
43DOI 10.3384/ECP207 43 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Modelica supported automated design

Ion Matei1 Maksym Zhenirovskyy1 John Maxwell1 Saman Mostafavi1

1Intelligent Systems Laboratory, SRI, United States, {ion.matei, maksym.zhenirovskyy, john.maxwell,
saman.mostafavi}@sri.com

Abstract
We propose a component-based, automated, bottom-up
method to system design, using models are expressed in
the Modelica language. This bottom-up approach is based
on a meta-topology that is iteratively refined via opti-
mization. Each topology link is described by a univer-
sal component that is defined in terms of atomic compo-
nents (e.g., resistors, capacitors for the electrical domain)
or more complex canonical components with a well de-
fined function (e.g., operational amplifier-based inverters).
The activation of such links is done via discrete switches.
To address the combinatorial explosion in the resulting
mixed-integer optimization problems, we convert the dis-
crete switches into continuous switches that are physically
realizable and formulate a parameter optimization prob-
lem that learns the component and switch parameters. We
encourage topology sparsity through an L1 regularization
term applied to the continuous switch parameters. We
improve the time complexity of the optimization prob-
lem by reconstructing intermediate design models when
components become redundant and by simplifying topolo-
gies through collapsing components and removing discon-
nected ones. To demonstrate the efficacy of our approach,
we apply it to the design of various electrical circuits.
Keywords: component-based, design, optimization, non-
linear programming

1 Introduction
In this paper, we describe a general approach for design-
ing physical systems using a bottom-up approach that im-
plements the “change design” process in Figure 1. This
type of problem can be formulated as a mixed integer pro-
gram that includes a combinatorial part to select the com-
ponent types and a continuous optimization part that se-
lects parameters of components to meet requirements. A
brute force approach to solving such an optimization prob-
lem suffers from combinatorial explosion, and heuristics
based on branch-and-bound methods do not scale with the
number of discrete optimization variables (Clausen 2003;
Morrison et al. 2016). To limit the effects of combinatorial
explosion, we introduce an algorithm that transforms the
mixed-integer formulation into a nonlinear program, with
physically realizable solutions.

To facilitate the description of the algorithm and of the
results, we focus on design problems in the electrical do-
main. However, the approach can be generalized to other

physical domains. We use the Modelica language to de-
scribe the basic components and the generated design so-
lutions, which allows subject matter experts to interpret
and evaluate the generated designs.

The design models use a universal component that em-
beds the behavior of basic components in the electrical
domain (e.g., resistor, inductor, capacitor, short connec-
tion, and open connection) or more complex components
based on operational amplifiers (OpAmps) in various con-
figurations. For example, a universal component based
on inverting and non-inverting OpAmp configurations is
shown in Figure 2. Each branch of the component is acti-
vated or deactivated by a switch that controls the current
that flows through it. The design problem is to find the
correct switch assignments and component parameter val-
ues to meet the requirements, which can be specified in
terms of the time evolution of certain quantities of inter-
est or the characteristics of a transfer function in the case
of filter design. We start with a topology that describes
how the universal components are connected and includes
points for setting boundary conditions (e.g., voltage/cur-
rent sources) and taking measurements. The design prob-
lem is then formulated as an optimization problem that
minimizes a loss function C (ŷyy0:T (ppp,sss),yyy0:T), where ppp
and sss are the parameters and switches of the basic com-
ponents, respectively, yyy0:T is a target vector of measure-
ments over time interval [0,T], ŷyy0:T (ppp,sss) is the model’s
predicted measurements, and C is a metric that measures
the error between the model predictions and the target
measurements (e.g., mean square error). The optimization
problem also takes into account dynamic constraints, and
bounds on component parameters (e.g., resistances must
be non-negative).The main contributions of this paper are
as follows:

• Continuous relaxation with lossless realization: We
developed an optimization algorithm that relaxes
the integer constraints on the switches by treat-
ing them as continuous variables in the range [0,
1]. The parameters of the components and their
associated switches are optimized using gradient-
free search algorithms and simulations based on
Functional Mockup Units (FMUs) (Blochwitz et al.
2011). To encourage sparsity in the design solu-
tion, we also add an L1 regularization term to the
loss function. The non-zero switches are not approx-
imated by 0 or 1, but are realized as electric resis-
tors, ensuring no loss in optimality but a possible

44 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 1. The design optimization process: an initial design is continuously refined until requirements are satisfied.

