain estimates of these probabilities without as much of a
computational burden.

4.3 Player Ranking Distributions

Upon simulating the NHL draft using the posterior estimates of the player ability
parameters, we can obtain discrete probability distributions for the pick number
at which a player will be selected, which we call a ‘player ranking distribution’.
For example, Figure 3 displays the player ranking distributions for Owen Power
and Matthew Beniers.
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To provide an example of how this model can be used by a team, consider a
team with the 7th pick in the draft. Lets suppose they believe Matthew Beniers
is going to be a superstar. From the cumulative distribution function (blue)
provided in Figure 3, we can see that the probability that he is selected prior to
the 7th pick is roughly 90%. Thus, to have a better shot at selecting Beniers,
the team would have to consider trading their 7th overall pick plus additional
assets in order to acquire a higher pick in the draft where Beniers will have a
higher probability of being available.

Fig. 3. Player ranking distributions for Owen Power (left) and Matthew Beniers (right)
based on 10,000 NHL draft simulations. Red, dashed lines represent expected draft pick
based on the distribution.

5 Concluding Remarks

In summary, we built a rank-ordered logit model based on NHL draft ranking
data. This model allows us to estimate the ability of draft-eligible players relative
to their peers, simulate draft outcomes, and estimate a probability distribution
for the pick at which each player will be selected.

This model is still a work in progress and we feel there are many different routes
that we can take to improve its performance and accuracy. Primarily, we intend
to model the ability parameter θ by a linear predictor of player covariates with
coefficients that assume a hierarchical structure to allow the model to adjust for
team and agency tendencies. We expect that both agencies and teams will value
particular traits (such as skating, shooting, passing, grit, etc.) differently and
teams may draft players to address certain team needs (e.g., draft a defenceman
when their roster and prospect pipeline are lacking talent on defence).

Additionally, we do not directly address the between-ranking correlation due to
communication/collaboration between agencies. Two agencies may share thoughts
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amongst each other and, as a consequence, bias each other’s evaluation of certain
players. This has not been acknowledged directly in our paper and is an area
that we hope to address with future work.
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Identifying Completed Pass Types and Improving
Passing Lane Models

David Radke, Tim Brecht and Daniel Radke

David R. Cheriton School of Computer Science, University of Waterloo

Abstract. The implementation of a puck and player tracking (PPT)
system in the National Hockey League (NHL) provides significant oppor-
tunities to utilize high-resolution spatial and temporal data for advanced
hockey analytics. In this paper, we develop a technique to classify pass
types in the tracking data as either Direct, 1-bank, or Rim passes. We also
address two fundamental limitations of our previous model for passing
lanes by modeling 1-bank indirect passes and the expected movement of
players. We implement our pass classification and extended passing lane
models and analyze 198 games of NHL tracking data from the 2021-2022
regular season. We study the types of completed passes and introduce a
new passing metric that shows about 59% of completed 1-bank passes
have an equal or more open indirect passing lane than the direct lane.
Furthermore, we show that our expected movement addition reduces re-
ceiver location error in over 94% of completed passes.

Keywords: Hockey · Passing · Metrics · Passing Lanes · Tracking Data

1 Introduction

Ball and player tracking systems have revolutionized soccer and basketball ana-
lytics with extensive implications for scouting, coaching, player development, and
fan engagement. Recently, the National Hockey League (NHL) deployed a puck
and player tracking (PPT) system that records the location of the puck and ev-
ery player with high resolution and frequency (60 and 12 times per-second for the
puck and players respectively). Traditional methods of performance evaluation
in hockey have relied mostly on offensive events like goals and shots despite these
representing only a small fraction of the actual game play. Hockey has lagged
behind other sports in advanced analytics due to technical challenges caused by
the fast pace, small puck, white-colored ice, and other hardware challenges [14,
13, 3]. However, the new tracking system broadens the scope of potential metrics,
analysis, and performance evaluations in hockey.

Most of the game play in hockey involves puck possession and passing between
teammates. Previously, we developed a model to quantify the availability of
passing lanes for completed passes, which associated smaller values with more
difficult (or less open) passes [8]. While that model effectively calculates the
available space between a passer and receiver, it assumes passes can only be
direct (i.e., they are not banked off of or around the boards) and it treats player
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locations as static with respect to the time the pass was initiated. In reality,
players often use the boards to complete passes when direct passing lanes are
small or unavailable and pass to where their intended receiver is expected to be
instead of where they are at the time the pass is initiated. In this paper, we
make the following contributions:
– We develop a model to classify completed passes in PPT data to be either

Direct, 1-bank, Rim, or Other passes. This is required to apply passing lanes
models that are appropriate for different types of passes.

– We extend our passing lane algorithm [8] to 1) model the available passing
lanes for 1-bank indirect passes and 2) include the expected movement of all
players while the pass is made.

– We analyze passes using PPT data from 198 games from the 2021-2022
NHL regular season and devise a new metric for comparing completed 1-
bank indirect passes with the alternative direct passing lane to the same
receiver. We also examine the improvement in receiver location accuracy of
our expected player movement model.

2 Related Work

Numerous passing models have been developed for football (soccer) and bas-
ketball using tracking data. These are typically used to analyze aspects of the
game, such as pass disruptions to defensive formations [5], the expected value of
passes [2, 4], and the number of outplayed opponents by passes [11]. The focus
of that work is on the impact of passes instead of the actual difficulty or risk
associated with a pass, which could provide insight into decision making, skills,
and player risk profiles. Expected pass completion models (xPass) have gained
popularity in soccer and are used to estimate the probability of passes being
completed, or the difficulty of a pass, using physics [9], logistic regression [7],
Graph Neural Networks [12], and supervised machine learning [1]. While these
models can give significant insight into a player’s decision making and passing
ability, they rely on data for incomplete passes or ball control which may be
difficult to determine in hockey.

To model the availability of passing lanes without relying on data for incom-
plete passes, Steiner et al. [11] calculate the angle from the direct pass line to the
nearest opponent, where smaller angles correspond to less available passes. This
model is limited by not including opponents behind the passer or receiver and
not scaling for pass length. In response to these limitations, in previous work [8]
we defined four key requirements for a passing lane model: 1) always assign a real
numbered value, 2) incorporate the area surrounding the passer and receiver, 3)
be asymmetric with respect to pass direction, and 4) scale with respect to the
pass length. Our passing lane model presented in [8] assigns a value to each pass
(in R+) that defines how open a passing lane is and simultaneously satisfies all
four requirements without requiring data for incomplete passes. In this paper,
we extend this passing lane model in three ways. We classifying different types
of passes from the PPT data, calculate passing lanes for 1-bank indirect passes,
and model the expected movement of players.
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2.1 Background

Puck and Player Tracking Dataset Location data is collected through track-
ing technology that is inserted into the sweater of each player (back of the right
shoulder) and embedded into pucks. Location information contains x, y, and
z-coordinates to record locations in 3-dimensional space. The x and y locations
are relative to center ice (which is 0,0) and the z locations are relative to the
surface of the ice. The PPT data is recorded at 60 locations per second for the
puck and 12 locations per second for each player on the ice, resulting in a total
of about 734,400 location readings of main interest in a 60 minute game. Addi-
tional location data is obtained once a second for players that are deemed to be
off of the ice. The tracking data is accompanied by event data including shots,
goals, faceoffs, hits, and completed passes among others. These event labels con-
tain information about the time of the event and the identities of the players
involved.

Passing Lane Model To the best of our knowledge, the passing lane model
in [8] is the only attempt to quantify the availability of passing lanes in hockey.
The model uses the spatial locations of players in PPT data to estimate the
available space between a passer p and any receiver r. The model utilizes event
labels in the tracking data which have been identified by the data collection
company, SportsMEDIA Technology (SMT)1.

For each passing event, the passing lane model constructs a teardrop-like
passing lane shape (shown in Figure 1) between the x, y locations of a passer p
and receiver r that simultaneously satisfies all four requirements listed in Sec-
tion 2. The size of this lane is determined by the locations of opposing players,
representing the space between p and r without opponents (i.e., the open space).
The passing lane size and shape is described by a positive real-numbered value
γ, where larger γ values represent a wider lane and more open pass.

To determine the value of γ for a pass, we initialize γ = 0 (the direct line
from p to r, pr in Figure 1). In this paper, we relabel pr to be p⃗r to use vector
notation. Increasing γ expands the passing lane shape until the edge of the lane
contacts the location of an opponent. For example, increasing γ in Figure 1 grows
the passing lane from the blue, to the green, to the yellow shaded regions. Since
opponent 1 (o1) is contacted first by the growing shape, the passing lane from p
to r is represented as the blue shaded region. The resulting γ value is determined
to be the passing lane value (for efficiency, we implement binary search instead
of unidirectional growth). In Figure 1, γ = 0.6 since it is the smallest γ value
with respect to each opponent (i.e., o1 was contacted by the growing passing lane
first). While γ has no direct correspondence with completion percentage, values
of γ can be compared across time, locations, or players. We refer the reader to [8]
for a more detailed description about the original passing lane model.

1 www.smt.com/hockey
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Fig. 1: Passing lane diagram from [8]. This example shows three passing lane
shapes regulated by a parameter γ. The passing lane grows until the edge con-
tacts the nearest opponent. The passing lane in this example has value γ = 0.6
and is the blue shaded region (the others are included as examples if o1 or o2
did not exist). In this work, we relabel the direct passing line pr as p⃗r.

3 Completed Pass Classification

The PPT data includes event labels to identify instances of a completed pass;
however, there are multiple ways to pass the puck in hockey that should be
modeled differently. A passer p can pass directly to r (a Direct pass), bank off a
flat section of boards (a 1-bank pass), or rim the puck around a curved corner
of the surrounding boards (a Rim pass). We construct a model to identify these
types of completed passes from the PPT data and overcome several challenges
in the process. For example, there may exist some noise in the exact location
of the puck (potentially from puck fluttering or position accuracy) or the time
labels associated with passes. We found that the trajectory of passes cannot be
assumed to compose perfectly straight lines, even for Direct passes. The puck
may also contact the boards between consecutive readings of its location (i.e.,
the puck is traveling towards the boards at time t but traveling away from the
boards at time t+1). Thus, the puck location never truly contacts the boards in
the data. Our model uses a sequential filtering approach to differentiate between
completed passes that are Direct, 1-bank, and Rim passes, and leave more fine-
grained classification for future work.

