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Abstract
This paper presents two methods for reallizing fluid prop-
erty functions in Modelica simulation models. Each
makes use of a coordinate transformation that aligns one
coordinate with the saturation curve. This provides for
a precise representation of the fluid property function at
the saturation curve, and for connected domains of inter-
est including the liquid, vapor, supercritical and two-phase
regions. Both approaches make use of spline function ap-
proximation in the aligned coordinates, and are numeri-
cally efficient, well conditioned, and allow for efficient
calculation of derivatives up to any desired order that are
precise up to processor numerical tolerance.
Keywords: thermofluid models, fluid properties

1 Introduction
Fluid property functions relate fluid property variables
such as temperature, pressure, density, etc., to one another.
For a fluid of fixed composition in thermodynamic equi-
librium, all fluid property variables can be calculated as
a function of two independent variables: a mixture vari-
able and a second variable. Pressure P and specific en-
thalpy h are often chosen for vapor compression models,
but other combinations are also possible (Bejan, 1993).
Fluid property functions are critical for thermofluid model
simulation, and must be implemented in an accurate, com-
putationally efficient manner. For some applications, fluid
property function evaluations consume more than 70% of
simulation time (Aute and Radermacher, 2014).

Mathematically, the domain of a fluid property function
is the span of the two independent fluid property variables.
For many thermofluid systems, such as vapor compression
cycles, the domain includes values of the two independent
fluid property variables that correspond to more than one
of the fluid’s states, such as the vapor state, the supercrit-
ical state, or the two-phase state. The boundary between
the liquid region and two-phase region in the domain is
the liquid saturation curve, and the boundary between the
vapor region and two-phase region in the domain is the
vapor saturation curve. These curves intersect smoothly at
the critical point of the fluid, and their union is referred to
as the saturation curve.

The saturation curve is distinguished because its image
under a fluid property function is not smooth. The fluid
property function is continuous (C0), but not continuously
differentiable (C1), for all points on the saturation curve.

Figure 1. Density of R410A as function of h and log(P), show-
ing the saturation curve (red).

For all other points in the domain, the fluid property func-
tion is a smooth (Cn) function of the two fluid property
variables, for some n ≥ 1, as shown in Figure 1, which
plots density ρ as a function of specific enthalpy h and
pressure P for R410A. Modelica models of thermofluid
systems often make use of derivatives of a fluid property
function with respect to the two fluid property variables,
and it is important to compute these accurately, especially
near the saturation curve.

Several approaches for computing fluid properties may
be found in the literature. Some are based upon using the
Helmholtz (or Gibbs) free energy equation (Span, 2000).
Any fluid property of interest may be numerically com-
puted by solving these equations using iterative meth-
ods, typically Newton’s method of root finding. These
methods are realized in available software such as REF-
PROP (Lemmon et al., 2018) and CoolProp (Bell et al.,
2014), and also realized in the HelmholtzMedia Model-
ica library (Thorade and Saadat, 2012, 2013). While these
methods are general and accurate, they tend to be com-
putationally expensive for use in simulation models, espe-
cially for large models with long simulation times. Fur-
thermore, iterative algorithms include a stopping criteria,
and therefore small errors are introduced into the com-
puted fluid property values. If these values are numeri-
cally differentiated, which may be done by a simulation
tool to compute a Jacobian, for example, then small er-
rors can be amplified to the point of being unacceptably
large, especially in the region near the saturation curve.
Moreover, these iterative methods can fail to converge for
certain values of the two independent fluid property vari-
ables.
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Other approaches for calculating fluid property func-
tions for use in simulation include Taylor’s series approx-
imations or splines. Aute, et al describe a method using
Chebyshev polynomials that is built from data obtained
from REFPROP (Aute and Radermacher, 2014). This
method demonstrates a significant speedup over standard
iterative methods, but does not enforce consistency be-
tween the properties and their derivatives and cannot rep-
resent the behavior of the fluid close to the critical point.
Kunick et al. describe a method using quadratic splines
to represent the fluid properties of water and steam for
the International Association for the Properties of Water
and Steam (IAPWS) (Kunick, 2018). This method divides
a domain of interest into three distinct regions of fluid
state. But by splitting up the domain into non-overlapping
sets, the method introduces inconsistencies at the satura-
tion curve between these sets, resulting in errors in the
property derivatives near the saturation curve.

US Patent Application 2020/0050158 (Xu, 2020) de-
scribes a thermodynamic property calculation method us-
ing a linear approximation of the properties, but this does
not capture the nonlinearities that are pominant near the
saturation curve. US Patent 7,676,352 B1 (Van Peursem
and Xu, 2010) describes a method for calculating thermo-
dynamic properties and their derivatives using local ap-
proximations of fluid property functions, but it is an it-
erative algorithm and fails to describe nonlinear fluid be-
havior on a large domain of interest, and does not provide
accurate derivatives near the saturation curve.