Figure 2. Universal component based on inverting and non-inverting OpAmp configurations.

loss in sparsity. Since we cannot guarantee finding
the global optimum, we also use parallel optimiza-
tion runs with random initial conditions to generate a
diverse set of design solutions.

• Scalability improvement via model simplifications:
During optimization, when certain components are
no longer needed (i.e., their switches are set to zero),
we eliminate them and reconstruct the design model.
This reduces the complexity of the model, as mea-
sured by the number of equations, and leads to faster
simulation times. In addition, we developed a graph
theory-based algorithm that further simplifies the de-
signs generated by the optimization procedure. The
algorithm removes unnecessary components, com-
bines compatible components in series and parallel
connections into equivalent single components, and
annotates the resulting design models for visual rep-
resentation and simulation in tools that support the
Modelica language.

Paper structure: In Section 2, we present an algorithm
for automated design that uses continuous relaxation. In
Section 3, we discuss how we improve the efficiency of
our design algorithm by reducing the complexity of the
intermediate design models that are simulated during the
design space exploration. Finally, in Section 4, we present
the designs generated by the proposed algorithm for var-
ious circuit design problems and types of universal com-
ponents.

2 Design optimization
When using branch-and-bound heuristics to solve mixed
integer programs, we may encounter situations where the
cost of the relaxed problem is better than the cost ob-
tained by converting the optimization variables into in-
teger values. In this section, we present a method to
avoid such a case. The key idea is to interpret the
switches in a way that allows for their physical im-
plementation, even when they do not have integer val-

45DOI 10.3384/ECP20743 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

ues. In the universal component definition, each branch
has a corresponding switch that opens or closes a con-
nection. When the switch is open, no current flows
through the component, leading to its exclusion from the
design model. In the Modelica electrical library, the
switch (Modelica.Electrical.Analog.Ideal.
IdealOpeningSwitch) is modeled such that when
the switch is open, there is a high resistance that blocks
the flow of current. When the switch is closed, there is
a very low resistance and the current flows freely. This
switch is controlled by a boolean input, the value of which
determines the switch mode. We draw inspiration from
the definition of the Modelica switch to create a contin-
uous switch that is controlled by a parameter that takes
values in the range [0, 1]. The switch is defined by the
equations

v = a((ε −1)s+1), (1)
i = a((1− ε)s+ ε), (2)

where v is the switch voltage, i is the current through the
switch, a is an auxiliary variable, s ∈ [0,1] is the switch
control, and ε is a small hyper-parameter that determines
the residual resistance when the switch is closed. The
switch equation can be simplified to

v =
(ε −1)s+1
(1− ε)s+ ε

i,

showing that for s = 0 we have v = i/ε and for s = 1
we have v = εi, the expected behavior of a switch. We
do not use this simplified representation of the switch for
numerical stability reasons. The introduction of the aux-
iliary variable a prevents the presence of equations with
terms that involve divisions by very small numbers. How-
ever, the disadvantage is that the resulting system of equa-
tions for the design model becomes a differential algebraic
equation (DAE) rather than an ordinary differential equa-
tion (ODE). This limitation restricts the type of optimiza-
tion approach that can be used, as we cannot directly uti-
lize platforms that support automatic differentiation (AD)
(e.g., the torchdiffeq package in Pytorch). In addi-
tion to the requirements loss function C , we introduce a
sparsity-promoting L1 regularization term, resulting in the
total optimization loss:

L (ppp,sss) = C (ŷyy0:T (ppp,sss),yyy0:T)+λ∥sss∥1,

where 0 ≤ si ≤ 1, with sss = (si), and λ is a positive weight
that controls the sparsity strength. If in the optimiza-
tion solution not all entries of sss are zero or one, we map
them into electric resistors with equivalent resistances,
(ε−1)si+1
(1−ε)si+ε . Thus, we can physically realize them, without
affecting the optimal cost function, i.e., the design require-
ments.