Let P be the set of all passes in a game, P i ∈ P be a single pass, and pi

be the set of x, y puck locations for P i (origin at center ice). Our classification
algorithm identifies: 1) Direct (Pd), 2) Rim (Pr), and 3) 1-bank (P1) passes in
that order, each time reducing the set of possible passes to consider (starting at
P). The remaining unclassified passes compose a fourth class, Other, which we
discuss in detail later. Since two consecutive readings close to the boards may
represent actual contact with the boards (a challenge described above), all three
phases use a value db, a distance from the boards, to construct a buffer that is
used to determine puck readings that are sufficiently close to the boards.
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1) Direct Passes: We identify completed Direct passes using two charac-
teristics: 1) they may never be close to the boards and 2) have relative straight
trajectories when compared with the possible indirect passes to the receiver. Our
algorithm has two phases. First, if no points in pi are within distance db of the
boards, P i is classified as to be Direct. Since Direct passes may also happen
close to the boards, if any points in pi are within distance db of the boards,
we proceed to the second phase. If not identified as a Direct pass in the first
phase, we determine the five possible paths for p to pass to r, ignoring corners
(i.e., the direct path p⃗r, and off of both side-boards and both end-boards). Fig-
ure 2a shows this procedure in an example box (not-to-scale). The purple dots
represent pi, which has some change in direction near the receiver (i.e., likely
contacting the receiver’s stick before being considered received). To mimic actual
puck behavior, we remove any of the five passing paths that contact the net or
a rounded corner since the puck would not follow the projected trajectory fol-
lowing contact. We estimate the error from P i to each projected path using the
total Euclidean distance from each of the points pi to each of the five possible
paths. If p⃗r has the least error, the pass is considered Direct.

(a) Direct (b) Rim (c) 1-bank

Fig. 2: (a) Project 5 ways for p to pass to r (excluding corners). “Direct” pass if
the path with least error (Euclidean distance from pi) is p⃗r and/or puck is never
within distance db of the boards. (b) Calculate puck direction changes in the rink
corners. “Rim” passes have more than three direction changes in a corner that
are greater than threshold tθ. (c) Identify where the puck trajectory direction
changes quadrants of the Unit Circle. “1-bank” passes have at most 3 of these
points within distance db of the boards for specific changes of direction.

2) Rim Passes: The set of remaining completed passes are those not classi-
fied as Direct (i.e., indirect). Some indirect passes may be rims, where p directs
the puck around a curved corner of the boards so the puck contacts the boards
multiple times (Figure 2b). Our intuition to classify “Rim” passes is that the puck
1) changes direction multiple times and 2) these changes in direction are close
to the corner boards. To calculate general puck direction vectors (and reduce
change in direction noise), we average every 10 readings for the puck locations
for passes |pi| > 10 (red arrows in Figure 2b; shorter passes are not averaged).
We calculate the difference in direction between adjacent vectors θip (in degrees),
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and define a threshold tθ to determine if a direction change is sufficiently large.
Since direction changes can have several causes (e.g., deflection from a stick,
player, or referee) we only consider those direction changes that occur within db
of the corner boards. In our implementation, a Rim pass is determined to have
greater than three direction changes greater than tθ = 4◦ within distance db of
the corner boards. We choose three points since 1-bank passes should contain
at-most three points with specific direction changes (explained next).

3) 1-bank Passes: From the remaining completed passes, we determine the
set of 1-bank passes, where the puck only contacts a straight segment of the
boards once. Since we are only detecting a single change in direction, the model
for Rim passes is unable to be adapted since a change in the puck’s direction
of travel could happen for any number of reasons (i.e., deflections from sticks,
inaccuracies in device readings, or inaccuracies with time labels associated with
the pass). Therefore, we build on the intuition of detecting significant types of
direction changes since a puck contacting the boards once will completely change
its direction of travel. Our model draws on concepts from the quadrants of the
Unit Circle in Trigonometry (Figure 2c left). To reduce the noise in the puck’s
trajectory we use an average of 10 consecutive readings (we do not use averages
for short passes). For example, a sequence of 30 points could result in the three
points pia, pib, and pic shown on the right side of Figure 2c. We then calculate
vectors between these points to determine the general direction of the puck (red
and green vectors in Figure 2c). In the right of Figure 2c, the red vector (from
point pia to pib) represents the puck traveling towards the boards (at 60◦), and
the green vector (from point pib to pic) represents the puck traveling away from
the boards after the contact (now at 120◦). Note that angles are relative to 0◦

which is the line perpendicular to the boards in this example.
We plot these vectors for the puck traveling to and from the boards on the

Unit Circle shown on the left of Figure 2c. For a 1-bank pass, our model identifies
the three points (pia, pib, and pic) that comprise two consecutive vectors (red and
green) where their directions appear in different quadrants of the Unit Circle
(0◦, 90◦, 180◦, 270◦). It is not possible for a puck to contact a straight segment
of boards and continue in the same quadrant of the Unit Circle. Therefore, 1-
bank passes are classified if three or fewer points associated with puck direction
vectors that are within distance db of the boards where the direction changes
due to the boards (in the example in Figure 2c the angle of the vectors changes
quadrants from Q1 to Q2).

4 Passing Lanes for 1-bank Passes

The original passing lane model only considers the direct line from p to r, which
only represents Direct passes. For example, the model would consider the passing
lane from p to r in Figure 3a extremely small (red arrow) because there is an
opponent o directly on the path from p to r. However, a 1-bank pass can avoid
the opponent o and is more open than the Direct pass. Our goal in this section
is to model such passing lanes.
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(a) 1-bank Passing Lane (b) Expected Movement

Fig. 3: (a) We calculate passing lanes for 1-bank passes by reflecting receiver r
and opponent o about the boards. (b) We fit the passing lane to the expected
movement of r and o using their locations, velocities, and expected pass distance.

Using the theory of geometric reflections, a 1-bank pass off the boards is
geometrically equivalent to a Direct pass through the boards to a reflected rep-
resentation of r (r̂). This assumes the angle of incidence is equal to the angle of
reflection which we acknowledge may not be completely accurate due to puck
spin, fluttering, board imperfections, and variables such as drag and energy loss.
However, our model is an approximation of the available passing lane instead
of modeling the exact trajectory of the pass. We reflect all players besides the
passer about the boards so that the 1-bank pass can be modeled as a Direct
pass (in Figure 3a, green dotted line can be modeled as the orange dotted line
extension). In the example in Figure 3a, we keep p at it’s location and reflect
r and o to locations r̂ and ô respectively. Using r̂ as the location of r, we cal-
culate the passing lane with respect to the nearest opponent (also considering
their reflections). We acknowledge that 1-bank passes should be considered more
difficult than Direct passes. This is accounted for in our model, as γ scales with
the pass length and a 1-bank pass would be longer than the Direct pass.

To consider an in-game example when both teams are at even strength (no
penalties), consider a passer p. Given any potential receiver r, p has the option
to make a Direct pass, or bounce the puck off either side-boards or end-boards
(e.g., shown in Figure 2a). Some of these lanes will make more sense than others,
since a player is unlikely to pass the puck off their defensive end-wall when in the
offensive zone. Since γ decreases as the length increases, excessively long 1-bank
passes will receive very low γ values. We calculate γ for all five passing options
from p to r with respect to all opponents. The largest γ value is the most open
passing option for p to pass the puck to r. We expect a similar reflection-based
methodology may work for Rim passes, but leave this for future work.

5 Expected Player Movement

To compute γ, the passing lane algorithm in [8] uses the locations of players
taken at the time the pass is initiated. The asymmetry of the passing lane shape

Identifying Completed Pass Types and Improving Passing Lane Models

Linköping Hockey Analytics Conference 2022 77



accounts for opponents closer to r having more time to react to a pass (i.e., skate
towards the pass and/or move their stick in an attempt to intercept or disrupt
the pass). Furthermore, receiver r will most often not be stationary and receive
the pass at a different location than where they were when the pass was initiated.
We expand the previous passing lane model to include the expected location of
all players when computing the passing lane. In Section 6, we demonstrate how
our new model improves the expected location of the actual pass reception. Our
method calculates 1) the approximate distance of a pass P i (dP i), 2) the expected
speed of the pass (sp⃗r), 3) the duration of the pass (tPi), and 4) the expected
locations of receiver r and opponents o (r′ and o′). Visualized in Figure 3b, we
fit the passing lane from p to r′ with respect to o′.

The approximate pass distance (dP i) is calculated using the Euclidean dis-
tance from p to where the pass is estimated to be received (r′), defined later.
Given the approximate pass distance, we train a linear regression model on pre-
vious passes π to produce the expected speed of a pass with distance dP i , so
that π(dP i) → sp⃗r produces a positive real number. We calculate the duration
of a pass as tP i =

dPi

sp⃗r
and use r’s velocity vector (which includes direction) at

the time of the pass vr to determine their expected location, r′ = r + tP ivr.
This assumes r will continue in the current trajectory for tP i time.

Since opponents only have until the puck passes their location to disrupt the
pass, we only project o’s movement for time to, the time until the puck passes
their location along the pass trajectory p⃗r. For this computation, consider the
example in Figure 3b where o is located between p and r. Taking the dot product
of o with respect to p and the direct passing line p⃗r determines the perpendicular
location of o onto p⃗r (the red dashed line in Figure 3b). The expected time for the
puck to reach this intersection is calculated to be to. If o is behind p, to = 0, and
if o is behind r, to = tP i . We solve o′ = o+ toor, where or is the velocity vector
for o at the time the pass is made. Given the locations of p, r′ and o′, we calculate
the passing lane using the algorithm from [8], shown as the blue shaded region
in Figure 3b. In this example we only show one r and o for simplicity; however,
we can calculate passing lanes for any r with respect to all opponents. This
allows us to determine the receiver with the largest passing lane (i.e., the most
open player). The tracking data does not include information on stick location,
although this could be included if collected or estimated in future work.