Generally, previously published methods that use func-
tion approximations such as splines, or commonly used it-
erative methods based on the Helmholtz free energy func-
tion, for example, suffer from two fundamental problems.
First, the coordinates used for numerical calculation are
not aligned with the saturation curve. In other words, the
saturation curve is not represented as a contour of one of
the two independent coordinates. Therefore, the discon-
tinuity in derivative across the saturation curve is not ac-
curately represented. Secondly, the coordinates typically
used can result in an ill-posed numerical calculation at or
near the critical point. This is because one of the coordi-
nates achieves a maximum when expressed as an explicit
function of the other coordinate at this point. Iterative
methods especially fail near the critical point, and may
employ special curve-fit approximations near it. As such,
many available fluid property libraries are limited to the
sub-critical region. However, both of these problems are
purely a consequence of poorly chosen coordinates: The
saturation curve itself is smooth everywhere, and the prop-
erty function itself is smooth everywhere except across the
saturation curve.

In this paper, we introduce two coordinate systems for
representation of fluid property functions that are well-
defined for all regions of practical interest, including the
two-phase, vapor, liquid, and super-critical regions. Both
coordinate systems are defined to be aligned with the sat-
uration curve, so that the discontinuity in derivative is rep-

resented in terms of only one of the coordinates, which is
defined to be constant along the saturation curve (Laugh-
man et al., 2023). In both coordinate systems, the critical
point is no different from any other on the saturation curve,
so that super-critical problems are no different than purely
subcritical ones.

First, we show how a normalized polar coordinate sys-
tem may be used to define fluid property functions. In
these coordinates, the interior of the unit disk represents
the two-phase region, and the liquid, supercritical and va-
por regions are represented in the exterior of the unit disk.
The saturation curve is an arc of the unit circle. Fluid
property functions are represented as B-spline functions
(de Boor, 1978; Piegl and Tiller, 1995), arranged such that
the transition across the saturation curve is C0 but not C1.
B-spline coefficients are computed off-line by solving a
constrained least squares problem using data generated by
a reference calculator such as REFPROP. The implemen-
tation is computationally and memory efficient, accurate,
numerically well-conditioned and allows for evaluation of
derivatives of the fluid property function of any desired
order.

We derive a second implementation using normalized
parabolic coordinates, which may be less familiar to the
reader but for this application have a certain elegance. In
normalized parabolic coordinates, the saturation curve is
represented as a unit parabola in one of the two coordi-
nates, which is naturally similar in shape to the saturation
curve expressed in conventional (h,P) variables. The re-
sulting fluid property functions are computationally effi-
cient and well-conditioned, but some of the peculiarities
of parabolic coordinates require additional attention.

Both are realized as a set of C language functions, with
interface to Modelica though the external function inter-
face. This makes the coordinates entirely invisible to the
user. However, the result begs a question: Is there a ben-
efit to expressing the fluid dynamics equations explicitly
in these variables, instead of using conventional physi-
cal variables? This might be possible if the coordinate
transformations were defined natively in the Modelica lan-
guage. Addressing this question is left to future research.

This paper is organized as follows. In Sections 2 and 3
we derive the polar and parabolic coordinate transforma-
tions and property functions realizations, respectively. We
discuss some of the implications in Section 4, and draw
some conclusions in Section 5.

2 Polar Coordinates
Consider density ρ (kg/m3) as a representative fluid prop-
erty, to be computed as a function of independent fluid
property variables pressure Pe (Pa) and specific enthalpy
he (J/kg), where the subscript e denotes that the variables
are in engineering units. Consider a domain of interest Ω
in the he −Pe plane, on which an approximation ρ̂ of ρ
is defined. Ω may include the two-phase region, the liq-
uid and vapor regions, and the super-critical region, and
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Figure 2. Domains Ω1, Ω2, the saturation curve Ωs (red) and
the saturation curve extension (green).

will be defined below. ρ̂ is computed in a normalized po-
lar coordinate system defined by the composition of three
coordinate transformations T = T3 ◦T2 ◦T1.