The pseudocode for this algorithm is shown in Algo-
rithm 1. We use a gradual approach to achieve sparsity.

We start with a small λ value to make sure that we gener-
ate an initial design that satisfies the requirements. Then
we gradually increase λ until the requirements cost func-
tion is no longer improved. Ideally, for each λ , we would
like to obtain the optimal solution. The strategy for updat-
ing λ is reminiscent to a primal-dual approach (Bertsekas
1999), where we minimize C under an L1 sparsity con-
straint.

In our approach, we incrementally increase the value of
λ until it begins to negatively impact the requirements cost
function. At this point, we halt the process and perform a
final optimization without the L1 regularization term. The
result of this final optimization will be our design solution.
Box constraints are commonly used in our problem setup,
but we use variable transformations to eliminate them and
use an unconstrained optimization algorithm to minimize
L . For example, we can eliminate the constraint a≤ x≤ b
by using the transformation x = a+(sin(x̃)+1)(b−a)/2,
where x̃ is the new unconstrained optimization variable. It
is not guaranteed that the optimization will converge to the
global minimum, as the cost function’s nonlinear depen-
dence on the optimization parameters means we cannot
accurately predict the structure of the problem. Ideally,
we would find at least a local minimum for each λ value,
but it is possible that the optimization algorithm may take
too many iterations to converge. As a result, we set a limit
on the number of iterations allowed between λ updates for
practical reasons.

All optimization algorithms will require the evaluation
of the design model. We use a black-box approach to op-
timization, where the cost evaluation is done by querying
a computational model of the design: an FMU (Blochwitz
et al. 2011). In the cosimulation version of the FMU,
such a representation contains the algorithm used for sim-
ulating the model (e.g., CVODE solver (Hindmarsh et
al. 2005)), in addition to the design description. FMUs
can be integrated in several languages (e.g., Python, C,
Java) and computational platforms (e.g., Matlab/Simulink,
OpenModelica, Dymola). The optimization algorithms
were implemented in Python based on the Scipy opti-
mization package. We used a gradient free (i.e., a direct
method) optimization algorithm that relies only on the ob-
jective function, namely Powell’s method (Powell 1964).
Empirically, it provides a better convergence rate than
other gradient-free algorithms such as Nelder-Mead, and
is faster than global, gradient-free optimization algorithms
(e.g., genetic algorithms). The integration of FMUs into
the optimization algorithms was done using the PyFMI
library (Andersson, Åkesson, and Führer 2016).

3 Model Construction and Simplifica-
tion

We automatically construct a Modelica model for a do-
main given a universal component and a specification of
the initial topology. For instance, if the user wanted to use
a 5x6 grid, then the program would generate a Modelica

46 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Algorithm 1 Continuous relaxation design algorithm

Require: δ : solution tolerance
Require: λ : L1 loss weight
Require: ∆: L1 loss weight increase rate
Require: FMU of the initial design model
Require: ppp, sss: initial parameter and switch values
Require: yyy0:T : target measurements

1: Cprev = ∞
2: while True do
3: ppp,sss ← argminppp,sss C (ŷyy0:T (ppp,sss),yyy0:T)+λ∥sss∥1
4: C ∗ = C (ŷyy0:T (ppp,sss),yyy0:T)
5: if C ∗ ≤ Cprev then
6: λ ← ∆λ
7: Cprev = C ∗

8: eliminate components corresponding to zero
switches and reconstruct the model

9: else
10: ppp,sss ← argminppp,sss C (ŷyy0:T (ppp,sss),yyy0:T)
11: return ppp,sss
12: end if
13: end while

model with 30 grid points with components connecting
pairs of points vertically and horizontally (see Figure 3).
This model is embedded in another model which specifies
the components that set the boundary conditions, i.e., the
voltage source and the resistor load (see Figure 4).