6 Analysis

We implement our pass classification algorithms and passing lane extensions to
analyze completed passes using a combination of the raw tracking data and la-
beled event data. Our dataset is from 198 games played in November of the
2021-2022 NHL regular season. We utilize the pass event labels in the dataset
to determine when a pass was made; however, this dataset does not contain la-
bels for passes that were not completed. Additionally, the automated labeling
of events is a difficult problem; thus, the dataset may be missing some com-
pleted passes and/or include labels for events that are not actually completed
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passes. This dataset is still considered unofficial by the NHL, and may differ from
other datasets that contain complete and/or incomplete passes (e.g., a hand la-
beled dataset). In this paper, we utilize the event labels provided in the dataset
while including techniques to handle some, but not all, inaccuracies. We ana-
lyze features of our classification algorithm, 1-bank passing lanes, and expected
movement extensions in isolation to identify interesting passing behavior and
hypothesize about the potential performance of our models in the absence of
ground truth data.

6.1 Pass Classification and Statistics

We first analyze general features of the completed passes in our dataset and
how our classification model differentiates them. We observed db = 2.5 feet
(ft) captures multiple adjacent puck readings for Rim and 1-bank passes that
are close to the boards in most cases. Table 1 shows the results of our pass
classification algorithm on the set of all completed passes. Since our tracking
dataset only includes completed passes, the information may be biased towards
successful events and not necessarily reflect the game as a whole (i.e., what
was attempted and failed). As shown in Table 1, our model identifies 84.4% of
the passes labeled complete in this dataset to be Direct, 10.2% to be 1-bank,
2.6% to be Rim, and 2.8% to be Other. Forwards as a whole tend to complete
slightly more passes (49.5%) than defence (47.2%); however, when considering
there are typically two defence and three forwards on the ice, a defensive player
on average completes 43% more passes than a forward. We consider the relatively
small percentage of unclassified completed passes (Other) to be acceptable, but
is something we plan to examine in future work. After manually inspecting a
significant number of these unclassified passes, we believe that most are either
mislabeled as passes or consist of edge-cases that are difficult to identify (e.g.,
inaccurate timestamps resulting in odd changes in trajectory by a player).

Type Direct 1-Bank Rim Other Total

Forward % 41.9 4.8 1.2 1.5 49.5
Defence % 39.7 5.1 1.2 1.1 47.2
Goalie % 2.8 0.3 0.2 0.1 3.4

Avg/Game % 84.4 10.2 2.6 2.8 100.0

Table 1: Completed pass categorizations. Note that this data is based on events
labeled as completed passes. Actual values may differ if labels are incorrect,
missing and/or if incomplete passes are included.

Figure 4 compares the paths of completed 1-bank passes made by defence
(left) and forwards (right). Darker green represents more 1-bank passes in that
region. We see that most of the completed 1-bank passes initiated by defence are
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behind their own net or off the defensive half-walls. In contrast, the majority of
completed 1-bank passes from forwards are made behind the offensive net or off
the offensive half-walls (likely passing back to defence).

Fig. 4: Heatmap of completed 1-bank passes; defence (left), forwards (right).

Figures 5a and 5b show Cumulative Distribution Functions (CDF) for pass
distance (puck travel distance) and pass speed for completed passes, calculated
by comparing the total puck travel distance with the duration of the pass. For
example, half (0.5) of all completed passes had a distance of about 38 ft or
less, shown in Figure 5a. Interestingly, while the distances for completed indi-
rect passes (1-bank and Rim passes) are typically longer than completed Direct
passes, we observe almost no distinct difference between these classes for pass
speed (Figure 5b). Thus, we hypothesize that players pass the puck harder to-
wards the boards for indirect passes than they would for a Direct pass, to account
for the expected energy loss from the boards. The distributions of this data may
be different when considering all pass attempts.
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(a) Pass puck travel distances.
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Fig. 5: (a) CDF of pass length (distance traveled) for each type of completed
pass. (b) Speed of completed passes for each type (distance traveled divided by
total duration of the pass).

Figure 6a shows a CDF for the extra distance the puck traveled for each type
of pass. We calculate this as dpuck

dp,r
, where dpuck is the actual distance the puck

traveled and dp,r is the Euclidean distance from p to r (i.e., the shortest path for
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the puck). In theory, Direct passes should have the least extra distance traveled
compared to dp,r and Rim passes must travel corners which accumulates more
distance. Figure 6a shows that Direct passes generally do travel the least extra
distance, followed by 1-bank, and Rim passes.
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(a) CDF Extra Distance Traveled (zoom).
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Fig. 6: (a) CDF comparing the distance the puck traveled to the shortest possible
distance (Euclidean distance from p to r) for completed passes. (b) Zoomed out
CDF to show the long tail, likely due to event labeling or classification errors.

We do note that the actual path of most Direct passes is longer than the
shortest possible path (dp,r). These passes are those with values on the x-axis
greater than 1. Extreme examples of this can be also seen by the long tail in
Figure 6b (an un-zoomed version of Figure 6a). We believe this is due to pucks
being deflected by sticks or bodies (but the pass should still be considered Di-
rect). Furthermore, inaccuracies in the timestamps of pass events also lead to
add additional distances.2 Motivated by these challenges, our first classification
phase considers such passes Direct if the puck is not within distance db from
the boards during the pass. We hypothesize that the Direct, 1-bank, and Rim
ordering for extra distance in Figure 6a provides some insight into the accuracy
of our classification algorithm despite these artifacts.

6.2 Passing Lanes for Indirect vs Direct Passes

We now analyze our addition to the passing lane model for calculating 1-bank
passing lanes. Without any ground truth for how open a passing lane is, our goal
is to analyze how our passing lane model captures 1-bank passing behavior by
comparing Direct and indirect passing lanes for completed 1-bank passes. For
this analysis, we only consider the set of completed 1-bank passes for the reason
that a more open indirect passing lane does not always indicate a better play
and depends on the context of the game. For example, a player will likely opt

2 By manually inspecting a significant number of these cases, we observed the times-
tamp at the end of the pass may occur after the pass was received and the receiver
changed directions.
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for a Direct pass on a 2-on-1 offensive rush instead of a 1-bank pass, even if the
1-bank is technically more open.

For each completed 1-bank pass, we calculate the value of the indirect 1-bank
passing lane γi as well as the direct passing lane γd for p to pass to receiver r
and define a new metric, γ-ratio = γd

γi
. If the γ-ratio < 1, the indirect passing

lane was more open than the direct lane, otherwise the Direct pass was actually
more open. Figure 7a shows a CDF of the γ-ratio for completed 1-bank passes
separated by player position for forwards and defence. We observe that about
59% of 1-bank passes were completed when the 1-bank passing lane was equal to
or more open than the direct passing lane size (the γ-ratio ≤ 1). There is little
difference between the behavior of forwards and defence when the γ-ratio < 1;
however, when the γ-ratio > 1, defence tend to make more 1-bank passes when
both lanes are similar (i.e., the γ-ratio closer to 1).

Note that in Figure 7a the x-axis is centered around 1 and is limited to a
maximum of 2, since if γd is much larger than γi, the γ-ratio grows instead of
trending to zero. For an in-game scenario, Figure 8 (left) in Section 7 shows how
our model captures the 1-bank passing lane from Player #86 (who has possession
of the puck) up to Player #3, whereas our previous model [8] does not. For this
pass, the γ-ratio = 0.23

0.46 = 0.5 and completing this pass increases the subsequent
passing lane to Player #28 from γ = 0.3 to 0.98 (right side of the figure).
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Fig. 7: (a) CDF of the γ-ratio to show the fraction of completed 1-bank passes
where the 1-bank passing lane was more open (< 1) or direct lane was actually
more open (> 1). (b) Location of r error improvements with expected movement.

6.3 Player Movement

Our motivation for including expected player movement when model passing
lanes is to better fit the shape of the passing lane to the location of the receiver
when they receive the pass (and opponents to where they would be when the
puck passes their location). For the set of all completed passes, we have the
labeled location of the receiver at the time when the pass is considered received
(r∗t ). Therefore, we calculate the difference between r∗t and their location when
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modeled with expected movement (r′t) and without expected movement (rt). We
calculate the two location errors as the Euclidean distance between 1) r’s true
location and their projected location with expected movement (r∗t and r′t), and 2)
r’s true location and their location without expected movement (r∗t and rt). The
difference of these two errors provides insight into whether or not the expected
movement model better estimates the location of r when they receive the pass
(i.e., there less error). Figure 7b shows a CDF for the difference between these
two errors, where positive values correspond with expected movement reducing
the location error by the distance along the x-axis (more accurate location of
r). We find that expected movement reduces the error of r’s location for over
94% of passes, in one case up to 5.3 ft, and increases error in a small fraction of
passes by a small amount (at most up to 2.0 ft).

7 Potential Applications

The influx of data in professional sports has given broadcasters and fans the
ability to absorb more information about an event, such as shot speed, shift
length, or face-off win probabilities; this information is typically presented by
overlaying graphics or augmented reality (AR) on the live video broadcast. Our
passing lane model can also be used in this context to display the most available
passing option for one or more teammates, or the γ of a successful pass. Further-
more, our model could provide more fine-grained metrics that may be useful in
fantasy sports or gambling applications. This can increase fan engagement and
enjoyment by drawing attention to player formations and passing options.

When reviewing video of games, our passing lane model would give players
and coaches quantitative data for the availability of passing lanes to devise new
plays or assess performance. For example, the “up-and-over” is a common pow-
erplay sequence to shift the defence to a new side of the ice and open passing
lanes to certain players, shown in Figure 8. Using our models, coaches would be
able to adjust the location of offensive or defensive players to find positioning to
increase passing lane sizes, or to reduce the size of an opponent’s passing lanes.

While GMs are tasked with constructing rosters and assessing players, watch-
ing every game or shift of a player is often infeasible and current metrics (such
as goals and points) provide only a coarse view of player performance skewed
towards offense. Our passing lane model could quantify passing behavior in a
game or across a season (for assessing consistency). If augmented with incom-
plete passes, our model could determine how often players force passes when a
more open alternative is available and provide insights into the passing skills of
players (e.g., whether players manage to complete passes with smaller lanes).