Scaling Coordinate Transformation T1

Choose an origin (he0,Pe0) ∈ Ω, inside the two-phase re-
gion, and values for two scaling factors, ps (dimension-
less) and hs (J/kg), to define the scaling coordinate trans-
formation T1 : R2 → R2 : (he,Pe) �→ (h, p) as

h = (he −he0)/hs (1a)
p = ps · log(Pe/Pe0). (1b)

The scaling factors are chosen such that the dimensionless
p and h are O(1) over Ω. The inverse scaling coordinate
transformation, T−1

1 : R2 → R2 : (h, p) �→ (he,Pe), is

he = hs ·h+he0 (2a)
Pe = Pe0 · exp(p/ps). (2b)

Polar Coordinate Transformation T2

In the scaled (h, p) coordinates, define the polar coordi-
nate transformation T2 : R2 → R2 : (p,h) �→ (r,θ) as

r =
√

h2 + p2 (3a)
θ = atan(p,h), (3b)

where atan(·, ·) is the two-argument, four quadrant inverse
tangent function. The inverse polar coordinate transfor-
mation T−1

2 : R2 → R2 : (r,θ) �→ (h, p) is

h = r · cos(θ) (4a)
p = r · sin(θ). (4b)

Saturation Curve Radial Distance Normalization T3

Figure 2 shows a domain Ω on the (h, p) - plane, divided
into three regions: Ω2 is the two-phase region; Ω1 is out-
side the two phase region, and may include the liquid,
vapor and super-critical regions; and Ωs is the saturation

curve, which is the boundary between Ω1 and Ω2. De-
fine pr0 to be a small value of p on the vapor side of the
saturation curve Ωs at or near the lower boundary of Ω.
Consider a small value pl0 of p on the liquid side of the
saturation curve, at or near the lower boundary of Ω. A
precise value for pl0 will be computed from pr0 and the
choice of spline knots in the θ -direction below. Define
hr0 and hl0 to be the scaled enthalpies corresponding to
pr0 and pl0, respectively, on Ωs. This defines the points
(hr0, pr0) and (hl0, pl0) on Ωs. Express these points in po-
lar coordinates as

(r1,θ1) = T2(hr0, pr0) (5)

and
(r j∗ ,θ j∗) = T2(hl0, pl0), (6)

where j∗ is defined below. Then the saturation curve be-
tween (hr0, pr0) and (hl0, pl0), including the critical point
(hc, pc), may be represented on the (h, p) plane in po-
lar coordinates as the image of (hsat, psat) = T−1

2 (rsat,θ),
where fsat : R→ R : θ �→ r, is

rsat = fsat(θ) for θ ∈ [θ1,θ j∗ ]. (7)

As shown in Figure 2, choose an extension of fsat on
the open interval (θ j∗ ,θ1 +2π) so that the extended fsat is
periodic in θ and Cn−1 (continuous up to (n−1)th deriva-
tive) for all θ ∈ R, for some value of n > 0. (A value for
n is defined below as the degree of a spline.) Essentially,
this defines a closed curve (a loop) to be the image of the
extended fsat that is the saturation curve for scaled pres-
sures larger than pr0 and pl0, and connects (hl0, pl0) and
(hr0, pr0) through the two-phase region.

The extended function fsat(θ) is approximated with a
periodic B-spline denoted f̂sat(θ), which is fit to data on
Ωs that is generated by a thermofluid property calcula-
tor such as REFPROP. Other functional representations,
such as NURBS, Fourier series or Chebychev polynomi-
als might also be used. Define

Θs = {θ1, . . . ,θ j∗ , . . . ,θN} (8)

to be a set of (periodic) knots in the θ -direction, and de-
note the corresponding ith degree-n periodic B-spline basis
function as Bi,n(θ), 1 ≤ i ≤ N (de Boor, 1978; Piegl and
Tiller, 1995). Then

f̂sat(θ) =
N

∑
i=1

csiBi,n(θ). (9)

The coefficients csi 1 ≤ i ≤ N are computed by solving
a least squares curve fit to data, as follows. First compute
a number Nds of pairs of values of (h, p) along the liquid
and vapor sides of the saturation curve from (hr0, pr0) and
(hl0, pl0), respectively, up to but not including the critical
point (hc, pc), using a thermofluid property calculator and
the transformations T1. For many fluids the values of Pe



24 10.3384/ECP20721         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024   OCTOBER 14-16, STORRS, CT, USA

Figure 3. Periodic spline function r = f̂sat(θ) for R410A.

and he on the saturation curve near the critical point is dif-
ficult to compute and may be inaccurate, but the value of
Pe and he at the critical point may be computed accurately.
Add the calculated value of (hc, pc) to the set of data from
the vapor and liquid saturation curves, giving Nds +1 data
pairs. This set is transformed into polar coordinates using
T2 giving a set of data points (rk, θk) for 1 ≤ k ≤ Nds +1,
and this set is used to solve a least squares curve fit prob-
lem to compute csi, 1 ≤ i ≤ N.

Note that the set Θs need not be uniform, and we may
set j∗ = N, so that the saturation curve extension is de-
fined by a single spline interval. If the data set is accurate,
then Θs may be defined by the values of θk in the data, so
that the spline function is interpolating between the data
points.