Figure 3. Modelica model for the grid. Universal components
connect the grid points.

Figure 4. Modelica model for the scenario that gives the bound-
ary conditions of a grid.

In the continuous relaxation approach to optimization,

each universal component has switches that allow inter-
nal components to be enabled or disabled. These switches
can be set from the top level model. When a component
is disabled, then the Modelica compiler ignores it when
constructing an FMU, thus no equations pertaining to the
respective components are added. This process is imple-
mented by conditionally declaring the basic components
of the universal component. Consequently, a basic com-
ponent appears in the instance of a universal component
only when a corresponding flag is set to true. The flags of
the basic components in all instances of the universal com-
ponent are continuously updated during the optimization
process.

After the optimizer has found a solution (i.e., has de-
termined which components should be enabled and what
their parameter values should be), we produce another
Modelica model that flattens the universal components
and just shows the internal components. At this point we
perform two simplification operations: eliminate isolated
components and dangling components. These operations
are necessary to deal with the cases where switch, resis-
tor or capacitor values are close to zero. Such a situa-
tion indicates the presence of open connections. Figure 5
shows a design solution example based a universal compo-
nent that uses passive components only, and that contains
isolated (capacitor between vertices 26 and 27) and dan-
gling (components between vertices 14, 20, 21, 22) com-
ponents. The design solution can contain isolated com-

Figure 5. Graph representation of a design solution: vertices are
connection points and edges components.

ponents since switches are not exactly zero, meaning that
there may be some very small residual currents passing
through components. Thus, it may appear that we have
components that are isolated but in fact only a small, neg-
ligible current passes through them. The isolated compo-
nents are eliminated by first generating the largest set of
connected components that include the boundary condi-
tions (i.e., the voltage source and the resistor load), and
discarding the remaining ones. The design solution may
also contain components that appear to be dangling, i.e.,

47DOI 10.3384/ECP20743 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

they are connected at one end only. The reason for such
a phenomenon is the same as in the isolated components
case: residual currents passing through them. The dan-
gling components are found by looking at the cycles of
the design. If a component does not belong to a cycle
then it must be dangling, thus it is eliminated. We im-
plemented code that generates a visually interpretable lay-
out for the components based on the and-or graph also of
the components that are between two grid points. The
layout was achieved by annotating the flattened Model-
ica design model with Modelica notation that generates
the visual effects. Finally, we have code to simplify the
model by merging compatible serial or parallel compo-
nents. The code goes through this process iteratively, un-
til no merging can be achieved. The resulting model has
correct equivalent parameter values (i.e., resistances in se-
rial connections are added) and it can be simulated using
Modelica.

4 Results
In this section we present design results based on Algo-
rithm 1 for various design examples.

4.1 Cauer analog low pass filter with passive
components

Our goal is to design a filter whose output from a step re-
sponse matches the output of the Cauer analog low pass
filter of the fifth order (see Figure 6). The input voltage
versus the load voltage plot is shown in Figure 7. To

Figure 6. Modelica model of the Cauer analog, low pass filter
of the fifth order.

improve the likelihood to find a design solution, we start
with a dense initial topology expressed as a 5x6 grid, with
a universal component based on passive electrical compo-
nents. The number of optimization variables correspond-
ing to this initial topology is 343, including component
parameters and switch values. The dense initial topology
is likely to ensure the existence of several local minima
that are close to satisfy the design requirements. To ex-

Figure 7. Cauer low pass analog filter: input source voltage vs.
resistive load voltage.