8 Discussion

The high fraction of the γ-ratio ≤ 1 (59%) shows that NHL players in our dataset
typically complete 1-bank passes when the indirect lane is larger or equal to
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Fig. 8: Powerplay scenario for the Orange team, showing the best passing lanes
to each player at times t and t + i. At time t (left figure), Player #86 has the
puck. Our new passing lane model identifies the 1-bank lane to Player #3 as
being the most open (twice as large as the direct lane). Player #86 chooses this
lane for their pass (purple line). At time t + i (right figure), after Player #3
receives the pass, the cross-ice lane to #28 increases from 0.3 to 0.98 (a factor
of 2.3). Completing this pass is known as an “up-and-over” on the powerplay.

the direct lane defined by our model. Reducing the location error for r in the
majority of completed passes (94%) shows that expected movement better aligns
with where NHL players pass the puck than when it is not included. However,
our analysis has several limitations that are important subjects of future work.

First, since our dataset only contains completed passes, our analysis may not
accurately reflect the full behavior of all attempted passes. Another potential
application of our model may be to identify incomplete passes based on the
movement of the puck; however, this is beyond the scope of this paper.

Second, more accurate time labels for the start and end of passes would
improve the precision and scope of future passing models. More accurate time
labels would also improve the ability to calculate the speed of passes which has
implications on the pass speed model we use for expected movement.

Third, future datasets could allow for more concrete evaluations such as cal-
culating classification accuracy and lead to the development of new models. A
ground truth dataset of pass types could be used to evaluate the accuracy of our
classification model and allow our system to learn classification thresholds di-
rectly from data instead of observing and defining values. Furthermore, a dataset
of incomplete passes could help analyze correlations between game context, γ
values, and pass completion probabilities.

Identifying Completed Pass Types and Improving Passing Lane Models

Linköping Hockey Analytics Conference 2022 84



Fourth, extensions to the current passing lane model could explore a series of
different directions. Rim passing lanes are a natural extension of this work. We
could further improve the passing lane model to include more advanced meth-
ods of expected movement, such as predicting a player’s movement with machine
learning (i.e, ghosting) [6], physics-based approaches used in soccer [10], or con-
sidering handedness, reach, and stick length. When modeling the expected speed
of a pass, a future iteration may consider personalized pass profiles by observ-
ing previous passes only by a specific player, their location, position, orientation
(augmented from a visual dataset since this is not in the PPT data), or type of
pass (i.e., Direct, 1-bank, or Rim). Another potential pass classification could be
drop passes, which have significantly different dynamics (player movement and
puck speed) than most Direct passes. Furthermore, future work can leverage
the z coordinate of the puck to analyze who makes saucer passes and where, a
common pass in hockey that elevates the puck off the ice.

Finally, we would also like to conduct a sensitivity analysis to determine if
our classifications are sensitive to db, tθ, and other variables.

9 Conclusions

The new PPT system implemented by the NHL has opened the door for a
broader scope of hockey analytics to better model higher resolution events of
the game. In this paper, we present an algorithm to classify different types of
passes from PPT data and extend the passing lane model in [8] to include 1-
bank indirect passes and the expected movement of players. Our model estimates
that 1-bank passes comprise about 10.2% of all completed passes in our dataset
and make up the majority of non-Direct passes completed. We present gamma-
ratio, a metric to model the relationship between direct and indirect passing
lanes available to a passer. Our model calculates the indirect passing lane to be
equal or more available than the direct lane for approximately 59% of completed
indirect passes. Furthermore, we show that including the expected movement
of players reduces the error in modeling the location of the receiver when they
receive the puck for over 94% of completed passes. As PPT systems continue to
expand and improve, the impact of algorithms to leverage this type of data will
only increase.
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Score and Venue Adjustment                                              

on Transition Data in Hockey 

Cédric Ramqaj and Thibaud Châtel 

Abstract. Are zone exits and entries influenced by score and venue the same 

way shots and goals are? Using our proprietary database of over 120,000 transi-

tion events, we analyzed how score and venue can impact how much you con-

trol your transitions and your success percentage. Playing at home or on the 

road does not seem to have much impact overall, especially compared to the in-

fluence the score of the game has. Trailing teams appear to be able to make 

more controlled zone exits, with greater success, probably due to a lesser pres-

sure. On the other hand, leading teams tend to dump the puck out of their defen-

sive zone more often. A trailing team would also try more zone entries but the 

split between controlled and dump attempts surprisingly remains stable, contra-

dicting a common idea that defenses make it harder to enter the offensive zone 

when protecting a lead. The “play a simple game on the road” mantra, with less 

controlled transitions, does not seem to hold either, when looking at the data.  

1 Introduction 

One of the key motivations behind data-driven research in sports has been to confirm 

or infirm common ideas about the game. In hockey, a sport played on a relatively 

overcrowded small surface where it is easy to slow down the flow of the game, we 

know that leading or trailing in the score will push one team to naturally dominate the 

other in terms of puck possession and shots taken. This also means that the attacking 

team will face less pressure to exit its defensive zone, as the defending players are 

more likely to wait in the neutral zone, but will have a tougher time entering the of-

fensive zone in control as they face a tighter wall of defensemen at the blue line. 

  Earlier in 2022, Micah Blake McCurdy published research [1] on transitions but 

based on puck movement between the three zones, without any details on the transi-

tion events per se. He confirmed some assumptions, namely that trailing teams were 

exiting their defensive zone faster or that away teams were slower to exit than home 

teams. 

  In the last 10 to 15 years [2], multiple studies have analyzed the impact of such a 

paradigm on shots and goals, pushing data providers, both public and private, to add a 

“score adjustment” to their data, reflecting the fact that one team is supposed to be 

attacking and the other is supposed to be defending at some point in the game. That 

idea was also derived for teams playing at home, or on the road and was called “venue 

adjustment”.  
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  However, such adjustment has never been made on transition data, such as zone 

exits and entries. Which leads to our main question in this paper: how score and ven-

ue (playing at home or away) impact the way a team is transitioning the puck?  

To answer it, we investigated how often teams execute zone exits and entries in a 

given score and venue situation. How they execute such plays (in control or dumping 

the puck) and with what success rate.  

 

2 Exploring Zone Exits and Entries 

2.1 Collecting Transition Events 

 

Hockey games play-by-play data are now largely available around the world and 

many public initiatives have used them over the last ten years to help us analyze and 

understand teams and players performances. However, these publicly available da-

tasets are almost entirely shot-related data, and do not include anything regarding how 

the puck is moving on the ice between two shots.  

  Transition data, whether zone exits, zone entries or passes, also called “Microstats”, 

are available through private data providers or public initiatives, such as the All Three 

Zones project funded by Corey Sznajder [3] for the NHL. Data is collected by indi-

viduals, outside any league or private providers, to make it available to the public. NL 

Ice Data [4] is a project that has been manually collecting data on the Swiss National 

League since 2019-20, including transition data that will be used in this paper. We 

acknowledge the dataset includes more games from certain teams based on the work 

done at the time by NL Ice Data, but every team in the league had enough representa-

tion by season so we were not worried about the sample being driven by one or two 

teams. 

2.2 Definitions of Transition Events 

The database used for this paper includes events collected in 440 games between 

2019-20 and the end of January 2022. It includes 73,778 zone exits and 55,689 zone 

entries, all made at 5v5.  

  We defined three types of zone exits. Carry exits happen when a player skates in 

possession of the puck across his defensive blue line. Pass exits happen when a pass 

leads the puck to cross the defensive blue line or puts the receiver in an immediate 

and safe situation to do so. Carry or Pass Exits are successful or failed if the team 

keeps possession of the puck in the neutral zone. Dump exits happen when a player 

chips the puck in the air or against the board to send it in the neutral zone or farther 

away. A successful Dump Exit is retrieved by a teammate in the neutral zone or if the  
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puck reaches the offensive zone. It fails if it becomes an icing though, if an opponent 

recovers the puck in the neutral zone or if the puck does not even leave the defensive 

zone. 

  We defined two types of zone entries. Controlled Entries happen when a player 

skates in possession of the puck across the offensive blue line or passes it to a team-

mate in immediate position to do so. It is a success if the attacking player keeps con-

trol of the puck for at least two seconds in the offensive zone. Dump Entries happen 

when the puck is sent in the offensive zone with no passing intent. It is successful if 

the first or second player to take full possession of the puck is attacking, otherwise it 

is failed.     

  Figure 1 shows how many events are included in this research.  

 

 
 

 

3 Calculating Score and Venue Effects on Transitions 

We can split the 129,467 transition events from our database between the different 

score states and venues (Figure 2). 
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3.1 Method 

In this paper, we are building on the earlier work by Micah Blake McCurdy back in 

2014 [5] on Score-Adjusted Fenwick and with the same rationale behind it. Here, we 

take controlled entries tried (success or failed) as an example for an event. The ad-

justment coefficient is the ratio between the rate at which the event happens over all 

Score & Venue possibilities and the event at a given Score difference (tied for exam-

ple) and for one of the venues (home team for example).  

  More formally:  

𝑅𝑎𝑡𝑒 (𝑝𝑒𝑟 60) 𝑜𝑓 𝑎𝑛𝑦 𝑒𝑣𝑒𝑛𝑡 =  
∑𝑙𝑒𝑎𝑑𝑖𝑛𝑔

𝑖=𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 ∑𝑎𝑤𝑎𝑦
𝑗= ℎ𝑜𝑚𝑒 𝑒𝑣𝑒𝑛𝑡𝑖,𝑗

∑𝑙𝑒𝑎𝑑𝑖𝑛𝑔
𝑖=𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 

∑𝑎𝑤𝑎𝑦
𝑗= ℎ𝑜𝑚𝑒 𝑇𝑂𝐼𝑖,𝑗

 

 

Which leads to the following adjustment coefficient for any event for a home team in 

a tied game: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑒𝑓𝑓. =  
𝑅𝑎𝑡𝑒 (𝑝𝑒𝑟 60) 𝑜𝑓 𝑎𝑛𝑦 𝑒𝑣𝑒𝑛𝑡

𝑅𝑎𝑡𝑒 (𝑝𝑒𝑟 60) 𝑜𝑓 𝑎𝑛𝑦 𝑒𝑣𝑒𝑛𝑡 (ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚, 𝑡𝑖𝑒𝑑 𝑔𝑎𝑚𝑒)
 

 

3.2 Score & Venue Effect 

To go back to our example, on average, 51.102 controlled entries are tried per 60 

minutes, whatever the score difference and venue context. For a home team in a tied 

game, on average, 51.811 controlled entries are tried. Using the above formula, the 

adjustment coefficient for controlled entries tried with a home team in a tied game is 

then 0.986 (or 51.102/51.811). As home teams in a tied game try more controlled 

entries on average than in any given context, they should weigh less than 1. Figure 3 

shows all our adjustment coefficients, per score difference and venue context.  
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  These adjustment coefficients are further discussed in Section 4.4.  