The third coordinate transformation T3 : R2 → R2 :
(r,θ) �→ (r̄, θ̄), which normalizes the distance between the
origin and Ωs to a constant value of one, is defined as

r̄ = r/ f̂sat(θ) (10a)

θ̄ = θ , (10b)

with inverse T−1
3 : R2 → R2 : (r̄, θ̄) �→ (r,θ)

r = r̄ · f̂sat(θ̄) (11a)

θ = θ̄ . (11b)

Polar Splines
The fluid property function ρ is approximated by a two-
dimensional spline function ρ̂ of degree n defined in the
(r̄, θ̄)-coordinates. Spline functions in dimensions higher
than one are conventionally constructed for Cartesian co-
ordinates, and the presence of the origin, where con-
ventional polar coordinates exhibit a singularity, requires
some care.

Knot Points
Referring to Figure 2, a set of knots Θρ is defined in the
θ̄ -direction around the full circle, such that the first knot
θ̄1 is coincident with the point (hro, pro) on the vapor side
of Ωs, knots are spaced in a counter-clockwise (positive)

direction, and the set includes θ j∗ . Note that Θρ need not
be the same as Θs (8), used to represent f̂sat. Computations
are simplified if an even number of knots is used such that
that both θ̄i and θ̄i+π are in Θρ , simplifying consideration
of negative r̄. The multiplicity of the knots depends on the
region and is discussed in the next section.

In the r̄-direction, a set of knots

Φρ = {−rn,−rn−1, . . . ,−r1,0,r1,r2, . . . ,rmax} (12)

is defined such that 0 and 1 are elements, and n negative
values are included to create some overlap at the origin.
The multiplicity of the knots at r̄ = 1, corresponding Ωs,
is n so along Ωs in the r̄-direction, the spline function is
C0 but not C1. All other knots have multiplicity 1 so that
the spline function is Cn between any of the knots, Cn−1 at
any of the knots not on Ωs.

Indexing
Indexing of B-spline functions in polar coordinates is
more complex than for Cartesian coordinates. For the r̄-
direction, denote the set of integers that index the spline
basis as

I = {i ∈ I : 1 ≤ i ≤ imax}, (13)

where imax is the number of spline basis functions. Let
isp ∈ I denote the index for r̄ = 1, and decompose I
into

Is = {isp} (14a)
I1 = {i ∈ I : i > isp} (14b)
I2 = {i ∈ I : i < isp}, (14c)

so that Is contains the basis indices in the r̄-direction on
Ωs, I1 contains the basis indices in the r̄-direction outside
of Ωs (region Ω1), and I2 contains the basis indices in the
r̄-direction inside of Ωs (region Ω2).

In the θ̄ -direction, the number of basis functions de-
pends on the fluid state region, shown in Figure 4, mak-
ing the B-spline indexing dependent on the region. In the
two-phase region Ω2, the B-spline basis functions in the θ̄
direction are periodic, defined for all values of θ̄ , and all
of the knots are multiplicity one. Then the set of integers
that index the spline basis in the θ̄ -direction in region Ω2
is

J = { j ∈ I : 1 ≤ i ≤ jmax}. (15)

where jmax is the number of elements of Θρ .
On the saturation curve, the density ρ̂ is smooth as a

function of θ̄ except at the points θ̄1 and θ̄ j∗ where there
is a transition between the actual saturation curve and the
extended saturation curve, ρ̂ is C0 but not C1 in the θ̄ di-
rection, so the multiplicity of knots at θ̂1 and θ̂ j∗ is n. This
leads to a different number of B-spline basis functions in
the θ̄ direction for Ωs compared to Ω2, requiring a differ-
ent indexing. The set of integers that index the B-spline
basis in the θ̄ -direction in region Ωs is

Js = { j ∈ I : 1 ≤ i ≤ jmax +2(n−1)}. (16)
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Figure 4. Domain Ω in normalized polar coordinates, show-
ing the saturation curve Ωs (red) the saturation curve extension
(green), the two-phase region Ω2, and single-phase region Ω1.

As illustrated in Figure 4, ρ̂ in the region Ω1 is the par-
tial annular set (1,rmax] × [θ̄1, θ̄ j∗ ]. For many thermofluid
systems of interest, the fluid property ρ for values of Pe
and he corresponding to the region below the extended sat-
uration curve, between the limits θ̄ j∗ and θ̄1, is outside the
region of interest and is therefore excluded from Ω.