plore multiple of such local minima, we leverage parallel
executions of design optimization processes, where each
process starts with random initial component parameters,
and initial weight for the L1 cost, and where all switches
are initialized to 0.5. We run 20 parallel processes that
explore various design solutions. The design optimization
algorithm was implemented in Python, and the evaluation
of the design loss function was done via FMU-based sim-
ulations using the fmypi Python package. We refer to
each optimization corresponding to an instance of the L1
loss weight as outer iteration. An outer iteration was im-
plemented using the gradient free Powell algorithm, where
we limit the execution of the algorithm to 150 (inner) it-
erations. The limited number of iteration affects only the
early outer iterations, since 150 iterations may not be suf-
ficient to converge to a local minima. However, since we
use a sequence of outer iterations, where each such outer
iteration uses the previous optimization variables as initial
values, in practice we do converge to a design that satis-
fies requirements. More importantly, each outer iteration
reduces the time complexity since, after each outer iter-
ation we eliminate redundant components whose switch
values are approximately zero. The number of variables
drops from 343 at the first iteration to values in the twen-
ties or smaller, at the last iteration. Remarkably, after the
first iteration that uses no L1 regularization term, all pro-
cesses eliminate more than 250 optimization variables as
a result of switches being set to zero. The time per itera-
tion is determined by three factors: the number of iteration
of the Powell algorithm, the number of optimization vari-
ables and the FMU simulation time. Not unexpectedly, the
most expensive outer iteration is the first one, that corre-
sponds to 343 optimization variables. As the design mod-
els become simpler, the outer iteration times reduce to tens
of seconds. An example of a design solution that realizes
the behavior of the Cauer analog filter implemented using
passive components is shown in Figure 8.

48 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 8. Design solution for the Cauer analog low pass filter based on passive components generated by Algorithm 1.

4.2 Voltage level shifter design with opera-
tional amplifiers

We present the results of designing a voltage level shifter
(see Figure 9), using Algorithm 1. The universal compo-
nent employed to generate the initial grid topology con-
sists of a resistor, capacitor, and operational amplifier
arranged in a non-inverting configuration, together with
open and short connections. We run 10 parallel execu-
tions of Algorithm 1 for 150 outer iterations, with a limit
of 300 inner iterations for the Powell algorithm in each
outer iteration.

Figure 9. Voltage level shifter circuit used to generate the
ground truth data in the form of the voltage across the load re-
sistor (RL).

Two examples of design solutions produced by Algo-
rithm 1 for the voltage level shifter are depicted in Figures
10 and 11. Notably, both solutions have a component
count that is similar to that of the original level shifter de-
picted in Figure 9, with 10 and 9 components for the two
solutions compared to 8 components in the original cir-
cuit (not counting the load resistor and the voltage source

components). Additionally, both solutions utilize a single
OpAmp.

4.3 Cauer analog low pass filter with active fil-
ters

We repeated the design optimization problem for the
Cauer low pass filter, where the branches of the universal
component include first and second-order low and high-
pass filters, implemented using operational amplifiers, to-
gether with resistor, capacitor, short and open connection
components. We started with a 2x6 grid as the initial
topology and ran 10 parallel executions of Algorithm 1 for
250 outer iterations, with a limit of 1000 inner iterations
for the Powell algorithm in each iteration. After a final
simplification, we chose one of the solutions and arrived
at a circuit shown in Figure 12 that includes 8 operational
amplifiers. The Modelica Standard Library (MSL) has an
implementation of the Cauer analog filter that uses only
5 operational amplifiers but also includes 4 negative re-
sistors, where each negative resistor can be implemented
using an operational amplifier. Our design solution there-
fore has a similar number of operational amplifiers as the
one in the MSL.