 

 

4 Findings 

4.1 Rate of Transition Events per Score and Venue 

We began our analysis by looking at the rate of transition events during a game. And 

it immediately appeared that the score was heavily driving how often each team 

would transition the puck. 

 

 It appears that a trailing team would add about 10 controlled exits (carry or pass) per 

60 minutes compared to a leading team (Figure 4, a). And a leading team would per-

form about 10 more dump exits compared to a trailing team (Figure 4, a), which rep-

resents a 57% difference.  
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  A trailing home team would also perform around 5 more controlled entries com-

pared to when leading the game (Figure 4, c). Interestingly, a trailing team on the road 

would add almost 10 controlled entries compared to a leading away team (Figure 4, 

d), a 20% difference. We also see that, unlike what we could have thought, the rate of 

dump entries does not increase much when a team is trailing (Figure 4, c, d). When 

chasing the score, teams are more likely to add more controlled attempts than dumps-

in.  

4.2 Zone Exits 

Intuitively, the collective knowledge, or also called “eye test”, would state that exiting 

your defensive zone at 5v5 can often become an easy thing if you are trailing, as the 

leading team is entering shell mode in the neutral zone. 

 

 
 

  And this historical intuition is supported by numbers. On average, there is a 10 

points of percentage drop in the share of exits attempted in control between a team 

leading or trailing (Figure 5, a, b). A leading home team would attempt 73% of its 

exits in control, 79% if the score is tied, and 83% if they are trailing (Figure 5, a). A 

leading away team would attempt 71% of its exits in control, 77% if the score is tied, 

and 81% if they are trailing (Figure 5, b). The dynamics at play are the same here: the 

score driving the change of style more than playing at home or on the road. A leading 

team will use less carry or pass exits and increase the number of pucks dumped out of 

their zone. On the contrary, a trailing team would use less dumps and equally more 

carry or pass exits.  

  We still see a tiny difference created by home ice advantage, especially with a tied 

score, but it is maybe less than expected. It is to be noted that the difference comes 

from more pass exits tried by the home team, when carry exits are not impacted. One  
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theory here would be that carry exits are driven by individual talents, players that 

would execute their play no matter the home ice advantage.  

  In terms of success rates, they seem to be less impacted by the score or venue than 

the style chosen to exit. A trailing team would see its success rate on carry and pass 

exits increase, especially in the third period, as per our data, probably from the lack of 

pressure. But there is not much difference otherwise before the third period, or overall 

if you are leading or in a tied game.   

4.3 Zone Entries 

Do we see a similar dynamic for zone entries? But if zone exits see a change from a 

sole reduced forecheck, entries might have a double dynamic, with the defending 

team tightening its play on their defensive blue line, and with the offensive team hav-

ing a choice between still trying to enter in control, or simply dump the puck in.  

 

 
 

  And here, the historical preconception might be a bit off. First, a trailing home team 

would barely change its style between controlled and dump attempts (Figure 6, a). A 

trailing away team, however, would increase their share of controlled attempts (Figure 

6, b), which goes probably against the “play a simple game on the road” mantra. One 

common thing is the slightly reduced success rate on controlled attempts when trail-

ing the score (Figure 6, c, d), showcasing that it gets harder to get through the de-

fensemen at the blue line. Dumps success rates barely move, or even from a few dec-

imal points in favor of the trailing team. Does an increased pressure from the trailing 

forwards compensate the fact defensemen are playing tighter? Defensemen might also 

let forwards recover the dump in order to pin them along the boards. 

  And what could drive how zone entries are performed might be how easily the de-

fense can set up and send fresh legs on the ice: namingly the location of the benches.  
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  We clearly see a small but steady increase in the second period, both in the share of 

controlled attempts and the success rate of those (Figure 7, a, b, c, d). And if a team 

uses fewer dumps in the second period, their success rate also improves. On the other 

hand, the first and third periods are almost copycats on all metrics. Based on this, 

teams willing to build on controlled entries could intentionally push harder for them 

during the second period of games. 

 

4.4 Score and Venue Adjusted Transition Values 

If indeed score and venue impact the way teams are transitioning the puck in a hockey 

game, it seems possible to now use score and venue adjusted values for exits and 

entries data when collecting them. More importantly, using adjusted numbers would 

benefit talented players and teams able to keep on executing controlled plays despite a 

less favorable context and increased pressure. And, of course, penalize players and 

teams unwilling to face tougher adversity.   

 That means, instead of each event having a value of 1, the adjusted value would de-

pend on the score and venue situation, following the formula detailed in Section 3.1. 

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑒𝑓𝑓. =  
𝑅𝑎𝑡𝑒 (𝑝𝑒𝑟 60) 𝑜𝑓 𝑎𝑛𝑦 𝑒𝑣𝑒𝑛𝑡

𝑅𝑎𝑡𝑒 (𝑝𝑒𝑟 60) 𝑜𝑓 𝑎𝑛𝑦 𝑒𝑣𝑒𝑛𝑡 (ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚, 𝑡𝑖𝑒𝑑 𝑔𝑎𝑚𝑒)
 

   

The adjustment for a play made harder by score and venue, for example a controlled 

zone exit when leading the score, would give that event a value higher than 1, reward-

ing the play. However, an easy or expected play, for example a controlled exit when 

trailing the score, would have an adjusted value lower than 1, highlighting the easier 

context surrounding the event.   
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  Here we chose to group successful and failed events, as we position ourselves ahead 

of the transition, when the player must choose how he will execute the play. Findings 

are very similar for home and away teams. A leading home team, facing increased 

pressure from the trailing forwards would see carry exits (1.08) and pass exits (1.06) 

(Figure 8, a) bonified to reward the will to keep control of the puck instead of getting 

rid of it to escape forecheck. On the other hand, dumping the puck as the leading 

home team is expected and one dump exit would now be worth 0.84 (Figure 8, a), not 

penalizing the player responsible. 

  The opposite dynamic is witnessed for the trailing home team. As zone exits get 

easier, your carry or pass attempts are now worth 0.94 or 0.95 each (Figure 8, a). 

Dumping out the puck as the trailing home team is not something you are supposed to 

do and a dump would now be worth 1.34 (Figure 8, a), penalizing the player respon-

sible in his stats, as most agree that dump exits are to be avoided in general because 

they generate less offense [6].  

  On zone entries, we discovered that trailing did not mean less controlled entries. 

Therefore, you would not be rewarded for trying to enter the offensive zone in control 

when chasing the score. A controlled entry for a trailing team, home or away, would 

now be worth 0.93 (Figure 8, c, d). Even if controlled entries become harder to com-

plete when trailing, the fact that you are trying many more is driving the adjustment 

down.  

  One thing here is also to remember that the side of the ice mattered more than the 

score on entries, and the third period, where the score would most impact the game, 

has benches on the easy side for defensemen.  
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5 Conclusions, Limitations and Future Work 

In the end, historical assumptions seem to mostly hold. A leading team would control 

transitions less and dump the puck more, when a trailing team would face easier zone 

exits. However, the fact that trailing teams increase their number of zone entry at-

tempts quite a lot, leading to more controlled entries, was a bit surprising.  

  It also appeared clearly that score dynamics are a much stronger driver than venue 

dynamics. And that the net difference in style or success between home and away 

teams is very close, making us wonder if the old saying “play a simple game on the 

road” is a thing of the past, or even ever existed. 

  One unexpected finding concerned the impact of playing far from your bench during 

the second period. It leads to more controlled transitions and better success rates, 

probably as defenders are more tired and lines get stretched over the ice. Knowing 

this, teams should really push harder during that second period if they can, also know-

ing the risk they face defensively.  

  The next step in our studies would be to look at how trailing teams specifically de-

cided to approach zone entries. Do the way trailing teams approach transitions help 

them tying the game? What are your probabilities to score based on how much con-

trolled and successful your transitions are at that time? That way, we could possibly 

highlight the most effective strategies to score goals under the pressure of losing a 

game.     

  It would be interesting to see how our work hold for other professional leagues 

(KHL, NHL, Liiga, SHL, …), envisioning a difference between European hockey, 

played in big rink, and North-American hockey.  

  We tracked games during the 2022 Olympics, played in a small rink, and controlled 

entries percentage tended to be 5 to 10 points of percentage lower than our average 

numbers in Switzerland. Defending zone entries in a small rink is indeed much easier 

and running the same analysis with NHL data could bring different conclusions. 

  Furthermore, if score and venue dynamics probably explain a non-neglectable part 

of the results, what other variables or aspects of the game could help us understand 

the observed differences? Does this Score & Venue adjustment offer an improvement 

in the repeatability of the different transition measures? Would any adjustment of 

time be justified? In another research [7], Micah Blake McCurdy stated that “time-

adjustment for possession calculations is not justified”. 
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Abstract. Tracking and identifying players is an important problem in
computer vision based ice hockey analytics. Player tracking is a chal-
lenging problem since the motion of players in hockey is fast-paced and
non-linear. There is also significant player-player and player-board oc-
clusion, camera panning and zooming in hockey broadcast video. Prior
published research perform player tracking with the help of handcrafted
features for player detection and re-identification. Although commercial
solutions for hockey player tracking exist, to the best of our knowledge,
no network architectures used, training data or performance metrics are
publicly reported. There is currently no published work for hockey player
tracking making use of the recent advancements in deep learning while
also reporting the current accuracy metrics used in literature. Therefore,
in this paper we compare and contrast several state-of-the-art track-
ing algorithms and analyze their performance and failure modes in ice
hockey.

Keywords: ice hockey · deep learning · tracking.