Since the region Ω1 is only partially annular, the B-
spline functions in the θ̄ direction are Cartesian and not
periodic in θ̄ . The set of integers that index the spline
basis functions in the θ̄ -direction in region Ω1 is

J1 = {1 ≤ j ≤ j∗ −1+n} (17)

Normalized Polar Spline Functions
The normalized polar spline function ρ̂ is

ρ̂(r̄, θ̄) = ∑
i∈I2

∑
j∈J

ci jBi,n(r̄)B j,n(θ̄)

︸ ︷︷ ︸
Ω2

+ ∑
i∈Is

∑
j∈Js

ci jBi,n(r̄)B j,n(θ̄)

︸ ︷︷ ︸
Ωs

+ ∑
i∈I1

∑
j∈J1

ci jBi,n(r̄)B j,n(θ̄)

︸ ︷︷ ︸
Ω1

(18)

where Bi,n(r̄) and B j,n(θ̄) are n-degree B-spline basis
functions defined by knot sets Φρ and Θρ , respectively,
and ci j are spline coefficients that are computed by solv-
ing a constrained least squares or equivalent curve fitting
algorithm. Note that although the knot sets are identical
for each region, the multiplicities differ, so the B jn(·) are
different in each region.

Coefficient Calculation
Values for the coefficients ci j in (18) are computed by
solving a constrained least squares problem using a ref-
erence property calculator such as REFPROP. First, note
that for values of (r̄, θ̄) ∈ Ωs,

ρ̂(r̄, θ̄) = ∑
j∈Js

cisp jBi,n(θ̄). (19)

This is because all of the B-spline basis functions in the
r̄-direction vanish on Ωs, except for those corresponding
to index isp, which is identically 1 for r̄ = 1. This makes
the contributions from the Ω2 and Ω1 terms in (18) to be
zero for (r̄, θ̄) ∈ Ωs.

The coefficients ci j for the Ωs term in equation (18) are
computed first using equation (19). For each value of θ̄ j
from a data set Ds = {θ̄ j : 1≤ j ≤Ns}, where Ns is any in-
teger greater or equal to the number of coefficients in (19)
and θ̄ j suitable sample Ωs, ρ j is computed on the extended
saturation curve using a thermofluid property calculator
such as REFPROP. Then equation (19) may be solved for
cisp by solving a least squares or similar curve fit problem.

Once the coefficients ci j are computed for the saturation
curve Ωs, then equation (18) decomposes into two decou-
pled equations

ρ̂(r̄, θ̄)− ∑
i∈Is

∑
j∈Js

ci jbn
i (r̄)b

n
j(θ̄)

︸ ︷︷ ︸
Ωs

= ∑
i∈I2

∑
j∈J

ci jbn
i (r̄)b

n
j(θ̄)

︸ ︷︷ ︸
Ω2

(20)
for the two-phase region Ω2, and

ρ̂(r̄, θ̄)− ∑
i∈Is

∑
j∈Js

ci jbn
i (r̄)b

n
j(θ̄)

︸ ︷︷ ︸
Ωs

= ∑
i∈I1

∑
j∈J1

ci jbn
i (r̄)b

n
j(θ̄)

︸ ︷︷ ︸
Ω1

(21)
for the region Ω1. Note that the terms on the left-hand
sides of (20) and (21) labeled Ωs may be assigned a nu-
merical value given a value for (r̄, θ̄). For each element
of a set of data D2 = {(r̄i, θ̄ j) : 1 ≤ i ≤ N2, 1 ≤ j ≤ M2}
over the region Ω2, where r̄i and θ̄ j suitably sample Ω2,
and N2 and M2 are sufficiently large, values of ρi j are
computed using a thermofluid property calculator such as
REFPROP. These values are substituted for ρ̂ in equa-
tions (20), defining an constrained least squares problem,
which is solved for the unknown coefficients ci j. The con-
straint arises because for coefficients near the origin, ci j
for positive r̄i and θ̄ j is identical to the coefficient ci j for
negative r̄i and θ̄i + π . This is repeated for a set of data
D1 = {(r̄i, θ̄ j) : 1 ≤ i ≤ N1 1 ≤ j ≤ M1} over the region
Ω1, where r̄i and θ̄ j suitably sample Ω1.

Derivative Evaluation

Derivatives of ρ̂ with respect to the (r̄, θ̄) variables may
computed using efficient algorithms (de Boor, 1978; Piegl
and Tiller, 1995), and add marginal overhead to the com-
putational cost of evaluation of the B-spline function ρ̂ at a
given (r̄, θ̄). These derivative calculations are exact; there
is no numerical differentiation. The derivatives of ρ̂ with
respect to the two input fluid property variables he and Pe
are computed with the Jacobian of T , denoted DT ,

[
dρ̂
dhe
dρ̂
dPe

]
= DT ·

[
dρ̂
dr̄
dρ̂
dθ̄

]
= DT3 ·DT2 ·DT1 ·

[
dρ̂
dr̄
dρ̂
dθ̄

]
,

(22)
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where DT1, DT2 and DT3 are the Jacobians of T1, T2 and
T3, respectively.