Table 1 summarizes the design results of the above ex-
amples in comparison with the original circuits that were
used to generate the ground truth. When counting the
number of resistors and OpAmps in the MSL active im-
plementation of the Cauer filter, we included the number
of resistors and OpAmps needed to implement the neg-
ative resistors. The loss function used in the optimiza-
tion algorithm focuses on behavior and complexity (via
the L1 regularization term). The loss function can be aug-
mented with additional objectives that can include compo-
nent costs, for example. The computational time depends

49DOI 10.3384/ECP20743 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 10. Design of the voltage level shifter with operational amplifiers using Algorithm 1: design solution 1.

on the number of iterations of the optimization algorithms
and the FMU simulation time. The latter can be decreased
or increased by manipulating the number of collocation
points or the solver tolerances. Depending of the com-
plexity of the initial models and the weight of the L1 regu-
larization term, the optimization algorithms can take from
tens of minutes to several hours.

5 Differential programming for
gradient-based optimization

The algorithm introduced in the previous sections uses
gradient-free optimization to search for the component pa-
rameters. The advantage of such algorithms is that they
work directly with computational representations of the
design model (i.e., FMUs). The disadvantage is that they
become slower as the number of optimization variables
increases. An alternative to gradient-free algorithms is
gradient-based algorithms, and the optimization problem
would translate into a nonlinear program with dynamical
constraints. Solving such a problem would requires hav-
ing access to the gradients of the objective and constraint
functions. When dealing with design models represented
as ODEs, we can map the design optimization problem
into a framework that supports automatic differentiation
(AD) (e.g., Pytorch (Paszke et al. 2017) or Jax (Bradbury
et al. 2018)), and solve the problem using gradient de-
scent algorithms. Such platforms are endowed with ODE
solvers that support AD (Chen et al. 2018). To formu-
late the problem in frameworks such as Pytorch or Jax,
we first need to extract the equations from the Model-
ica model of the design. One approach is to generate an
XML representation for the DAE using the dumpXMLDAE
function of the OpenModelica (Fritzson et al. 2010; Open
Source Modelica Consortium n.d.) scripting language. Al-

ternatively, we can process the flattened Modelica us-
ing a Python Modelica parser such as modparc (Dong-
Ping 2013). Similar equation extraction can be done
using commercial Modelica tools such as Dymola, or
SystemModeler. The extracted equations are con-
verted into symbolic objects such as Sympy (Meurer et
al. 2017) objects, and mapped into deep-learning platform
objects that support automatic differentiation. This pro-
cess leads to a constrained optimization problem that in
the case of the continuous relaxation approach is given by:

min
xxx,ppp,sss

C (ŷyy0:T (ppp,sss),yyy0:T)+λ∥sss∥1 (3)

subject to: ẋxx = f (xxx,zzz; ppp,sss), (4)
g(xxx,zzz; ppp,sss) = 0, (5)
ŷyy = h(xxx,zzz; ppp,sss), (6)

where (4)-(5) is the DAE in the semi-explicit form, repre-
senting the dynamics of the design model, and h(xxx,zzz; ppp,sss)
is the sensing model.

To solve (3), we can convert (4) into a set of equality
constraints using direct collocation methods (Hargraves
and Paris 1987; Herman and Conway 1996), or we can
use local (e.g., Chebyshev polynomial expansions (Boyd
2001)) or global (e.g., neural networks) parameterizations
of the state solution and solve for the representation pa-
rameters (e.g., weights and biases of the neural network).
For example, if we use neural networks to represent the
state xxx(t) = NNx(t;βx) and the algebraic variables zzz(t) =
NNz(t;βz), the optimization problem (3) will be solved in
terms of the parameters βx, βz, ppp, sss. In addition, automatic
differentiation can be used to evaluate the time derivative
of the state. Our attempts to use a differentiable program-
ming paradigm to solve design problems were met with
mixed results. In the case where the model is represented

50 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 11. Design of the voltage level shifter with operational amplifiers using Algorithm 1: design solution 2.