1 Introduction

Ice hockey is played by an estimated 1.8 million people worldwide [10]. As a
team sport, the positioning of the players and puck on the ice are critical to
team offensive and defensive strategy [22]. The location of players on the ice is
essential for hockey analysts for determining the location of play and analyzing
game strategy and events. In ice hockey, prior published research [15, 5] perform
player tracking with the help of handcrafted features for player detection and
re-identification. Okuma et al. [15] track hockey players by introducing a particle
filter combined with mixture particle filter (MPF) framework [23], along with
an Adaboost [24] player detector. The MPF framework [23] allows the parti-
cle filter framework to handle multi-modality by modelling the posterior state
distributions of M objects as an M component mixture. A disadvantage of the
MPF framework is that the particles merge and split in the process and leads
to loss of identities. Moreover, the algorithm does not have any mechanism to
prevent identity switches and lost identities of players after occlusions. Cai et al.
[5] improve upon [15] by using a bipartite matching for associating observations
with targets instead of using the mixture particle filter framework. However, the
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algorithm is not trained or tested on broadcast videos, but performs tracking in
the rink coordinate system after a manual homography calculation.

Remarking that there is a lack of publicly available research for tracking
ice hockey players making use of recent advancements in deep learning, in this
paper we track and identify hockey players in broadcast NHL videos and analyze
performance of several state-of-the-art deep tracking models on the ice hockey
dataset. We also annotate and introduce a new hockey player tracking dataset
on which the deep tracking models are tested.

2 Related work

There are a number of recent studies dealing with player tracking in basketball
[19, 13, 27] and soccer [20, 9, 21, 7]. For basketball player tracking, Sangüesa et al.
[19] demonstrated that deep features perform better than classical handcrafted
features for basketball player tracking. Lu et al. [13] perform player tracking in
basketball using a Kalman filter by making the assumption that the relation-
ship between time and player’s locations is approximately linear in a short time
interval. Zhang et al. [27] perform basketball player tracking in a multi camera
setting.

In soccer, Theagarajan et al. [20] track players using the deep SORT algo-
rithm [26] for generating tactical analysis and ball possession statistics . Hurault
et al. [9] introduce a self-supervised detection algorithm to detect small soccer
players and track players in non-broadcast settings using a triplet loss trained
re-identification mechanism, with embeddings obtained from the detector itself.
Theiner et al. [21] present a pipeline to extract player position data on the soccer
field from video. The player tracking was performed with the help of CenterTrack
[29]. However, the major focus of the work was on detection accuracy rather than
tracking and identification. Gadde et al. [7] use a weakly supervised transduc-
tive approach for player detection in soccer broadcast videos by treating player
detection as a domain adaptation problem. The dataset used is generated with
the help of the deep SORT algorithm [26].

3 Methodology

We experimented with five state-of-the-art tracking algorithms [3, 26, 28, 1, 4] on
the hockey player tracking dataset. The algorithms include four online tracking
algorithms [3, 26, 28, 1] and one offline tracking algorithm [4]. SORT [3], deep
SORT [26] and MOT Neural Solver [4] are tracking by detection (TBD) algo-
rithms. Tracktor [1] and FairMOT [28] are joint detection and tracking (JDT)
algorithms.

Tracking by detection (TBD) is a widely used approach for multi-object
tracking. TBD consists of three steps: (1) detecting objects (hockey players
in our case) frame-by-frame in the video (2) calculating affinity between de-
tected objects (3) inference - linking player detections using calculated affinities
to produce tracks. Concretely, in TBD, the input is a set of object detections

Evaluating deep tracking models for player tracking in broadcast ice hockey video

Linköping Hockey Analytics Conference 2022 99



Table 1. Tracking algorithms compared for hockey player tracking.

Algorithm Description

SORT [3] Kalman filter with simple IOU based re-id.
Deep SORT [26] Kalman filter with deep CNN based re-id.

Tracktor [1] JDT algorithm with separate detection and re-id networks.
FairMOT [28] JDT algorithm with combined object detection and re-id network.

MOT Neural Solver [4] Tracking using graph message passing with edge classification.

O = {o1, .....on}, where n denotes the total number of detections in all video
frames. A detection oi is represented by {xi, yi, wi, hi, Ii, ti}, where xi, yi, wi, hi

denotes the coordinates, width, and height of the detection bounding box. Ii
and ti represent the image pixels and timestamp corresponding to the detection.
Affinity calculation consists of calculating affinity between detections oi by ob-
taining appropriate features. The features can be simple intersection over union
(IOU) based [3] or using deep networks [25]. After affinity calculation, a set of
trajectories T = {T1, T2...Tm} is found that best explains O where each Ti is a
time-ordered set of observations. This is done through an appropriate inference
technique. Two widely used inference techniques are filtering [3, 25] and graph-
ical formulation [4]. As an example of graphical formulation, the MOT Neural
Solver [4] models the tracking problem as an undirected graph G = (V,E) ,
where V = {1, 2, ..., n} is the set of n nodes for n player detections for all video
frames. In the edge set E, every pair of detections is connected so that trajecto-
ries with missed detections can be recovered. The problem of tracking is posed
as splitting the graph into disconnected components where each component is a
trajectory Ti. After computing each node embedding and edge embedding using
a CNN (affinity calculation), the model then solves a graph message passing
problem. The message passing algorithm classifies whether an edge between two
nodes in the graph belongs to the same player trajectory.

Joint detection and tracking (JDT) [1, 28] is the latest trend in multi-object
tracking research. These methods either (1) Convert an object detector to a
tracker by estimating the location of a bounding box in the adjacent frames [1] or
(2) Perform detection and re-identification using a single network [28]. Bergmann
et al. [1] use the bounding box regressor of a Faster RCNN [16] detector to regress
the position of a person in the next frame. The re-identification is performed
using a separate siamese network. Zhang et al. [28] perform object detection
and re-identification with the same network using separate detection and re-
identification branches. The differences and similarities between the five tracking
algorithms are summarized in Table 1. We refer the readers to the publications
of the respective tracking papers [3, 26, 28, 1, 4] for more detail.

4 Dataset

The player tracking dataset consists of a total of 84 broadcast NHL game clips
with a frame rate of 30 frames per second (fps) and resolution of 1280 × 720
pixels. The average clip duration is 36 seconds. The 84 video clips in the dataset
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Fig. 1. CVAT tool used for tracking annotations. The tool offers the ability to annotate
bounding boxes with each box having one label - home or away team. Each player
bounding box has player name and jersey number as attributes. CVAT also offers an
interpolation mode which alleviates the need to draw bounding boxes multiple times
for adjacent frames.

are extracted from 25 NHL games. The duration of the clips is shown in Fig. 2.
Each video frame in a clip is annotated with player and referee bounding boxes
and player identity consisting of player name and jersey number. The annotation
is carried out with the help of the open source computer vision annotation tool
(CVAT) 1. An illustration of an annotation job using the CVAT tool is shown
in Fig. 1. The dataset is split such that 58 clips are used for training, 13 clips
for validation, and 13 clips for testing. To prevent any game-level bias affecting
the results, the split is made at the game level, such that the training clips are
obtained from 17 games, validation clips from 4 games and test split from 4
games respectively.
Table 2 compares the size of the dataset with other tracking datasets in literature.
The hockey player tracking dataset is comparable in size with other tracking
datasets used in literature. As compared to pedestrian datsets (MOT 16 [14]
and MOT20 [6]), the bounding boxes per frame is less in our dataset since the
maximum number of players on the screen can be 12, with usually less than
12 players actually in broadcast camera field of view (FOV). The NHL game
videos used to create this dataset have been obtained from Stathletes Inc. with
permission.

1 Found online at: https://github.com/openvinotoolkit/cvat
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Fig. 2. Duration of videos in the player tracking dataset. The average clip duration is
36 seconds. The red horizontal line represents the average clip duration.

Table 2. Comparison of hockey tracking dataset with other tracking datasets in liter-
ature. Our hockey player tracking dataset is comparable to other multi-object tracking
datasets commonly used in literature.

Dataset Videos/sequences Frames Bounding boxes Domain

MOT16 [14] 14 11, 235 292, 733 Pedestrians
MOT20 [6] 8 13, 410 2, 102, 385 Crowded pedestrian scenes
KITTI-T [8] 50 10, 870 65, 213 Autonomous driving

Ours 84 91, 807 773, 545 Ice hockey players

4.1 Annotation process

15 annotators annotated the whole dataset using the CVAT tool. The average
time taken to annotate one minute of video is 10.45 minutes. The total time
taken to annotate all 84 videos is 527 minutes. The manual annotation was done
such that a bounding box as tight as possible was drawn around a player/referee.
Linear interpolation was used to interpolate bounding box positions. Addition-
ally, unlike other tracking datasets such as MOT16 [14] and MOT20 [6], the same
ground truth identity was assigned to a player leaving camera FOV at a partic-
ular frame and re-entering after some time. If a player was occluded by board
or another player, the bounding box was annotated based on the best guess of
the tightest box enclosing the full body of the player. For quality control, all
bounding boxes were checked to make sure each box has label-name(name of
the player ). When a player enters/exits the scene, his bounding box was labeled
even if he was partially in camera FOV. Whenever players were occluded by
other players, revision of annotations was performed to ensure high quality.

5 Results

Player detection is performed using a Faster-RCNN network [17] with a ResNet50
based Feature Pyramid Network (FPN) backbone [11] pre-trained on the COCO
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Table 3. Comparison of the overall tracking performance on test videos of the hockey
player tracking dataset. (↓ means lower is better, ↑ mean higher is better)

Method IDF1↑ MOTA ↑ ID-switches ↓ False positives (FP)↓ False negatives (FN) ↓
SORT [3] 53.7 92.4 673 2403 5826

Deep SORT [26] 59.3 94.2 528 1881 4334
Tracktor [1] 56.5 94.4 687 1706 4216
FairMOT [28] 61.5 91.9 768 1179 7568

MOT Neural Solver [4] 62.9 94.5 431 1653 4394

Fig. 3. Proportion of pan identity switches vs. δ plot for video number 9. Majority
of the identity switches ( 90% at a threshold of δ = 40 frames) occur due to camera
panning, which is the main cause of error.

dataset - a large scale object detection, segmentation, and captioning dataset,
popular in computer vision [12] and fine tuned on the hockey tracking dataset.
The object detector obtains an average precision (AP) of 70.2 on the test videos
(Table 4). The accuracy metrics for tracking used are the CLEAR MOT met-
rics [2] and Identification F1 score (IDF1) [18]. A ground truth object missed
by the trackers is called a false negative (FN) whereas a false alarm is called a
false positive (FP). For any tracker, a low number of false positives (FP) and
false negatives (FN) are favoured. An important metric is the number of identity
switches (IDSW), which occurs when a ground truth ID i is assigned a tracked
ID j when the last known assignment ID was k ̸= j. A low number of iden-
tity switches is an indicator of accurate tracking performance. For sports player
tracking, the IDF1 is considered a better accuracy measure than Multi Object
Tracking accuracy (MOTA) since it measures how consistently the identity of a
tracked object is preserved with respect to the ground truth identity. The overall
results are shown in Table 3. The best tracking performance is achieved using
the MOT Neural Solver tracking model [4] re-trained on the hockey dataset. The
MOT Neural Solver model obtains the highest MOTA score of 94.5 and IDF1
score of 62.9 on the test videos.
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Table 4. Player detection results on the test videos. AP stands for Average Precision.
AP50 and AP75 are the average precision at an IOU of 0.5 and 0.75 respectively.