At the origin, derivatives of ρ̂ with respect to the en-
gineering coordinates he and Pe are well defined and are
evaluated by computing derivatives of ρ̂ with respect to r̄
evaluated at (r̄, θ̄) = (0,0) and (r̄, θ̄) = (0,π/2), respec-
tively, and then by using elements of DT1, DT2 and DT3 to
transform back to engineering units:

∂ ρ̂
∂he

| Pe=Pe0
he=he0

=
∂ ρ̂
∂ r̄

| r̄=0
θ̄=0

· 1
f̂ (0)

· 1
hs

(23a)

∂ ρ̂
∂Pe

| Pe=Pe0
he=he0

=
∂ ρ̂
∂ r̄

| r̄=0
θ̄=π/2

· 1
f̂ (π/2)

· ps

Pe0
. (23b)

This calculation is well-defined because the domain of the
spline in the r̄ direction was extended to include negative
values of r̄, and also because of the structures of T1, T2
and T3 make some of the off-diagonal terms in the Jaco-
bians zero. Higher derivatives with respect to he and Pe
are computed similarly.

3 Parabolic Coordinates
Normalized parabolic coordinates are similar to normal-
ized polar coordinates, defined by the composition of three
coordinate transformations, T = T3 ◦T2 ◦T1, reusing nota-
tion from Section 2. T1 is the same, but here T2 defines
parabolic instead of polar coordinates.

Parabolic Coordinate Transformation T2

In the scaled (h, p) coordinates, define the parabolic co-
ordinate transformation T2 : R2 → R2 : (p,h) �→ (σ ,τ) as

σ = sign(h) ·
√√

h2 + p2 − p (24a)

τ =

√√
h2 + p2 + p, (24b)

with inverse T−1
2 : R2 → R2 : (σ ,τ) �→ (h, p)

h = σ · τ (25a)

p = (τ2 −σ2)/2. (25b)

Figure 5 shows constant contours of σ and τ on the (h, p)-
plane, along with the saturation curve for R410A for ref-
erence.

Saturation Curve τ-Distance Normalization T3

The third coordinate transformation T3 : R2 → R2 :
(σ ,τ) �→ (σ̄ , τ̄) normalizes the saturation curve to be the
locus τ̄ = 1, and is defined as

σ̄ = σ (26a)

τ̄ = τ/ f̂sat(σ), (26b)

with inverse T−1
3 : R2 → R2 : (σ̄ , τ̄) �→ (σ ,τ)

σ = σ̄ (27a)

τ = τ̄ · f̂sat(σ̄), (27b)

Figure 5. Constant contours of σ (blue) and τ (red), on the
(h, p)-plane. Also shown is the saturation curve represented as a
spline function (purple), fit to saturation curve data (*).

Figure 6. Saturation curve defined as the spline function τ =
f̂sat(σ) for R410A. Note the gap in data around the critical point.

where τ = f̂sat(σ) denotes an approximation to τ =
fsat(σ), which defines the saturation curve in τ as a func-
tion of σ . Just as for polar coordinates, we use a property
calculator to compute pairs of values for τ and σ on the
saturation curve, using T1 and T2, and then fit a spline to
the data to give the approximation τ = f̂sat(σ), as shown
in Figure 6 for R410A.

Normalized Parabolic Spline Functions
The density function ρ̂ is realized as a 2-dimensional n-
degree B-spline function in (σ̄ , τ̄) coordinates,

ρ̂(σ̄ , τ̄) =
M

∑
i=1

N

∑
j=1

ci jBi,n(σ̄)B j,n(τ̄), (28)

defined on the rectangular domain [−σ̄max, σ̄max] ×
[0, τ̄max], which defines Ω = Ω1

⋃
Ω2

⋃
Ωs. Figure 7

shows the domain in the (σ̄ , τ̄) coordinates, and its pull
back into the (h, p) coordinates, for R410A.

Parabolic coordinates exhibit two characteristics that at
first seem to be obstacles but with some thought present no
problems. First, there is an apparent singularity along the
p-axis (h = 0), where τ = 0 along the negative p axis, and
where σ = 0 along the positive p axis. Along a constant σ
contour, the sign of σ changes discontinuously from posi-
tive in the right half plane to negative in the left half plane
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Figure 7. Ω1, Ω2, Ωs and their boundaries in (h, p) coordinates
(left) and (σ̄ , τ̄) coordinates (right) for R410A.

at the p axis. This is caused by the sign(h) used to define
σ in (24). Second, the boundary of Ω seems to have a dif-
ferent number of edges when represented in (σ̄ , τ̄) coor-
dinates, compared to (h, p) coordinates. Indeed, the rect-
angular region in (σ ,τ), with four boundary edges, maps
to a region in (h, p) coordinates that is bounded by two
parabolas, as shown in Figures 5 and 7.