Figure 12. Design solution for the Cauer analog low pass filter with operational amplifiers using Algorithm 1.

as an ODE, we obtained good results. For example, in
(Ion Matei et al. 2020) we showed how to learn control
policies for an inverted pendulum using a model predic-
tive control approach solved using Pytorch. When dealing
with DAEs though, the gradient-based optimization algo-
rithm, when combined with direct collocation methods to
approximate time derivatives, tend to converge slowly. In
addition, the parameterized DAE solution does not always
check against the DAE simulation executed with the op-
timal component and switch parameters. Unfortunately,
we cannot always guarantee that the design model can be
represented as an ODE, especially since the model is re-
peatedly reconstructed and simplified. Thus, the results
shown in this paper use a direct method (i.e., Powell al-
gorithm), instead a gradient-based approach. Ideally, we
would like to have a sensitivity analysis method embed-

ded in the DAE solvers, so that we can access the Jacobian
of the state with respect to the model parameters. Such a
method is present for instance in the SUNDIALS software
family, introduced in (Gardner et al. 2022; Hindmarsh et
al. 2005), with DAE solvers such as CVODES and IDAS
that include both direct and adjoint-based approaches to
compute sensitivities. Currently though, deep learning
platform do not offer such a functionality, except for the
case where the DAE can be transformed into an ODE.
Moreover, even when dealing with ODE, gradient-descent
algorithm that include solvers supporting automatic differ-
entiation tend to slow down as the number of optimization
parameters increases. We addressed this challenge in (I.
Matei et al. 2023), where we showed that block coordinate
descent algorithm in combination with direct collocation
method speed up training by several order of magnitude.

51DOI 10.3384/ECP20743 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Circuit Number of resistors Number of capacitors Number of inductors Number of OpAmps
Original passive Cauer filter 1 5 2 0
Designed passive Cauer filter 5 3 5 0

Original active Cauer filter 19 8 0 9
Designed active Cauer filter 17 16 0 8
Original voltage level shifter 7 1 0 1

Designed voltage level shifter (sol. 1) 8 2 0 1
Designed voltage level shifter (sol. 2) 5 4 0 1

Table 1. Summary of the design results for various examples.

We are currently working on extending this approach to
DAE models. There are Julia libraries that can also be
used for a gradient-based approach. For example, Mod-
elingToolkit.jl and its component library, ModelingToolk-
itStandardLibrary, are modeling languages for symbolic-
numeric computation (Ma et al. 2021). They combine
symbolic computational algebra systems ideas with causal
and acausal equation-based modeling frameworks. We did
not use this library in our work because it lacks many
components from the Modelica Standard Library, thus re-
quiring a model-transformation component for mapping
Modelica models into Julia representations. White the dif-
ferential programming paradigm is an appealing avenue
for dealing with numerical complexity, we cannot always
guarantee that the model we use are smooth. It is possi-
ble for such models to be hybrid (i.e., include discrete and
continues variables) and thus not differentiable.

6 Conclusions
In this paper, we presented an automated design process
utilizing a bottom-up approach. The process begins with
an initial possibly large topology of universal components
that is iteratively refined until a sparse solution is found.
The initial design is based on universal components, each
of which can exhibit a range of behaviors through ba-
sic components. This combination of modes and topol-
ogy ensures a broad coverage of the design space. We
demonstrated an approach for addressing the combina-
torial explosion typical of design optimization problems.
The approach relaxes discrete variables to continuous vari-
ables by transforming discrete switches into continuous
switches. These continuous components are physically
realizable, resulting in no loss in performance. Addition-
ally, sparsity is induced through an L1 regularization cost
that encourages the parameters of the continuous switches
to be zero. The proposed approach is supported by au-
tomated model simplification and reconstruction that re-
duce the complexity of the design model, in turn decreas-
ing the time complexity for the continuous optimization
algorithms that require model simulations. The continu-
ous optimization algorithms are gradient-free. We are cur-
rently investigating the application of a differential pro-
gramming paradigm to the design problem described in
this paper, which would allow us to utilize gradient-based
algorithms. The major challenge we face is extending au-
tomatic differentiation support to DAEs that typically re-

quire stiff, implicit numerical solvers, while avoiding the
need for implementing model-transformation modules to
convert Modelica models to new representations.