AP AP50 AP75

70.2 95.9 87.5

Fig. 4. Proportion of pan-identity switches for all videos at a threshold of δ = 40
frames. On average, pan-identity switches account for 65% of identity switches.

6 Discussion

From Table 3 it can be seen that the MOTA score of all methods is above 90%.
This is because MOTA is calculated as

MOTA = 1− Σt(FNt + FPt + IDSWt)

ΣtGTt
(1)

where t is the frame index and GT is the number of ground truth objects. MOTA
metric counts detection errors through the sum FP +FN and association errors
through IDSWs. Since false positives (FP) and false negatives (FN) heavily rely
on the performance of the player detector, the MOTA metric highly depends on
the performance of the detector. For hockey player tracking, the player detection
accuracy is high because of the sufficiently large size of players in broadcast video
and a reasonable number of players and referees (with a fixed upper limit) to
detect in the frame. Therefore, the MOTA score for all methods is high.

The SORT [3] algorithm obtains the least IDF1 score and the highest num-
ber of identity switches. This is due to the linear motion model assumption and
simple IOU score for re-identification. Deep SORT [25], on the other hand uses
features obtained from deep network for re-identification resulting in better IDF1
score and lower identity switches. For JDT based networks, performing detec-
tion and re-identification with a single network using a multi-task loss performs
better than having separate networks for detection and re-id tasks, evident by
better performance of FairMOT [28] compared to Tracktor [1]. JDT tracking
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Table 5. Tracking performance of MOT Neural Solver model for the 13 test videos (↓
means lower is better, ↑ means higher is better).

Video # IDF1↑ MOTA ↑ ID-switches ↓ False positives (FP)↓ False negatives (FN) ↓ Duration (sec.)

1 78.53 94.95 23 100 269 36
2 61.49 93.29 26 48 519 29
3 55.83 95.85 43 197 189 43
4 67.22 95.50 31 77 501 49
5 72.60 91.42 40 222 510 40
6 66.66 90.93 38 301 419 35
7 49.02 94.89 59 125 465 48
8 50.06 92.02 31 267 220 34
9 53.33 96.67 30 48 128 29
10 55.91 95.30 26 65 193 26
11 56.52 96.03 40 31 477 45
12 87.41 94.98 14 141 252 35
13 62.98 94.77 30 31 252 22

algorithms, however, [28, 1] do not not show any significant improvement over
deep SORT evident by lower identity switches of deep SORT in comparison.
The MOT Neural Solver method achieves the highest IDF1 score of 62.9 and
significantly lower identity switches than the other methods. This is because the
other trackers use a linear motion model assumption which does not perform
well with the motion of hockey players. Sharp changes in player motion often
leads to identity switches. The MOT Neural Solver model, in contrast, has no
such assumptions since it poses tracking as a graph edge classification problem.

Table 5 shows the performance of the MOT Neural solver for each of the 13
test videos. We do a failure analysis to determine the cause of identity switches
and low IDF1 score in some videos. The major sources of identity switches
are severe occlusions and players going out of the camera FOV (due to camera
panning and/or player movement). We define a pan-identity switch as an identity
switch resulting from a player leaving and re-entering camera FOV due to camera
panning. It is very difficult for the tracking model to maintain identity in these
situations since players of the same team look identical with features such as,
jersey color, helmet model, visor model, stick model, glove model, skate model,
tape color etc unidentifiable from bounding boxes cropped from 720p broadcast
clips. During a pan-identity switch, a player going out of the camera FOV at
a particular point in screen coordinates can re-enter at any other point. We
estimate the proportion of pan-identity switches to determine the contribution
of panning to total identity switches.

To estimate the number of pan-identity switches, since we have quality an-
notations, we make the assumption that the ground truth annotations are ac-
curate and there are no missing annotations in the ground truth. Based on this
assumption, there is a significant time gap between two consecutive annotated
detections of a player only when the player leaves the camera FOV and comes
back again. Let Tgt = {o1, o2, ..., on} represent a ground truth tracklet, where
oi = {xi, yi, wi, ht, Ii, ti} represents a ground truth detection. A pan-identity
switch is expected to occur during tracking when the difference between times-
tamps (in frames) of two consecutive ground truth detections i and j is greater
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than a sufficiently large threshold δ. That is

(ti − tj) > δ (2)

Therefore, the total number of pan-identity switches in a video is approximately
calculated as ∑

G

1(ti − tj > δ) (3)

where the summation is carried out over all ground truth trajectories and 1

is an indicator function. Consider the video number 9 in Table 5 having 30
identity switches and a low IDF1 of 53.33. We plot the proportion of pan identity
switches, that is

=

∑
G 1(ti − tj > δ)

IDSWs
(4)

against δ, where δ varies between 40 and 80 frames. From Fig. 3 it can be seen
that majority of the identity switches ( 90% at a threshold of δ = 40 frames)
occur due to camera panning. Visually investigating the video confirmed the
statement. Fig. 4 shows the proportion of pan-identity switches for all videos at
a threshold of δ = 40 frames. On average, pan identity switches account for 65%
of identity switches in the videos. This shows that the tracking model is able to
tackle a majority of other sources of errors which include minor occlusions and
lack of detections. The primary source or errors are pan-identity switches and
extremely cluttered scenes.

7 Conclusion

In this paper, we test five state-of-the-art tracking algorithms on the ice hockey
dataset and analyzed their performance. From the performance of trackers we
infer that trackers with a linear motion model do not perform well on hockey
dataset, evident by the high number of identity switches occurring in models
with linear motion assumption. The best performance is obtained by the MOT
neural solver model [4], that uses a graph based approach towards tracking
without any linear motion model assumption. Also, the IDF1 metric is a better
metric for hockey player tracking since the MOTA metric is heavily influenced
by player detection accuracy. We find that the main source of error in hockey
player tracking in broadcast video are pan-identity switches - identity switches
results due to players going outside the broadcast camera FOV.
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Abstract. In a fast-paced free-flow game as Ice Hockey the decision
making of the players is crucial for the success of the team. A game in
the Swedish Hockey League (SHL) has on average 244 possession changes
where both teams play at full strength. Previous studies have shown that
the most effective way to create scoring chances is by exiting and entering
zones with the puck under control. On the contrary, this paper studies
the question of risk and reward of different plays. Based on an extensive
data-driven investigation of three full SHL seasons, the conclusion is that
the best way not to concede goals is also by doing the transition plays
with control. Specifically, a failed dump-out is 57% more likely to end
up in the opponents scoring a goal than a failed outlet pass.

Keywords: Ice Hockey, Dumps, Controlled Entry, Controlled Exit

1 Introduction

Within sports there is a lot of conventional wisdom that has become truths,
whether based on facts or not. Data analysis is now, sport by sport, tearing
down these truths and creating new knowledge which is indeed well-grounded
in facts and data. Using a data-driven approach, this paper will investigate risk
and reward of different plays, and, consequently, what players should strive for
and avoid.

Compared to other major sports like baseball, basketball, American football
and soccer, ice hockey should be considered a sport where the results to a large
degree are random. Weissbock [1] tried to quantify the randomness in sports,
showing that in the NHL, the underdog wins more often than in any of the other
major sports in the US. In fact, the favorite wins only 57% of the games in the
NHL. In both the NFL (64%) and the NBA (64%) the favorite wins significantly
more often. MLB (56%), finally, is very similar to the NHL.

Good teams of course try to increase that number and reduce the randomness.
To minimize luck, teams need to calculate risk and reward for the actions in the
game. Compared to baseball and American football, ice hockey is a “free flow
360 degree” game where a play (or an episode) in theory can last for a full period
of 20 minutes. Players both attack and defend within the same play, in sharp
contrast to baseball and American football where one team attacks (tries to
score) and one defends. These fundamental characteristics of ice hockey create a

Linköping Hockey Analytics Conference 2022 109



lot of situations that cannot be planned for in advance. Players need to be quick
thinkers and problem solvers in order to adopt to new and unique situations in
this dynamic and high-speed game. To minimize randomness and achieve success
the teams, however, set up some ground rules on how the coach wants the players
to act in the different situations that occur frequently and in slight variations
during the free-flowing plays.

2 Background

An Ice Hockey rink is divided into three zones. Defensive Zone (DZ), Neutral
Zone (NZ) and Offensive Zone(OZ). To create scoring chances, teams need to
transport the puck in some way from the DZ to the OZ. In fact, no goals the
last three seasons in the SHL were scored from the the NZ or the DZ, when
the teams both play at full strength and the goalkeeper has not been pulled.
The combination of the rules offside and icing makes it almost impossible to go
directly from the DZ to the OZ, so the NZ needs to be used for this transition.
Here, the conventional wisdom says that players must be very careful not to lose
the puck in the NZ, i.e., losing the puck in this zone increase the other team’s
scoring chance significantly.

Table 1: Terminology Entries and Exits

TYPE SUB-TYPE DESCRIPTION

Controlled Carry A Player transports the puck over the blue line
Controlled Pass A player passes the puck to another player over the blue line
Dump Dump A player shoots the puck to next zone without a direct receiver
Dump Chip A player shoots the puck in the air into next zone without intended receiver
Exit Puck moves from Defensive Zone to Neutral Zone
Entry Puck moves from Neutral Zone to Attacking Zone

Losing the puck - The term describes the next possession after the puck
changes team. If Team A shoots and Team B collects the puck, it is a possession
change. All situations where Team B touches the puck when Team A has it,
count as a possession change and is therefore included in the term “Losing the
puck”.