Fortunately these characteristics do not present any ob-
sticles. Figure 7 shows how the rectangular domain Ω in
(σ̄ , τ̄) coordinates maps back to (h, p) coordinates, with
the boundaries shown in color. The two vertical bound-
aries along −σ̄max and σ̄max map to the lower boundary of
Ω in (h, p), while the lower boundary τ̄ = 0 is in fact not
a boundary at all. Points on the positive σ̄ -axis are con-
nected to points on the negative σ̄ -axis, so that ρ̂(σ̄ ,0)
is equivalent to ρ̂(−σ̄ ,0), for 0 < σ̄ ≤ σmax. The τ̄ = 0
axis is equivalent to the negative p axis, which is inside
Ω. Therefore, when defining a spline function ρ̂ on Ω, we
simply need to ensure that coefficients are constrained so
that the spline function is connected across the τ = 0 axis.
This ensures that the spline ρ̂ and its first n− 1 deriva-
tives are continuous across τ = 0, and are well defined
for all points in Ω1

⋃
Ω2. This is precisely how the spline

coefficients were computed for polar coordinates around
the origin (by extending r̄ to be negative, and then con-
straining coefficients for positive and negative r̄ to ensure
continuity at 0) except for parabolic coordinates, it must
be done across the entire τ̄ axis.

Knot indexing is simplified compared to polar coordi-
nates. In the τ̄-direction, knots are spaced from 0 to τmax,
with a knot of multiplicity n placed at 1, which is the sat-
uration curve in (σ̄ , τ̄) coordinates. All other knots are
multiplicity 1. In the σ̄ -direction, knots are spaced from
−σ̄max to σ̄max, all of multiplicity 1. This defines the
degree-n B-spline basis functions Bi,n and B j,n in the σ̄
and τ̄ directions, respectively.

4 Discussion
Both methods are computationally efficient. The calcula-
tion of T in polar coordinates requires 11 floating point
operations, compared to 14 for the equivalent calculation
in parabolic coordinates. Only one floating point division
is needed, but if f̂−1

sat is approximated by a spline instead
of f̂sat, then that division becomes a multiplication. Ad-
ditionally, both methods require one 1-d spline function

Figure 8. log(ρ̂) for R410A in (σ̄ , τ̄)-coordinates.

evaluation of f̂sat, plus evaluation of the 2-d spline func-
tion ρ̂ . Spline derivatives are computed essentially for free
and pulled back into the (Pe,he) coordinates using DT .

Polar coordinates have the advantage of familiarity and
simplicity in terms of domain boundaries. Computing
derivatives at the origin is not ill-posed because the spline
is defined for some range of negative r̄, and the derivatives
are computed in the (Pe,he) coordinates using elements of
DT that are all well defined at the origin.

There are some disadvantages to polar coordinates. In-
dexing is complex. The extended saturation curve is
clumsy, and the spline function ρ̂ near the point (hl0, pl0)
can fit data poorly because of the large change in deriva-
tive near this point in the θ̄ direction. Despite their un-
familiarity, parabolic coordinates seem more natural once
their peculiarities are mastered, as these issues are avoided
entirely. One issue with parabolic coordinates is that the
domain Ω is “warped” by T3. In particular, the vapor re-
gion to the right of the saturation curve may be insuffi-
ciently covered using a rectangular domain in (σ̄ , τ̄) co-
ordinates. This is apparent in Figure 7. One solution is
to make use of a non-rectangular domain, extending τ̄ for
positive values of σ̄ .

It should be emphasized that the spline functions f̂sat
and ρ̂ (and its derivatives) should be used consistently
and exclusively in any simulation model. These in effect
become the definitions of the saturation curve and fluid
property function, even though they are spline approxima-
tions of a data set, which is in turn was computed from a
Helmholtz energy function, which itself is defined to be
the reference standard, but is in reality a curve fit to exper-
imental data. It is important not to mix different represen-
tations of the saturation curve or fluid property functions
in the same model, because even slight differences, espe-
cially near the saturation curve, can result in significant
differences (or even failures) in simulation results.

For some properties, especially density ρ , we have no-
ticed that a 2-dimensional spline fit to logρ , (or, more rig-
orously, log(ρ/ρ0) for some constant density ρ0) instead
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of ρ , reduces approximation error, especially near the sat-
uration curve, at the expense of one additional exponen-
tial computation during evaluation. A rendering of log(ρ̂)
on Ω in (σ̄ , τ̄)-coordinates for R410A is shown in Figure
8. The log reduces the magnitude of the first and second
derivatives near the saturation curve, reducing approxima-
tion error. We have observed similar behavior for polar
coordinates. However we offer no formal proof of this
statement.