References
Andersson, C., J. Åkesson, and C. Führer (2016). PyFMI: A

Python Package for Simulation of Coupled Dynamic Models
with the Functional Mock-up Interface. Technical Report in
Mathematical Sciences 2. Centre for Mathematical Sciences,
Lund University.

Bertsekas, D.P. (1999). Nonlinear Programming. Athena Scien-
tific.

Blochwitz, T. et al. (2011). “The Functional Mockup Interface
for Tool independent Exchange of Simulation Models”. In: In
Proceedings of the 8th International Modelica Conference.

Boyd, John P. (2001). Chebyshev and Fourier Spectral Methods.
Second. Dover Books on Mathematics. Mineola, NY: Dover
Publications. ISBN: 0486411834 9780486411835.

Bradbury, James et al. (2018). JAX: composable transformations
of Python+NumPy programs. Version 0.3.13. URL: http : / /
github.com/google/jax.

Chen, Ricky T. Q. et al. (2018). “Neural Ordinary Differential
Equations”. In: Advances in Neural Information Processing
Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates,
Inc.

Clausen, Jens (2003). “Branch and Bound Algorithms-
Principles and Examples”. In.

DongPing, X. (2013). ModParc. https://github.com/xie-
dongping/modparc.

Fritzson, Peter et al. (2010-02). OpenModelica System Doc-
umentation. URL: https : / / github . com / OpenModelica /
OpenModelica-doc/blob/v1.9.1/OpenModelicaSystem.pdf.

Gardner, David J. et al. (2022). “Enabling new flexibility in
the SUNDIALS suite of nonlinear and differential/algebraic
equation solvers”. In: ACM Transactions on Mathematical
Software (TOMS).

Hargraves, C. R. and S. W. Paris (1987). “Direct trajectory opti-
mization using nonlinear programming and collocation”. In:
Journal of Guidance, Control, and Dynamics 10.4, pp. 338–
342.

Herman, Albert L. and Bruce A. Conway (1996). “Direct op-
timization using collocation based on high-order Gauss-
Lobatto quadrature rules”. In: Journal of Guidance, Control,
and Dynamics 19.3, pp. 592–599.

Hindmarsh, Alan C et al. (2005). “SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers”. In:
ACM Transactions on Mathematical Software (TOMS) 31.3,
pp. 363–396.

52 10.3384/ECP20743 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Ma, Yingbo et al. (2021). ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing. arXiv: 2103.05244 [cs.MS].

Matei, I. et al. (2023). “Sensitivity-Free Gradient Descent Algo-
rithms”. In: Journal of Machine Learning Research 24.300,
pp. 1–26. URL: http://jmlr.org/papers/v24/22-1002.html.

Matei, Ion et al. (2020). “Deep Learning for Control: a non-
Reinforcement Learning View”. In: 2020 American Con-
trol Conference (ACC), pp. 2942–2948. DOI: 10 . 23919 /
ACC45564.2020.9147287.

Meurer, Aaron et al. (2017-01). “SymPy: symbolic computing
in Python”. In: PeerJ Computer Science 3, e103. ISSN: 2376-
5992. DOI: 10.7717/peerj-cs.103.

Morrison, David R. et al. (2016). “Branch-and-bound algo-
rithms: A survey of recent advances in searching, branching,
and pruning”. In: Discrete Optimization 19, pp. 79–102.

Open Source Modelica Consortium (n.d.). OpenModelica
User’s Guide. URL: https : / / openmodelica . org / doc /
OpenModelicaUsersGuide/latest/.

Paszke, Adam et al. (2017). “Automatic differentiation in Py-
Torch”. In.

Powell, M. J. D. (1964-01). “An efficient method for finding the
minimum of a function of several variables without calculat-
ing derivatives”. In: The Computer Journal 7.2, pp. 155–162.