On a risk/reward scale the Dump-in-play is generally considered to be low
risk/low reward while Controlled entries/exits are associated with higher risk,
but also higher reward.

This paper will focus on data from the SHL. Team wise the playing styles
differ quite a lot when it comes to zone exit and zone entry strategies. For
instance, Skellefte̊a AIK carries out the puck almost twice as often as they dump
it out from the DZ, meanwhile Malmö Redhawks dumps it more often than they
carry it.
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Total average zone exit numbers for the SHL are:

– Dump Out 23%
– Carry Outs 25%
– Passing 51%

In Figure 1 the dump-out rates and dump-in rates are shown to highlight the
different playing styles in SHL for the season 20/21. Malmö Redhawks was the
team that used the “dump-out” as an exit strategy out of the DZ the most and
“dump in” into the OZ most as well. On the opposite side, Skellefte̊a AIK makes
the most controlled plays, both when exiting the DZ and entering the OZ. The
differences in numbers are huge between the teams. Malmö Redhawks performed
41% more uncontrolled exit and entries during the season than Skellefte̊a AIK
(3119 vs. 2208).

Fig. 1. SHL teams Dump out and dump in rates

3 Related Work

Chatel [2] presents base rates on how the different types of zone exits and entries
are connected to expected goals (xG). By bringing the puck out of your own
zone with control, the chance of scoring a goal increases dramatically. When
entering the offensive zone, it is even more important. Actually, and as seen
in Table 2 below, it is the chance of scoring a goal is almost doubled with
a successful controlled entry compared to a successful dump-in. Other works
concludes similar takes [6, 7] that carry-ins outperforms dump-ins by margin.

Stimson quantified [3] how the different breakout (exit) strategies were lead-
ing to shots for and against in the next play. He concluded that controlled exit
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Table 2: Chatel’s xG Contribution Figures

TYPE SUB-TYPE CONTRIBUTION TO XG

Zone Exit Carry-Out 0.024
Zone Exit Pass 0.026
Zone Exit Dump-Out 0.016
Zone Entry Controlled Entry 0.04
Zone Entry Dump-In 0.022

had the best Net Shot Differential of all breakout types, meaning more shots for
than against.

In the NHL, the entry strategy dump-in is getting more popular for the last
couple of seasons [4]. Due to lower risk to get a turnover in the neutral zone,
teams are more careful with the puck. Mike Kelly has earlier examined this [4]
and concluded that dump-ins significant lower the number of odd man rushes
against, which is one of the most efficient ways to score goals in ice hockey [8].

A study similar to this paper has been published present to this [5] and
concludes that some existing results are in fact questionable when it comes to
exiting strategies, the results presented show that neither of the exit strategies
are superior to the other. The study, however, only targets successful plays with
the motivation that it is reasonable to assume that a player on, in this case, the
college level is generally successful in his attempts to play the puck. We argue
that this assumption is incorrect, and consequently that the results have limited
bearing on real-world ice hockey. In fact, there are a lot of “bad plays” in ice
hockey resulting in turnovers to the defending team. As an example, teams in
the SHL have on average only 57% successful entries into the offensive zone. The
other 43% the defending team gets control of the puck.

4 Data Preparation

4.1 Data Collection

All data was extracted from SportLogiq1 for the SHL regular season games
2018/19 to 2020/21. The dataset includes 4 160 282 events before filtering. There
are 266 different ways to lose the puck possession to the other team in our data.
Most of these are unusual, specifically 213 such events have occurred fewer than
500 times the last three seasons in SHL. A game in SHL averages 244 possession
changes per game after filtering to both teams playing at full strength. 0.52% of
all puck losses ends up in a goal against.

4.2 Data Preparation

The data was, as described above, filtered by removing all events occurring when
not both teams play at full strength (5-vs.-5). In addition, all situations where

1 http://www.sportlogiq.com
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the goalie is the last player to touch the puck in a possession are also excluded
since these situations, including e.g., rebounds from shots etc. are very specific.
Furthermore, all situations where a team has been in possession of the puck for
less than 1.5 seconds are also excluded.

Fig. 2. Visual description of “Time with puck”. Team A must have the puck in pos-
session for at least 1.5 seconds for Team Bs goal to be included in the dataset.

The situation where a team has a possession for less than 1.5 second tends to
be more of reactions than decision making and therefore creates noisy data, e.g.,
re-bounds from shots of the bodies of the defenders. It may be noted, though,
that 13.6% of all goals in SHL are created in the possession after a “less than
1.5 second” possession.

Goals are created from possession changes in all zones as shown in Table 3.
In our dataset 58% of all goals are created from possession changes in the DZ
(seen from the team that did not score). SHL is a league where forechecking is
an important part of the game and it is seen in the data. In total, 0.75% of all
turnovers in the defensive zone is converted into goals against. It seems intuitive
that the further away from your own goal, the safer you are. High level data
confirms this, losing the puck in the offensive zone has a turnover rate to goal
against at 0.38% which is lower than both the DZ, and the NZ (0.44%).

Σ Goal Against / Σ Possession Drops = Goal%

Table 3: Conversion rates to goal per zone

ZONE LOSING THE PUCK NO OF GOALS MEDIAN TIME TO GOAL GOAL%

Defensive 837 5.7 Seconds 0.75%
Neutral 179 7.2 Seconds 0.44%
Offensive 427 8.3 Seconds 0.38%
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5 Results

5.1 Location of Puck Drop

The results in Figure 3 are grouped in to 4x6 m quadrants. Each quadrant shows
the Goal Conversion rate (Goal%) after puck loss. The number representing goals
scored against after puck was lost at that quadrant. Focusing on the areas around
the bluelines shows that the puck steals converted to goal does not increase in
the transition phase between DZ and NZ. 0.4% of all lost pucks round defensive
blue line is converted to goals against, which is close to the complete neutral
zone (0.44%). On this high-level data, we do not know what the intention with
puck was.

The offensive blue line, on the other hand, has an increased Goal% (0.5%)
compared to the areas around it indicating that losing the puck on offensive blue
line is a dangerous place to lose the puck. One area on the offensive blue line
has close to 1% Goal% which is as high as losing the puck in the high slot.

The forechecks popularity is obvious, the highest total Goal% for data in
x-axis is found behind the goal, winning back the puck when forechecking the
opponent.

Fig. 3. Goal% per turn over location

5.2 Entries and Exits

Grouping data in the same way as Chatel [Table 1] did for the different types
of exits and entries connected to xG-value, the actual outcome for these actions
against is presented in Table 4 in Goal%.

So, based on these numbers, dump-outs are actually the most dangerous
transition play in ice hockey. In particular, it is the failed ones that create these
numbers. This key result of the paper is further broken down in Table 5. 1.63%
off all failed dump-outs, that are not air bound (Flip Dump Outs) and fails to
reach the NZ, turns in to a goal against and that is the highest Goal% for any
sub-event of transitions plays.

Where not to lose the puck

Linköping Hockey Analytics Conference 2022 114



Table 4: Goal% per transition type

TYPE SUB-TYPE Goal%

Zone Exit Carry-Out 0.43%
Zone Exit Pass 0.59%
Zone Exit Dump-Out 0.65%
Zone Entry Controlled Entry 0.43%
Zone Entry Dump-In 0.29%

Table 5: Dump-outs breakdown

SUB-TYPE Goals Goal%

Dump Out- 36 1.63%
Flip Dump Out- 7 1.16%
Off Glass Dump Out- 57 1.02%
Flip Dump Out+ 21 0.52%
Dump Out+ 20 0.36%
Off Glass Dump Out+ 31 0.36%
All Dump Out Attempts 172 0.65%

5.3 Risk/Reward

Plotting [figure 4] the result from Chatels’s entry data [table 2] and comparing
it to the result of this paper. setting xG gain equal to reward and goals against
equal to risk. shows that making controlled plays when exiting the zone is better
for both scoring more goals but also conceding fewer. Dump-Out has the highest
risk of all plays and lowest reward. As the result implies this is due to the
failed dump-outs. Entries is more complex with higher risk and higher reward
for controlled plays. In the long run Controlled Entries beats Dump-Ins. The
lower risk is worth to have in consideration when in lead and clock closing in.

Fig. 4. Risk vs Reward. Red Dots = Entries. Blue Dots = Exits.
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6 Conclusion

We have in this paper described risk/reward when moving the puck from the
defensive zone to the offensive one. From the analysis, we have identified that
moving the puck with control from the defensive zone is superior to dumping
it. Controlled zone exits are better both for scoring goals and avoid conceding
goals. In fact, a failed dump-out is one of the worst plays when looking into goals
against in the next possession. The specific area with the highest conversion rate
to goal. except from right in front of the net. is from behind the goal line. Teams
in Sweden generally fore-check a lot and get goals from this specific situation.

The analysis also concludes that a dump-in is a safer option when entering the
at-tacking zone, than doing it with control. Still due to the increased likelihood
of scoring, when entering with control, a controlled entry is the best alternative,
when not considering the scoreboard or the time left of the game.

7 Discussion and future work

We have discussed risk/reward of different type of plays and areas within the
sport of ice hockey in this paper. When discussing controlled vs. uncontrolled
exits and entries it’s easy to regard it as a decision made by the player executing
the play. But. the teammates/opponents positioning, coaching directives and
the sequences building up the situation all have major implications on the final
decision made by the player executing the play. A coach cannot just instruct the
players to do more con-trolled plays but needs to change the overall structure
to make it possible. While this is not considered within the paper, it should be
kept in mind.

It should be noted that we are in this paper mixing data from the Swiss
League NL (reward) with the Swedish league SHL (risk). While we have no
reason to believe that the results would be significantly different if we had either
studied the leagues separately, or combined both leagues, this remains to be
verified.

To calculate risk, we did not use expected goals against but instead actual
goals against. The reason was the data available. The xG-model for the reward
uses sequences within the buildup of the figure. The data we have at hand
does not provide us that level of information. Using goals against, we get the
actual outcome over three seasons which should correlate well with an xG-model
including sequences.

For future work we would like to use data (risk and reward) from the same
league to verify our results from this paper, but also investigate other leagues to
find and important differences between leagues.
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