In practice, significant attention must be paid to data
cleaning. Values for ρ , P and h computed by REFPROP,
for example, may exhibit small errors that can adversely
affect the curve fitting computation. This is especially true
for mixtures such as R454C. Errors are caused by finite,
nonzero iteration termination conditions in REFPROP’s
code, or sometimes by failures to converge, and are es-
pecially apparent around the saturation curve at high pres-
sures, although other regions can also exhibit errors. A
full discussion may be found in (Laughman et al., 2024).

There is little performance gain to be had by imple-
menting these functions directly in Modelica, since the
Modelica compiler will translate it into C anyway, and
that code is unlikely to be more efficient than the relatively
simple, hand coded function. However, one potential per-
formance improvement is largely unexploited: derivative
evaluation can be done largely for free when evaluating ρ̂ .
Unfortunately the Modelica compiler does not know that,
so it may evaluate the function multiple times to compute
ρ̂ and its derivatives. Perhaps there is a way to prevent this
behavior in Modelica?

Finally, we speculate that the fluid property coefficients,
and the 2-dimensional spline function evaluations, could
be implemented in integer arithmetic. Although this is not
likely to improve numerical efficiency by a large margin in
a modern superscalar architecture, it would reduce mem-
ory storage requirements. This in turn could reduce simu-
lation time because of improved cache efficiency.

5 Conclusion
This paper presents two methods for computing fluid
property functions in simulation models. Both make use
of coordinate transformations that align one coordinate
with the saturation curve. This provides for precise rep-
resentation of the fluid property function at the saturation
curve, and for connected domains of interest including the
liquid, vapor, supercritical and two-phase regions. Both
approaches make use of spline function approximation in
these special coordinates, and are numerically efficient,
well conditioned, and allow for efficient calculation of
derivatives up to any desired order that are precise up to
processor numerical tolerance.

References
V. Aute and R. Radermacher. Standardized polynomials for fast

evaluation of refrigerant thermophysical properties. In Inter-

national Refrigeration and Air-Conditioning Conference at
Purdue, 2014.

Adrian Bejan. Advanced Engineering Thermodynamics. Wiley,
1993.

Ian H. Bell, Jorrit Wronski, Sylvain Quoilin, and Vincent
Lemort. Pure and pseudo-pure fluid thermophysical prop-
erty evaluation and the open-source thermophysical prop-
erty library coolprop. Industrial & Engineering Chemistry
Research, 53(6):2498–2508, 2014. doi:10.1021/ie4033999.
URL http://pubs.acs.org/doi/abs/10.1021/
ie4033999.

Carl de Boor. A Practical Guide to Splines. Springer, 1978.

M. Kunick. Fast Calculation of Thermophysical Properties in
Extensive Process Simulations with the Spline-Based Table
Look-Up Method (SBTL). Number 618. Fortschritt - Berichte
VDI, 2018. ISBN 978-3-18-361806-4.

C. Laughman, H. Qiao, and S. A. Bortoff. System and method
for calculation of thermofluid properties using saturation
curve-aligned coordinates. U.S. Patent 11,739,996, Aug. 29
2023.

Christopher R. Laughman, Vedang Deshpande, Ankush
Chakrabarty, and Hongtao Qiao. Enhancing thermodynamic
data quality for refrigerant mixtures: Domain-informed
anomaly detection and removal. In Procedings of the 20th

International Refrigeration and Air Conditioning Conference
at Purdue, 2024.

E. W. Lemmon, I.H. Bell, M. L. Huber, and M. O. McLin-
den. NIST Standard Reference Database 23: Reference
Fluid Thermodynamic and Transport Properties-REFPROP,
Version 10.0, National Institute of Standards and Technology,
2018. URL https://www.nist.gov/srd/refprop.

L. Piegl and W. Tiller. The NURBS Book. Springer, 2 edition,
1995.

R. Span. Multiparameter Equations of State. Springer-Verlag,
2000.

Matthis Thorade and Ali Saadat. HelmholtzMedia - a fluids
properties library. In Proceedings of the 9th International
Modelica Conference, pages 63–70, 2012.

Matthis Thorade and Ali Saadat. Partial derivatives of thermo-
dynamic state properties for dynamic simulation. Environ-
mental Earth Sciences, 2013.

D.J. Van Peursem and G. Xu. System and method for efficient
computation of simulated thermodynamic property and phase
equilibrium characteristics using comprehensive local prop-
erty models, 2010.

Gang Xu. Super-linear approximation of dynamic property val-
ues in a process control environment, 2020.


