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Abstract
Ensuring the stability of complex power system models
is a critical challenge in the field of electrical power engi-
neering, and the tuning of Power System Stabilizers (PSS)
plays a pivotal role in this endeavor. Modelica, an open-
access modeling language, emerges as a powerful tool for
this purpose, due to its distinctive features that facilitate
efficient power system modeling. This paper explores the
capabilities of Modelica using the OpenIPSL library to
create models to analyze control system designs developed
for a multi-machine power system model. It particularly
focuses on using the features of Modelica for the lineariza-
tion, control-oriented analysis, and time-simulation of the
model. The results demonstrate the effectiveness of using
Modelica for control system design analysis and perform-
ing linear model-based analysis. This work aims to show
how Modelica can be used to perform these tasks on a sin-
gle platform efficiently, thereby streamlining the process
of power system design and analysis.
Keywords: Power System Modeling, Linearization, Stabil-
ity Analysis, Controller Design Analysis, OpenIPSL

1 Introduction
1.1 Motivation
Modern power systems exhibit a complex architecture that
requires the use of both physics-based models for sophisti-
cated control system designs. The design of robust control
systems is crucial to ensure reliable grid operation, which
facilitates the management of complex power system dy-
namics. A significant aspect of this involves conducting
stability analysis and tuning of Power System Stabilizers
(PSS), which are essential to damp electromechanical os-
cillations that can adversely affect system stability (F. J.
De Marco, Martins, and Ferraz 2012). To address this need
of developing models for control design and analysis, Mod-
elica, in conjunction with the OpenIPSL library, has been
used effectively to create a detailed University Campus
Microgrid model, demonstrating its effectiveness in linear
analysis, which is often challenging with traditional power
system analysis tools (Fachini, Bhattacharjee, et al. 2023).

This work explores the capabilities of Modelica (Fritz-
son and Engelson 1998), and the Dymola tool (Brück et al.

2002), to develop power system models that are suitable
for control system design and analysis. The model devel-
oped here emerges from the power system literature (F.
De Marco, Rullo, and Martins 2021), which can be used to
address intra-plant and inter-area oscillations when consid-
ering a power plant with multiple machines. The developed
can be further explored to create a more detailed design
for specific control tasks beyond those for which it was
originally developed (F. J. De Marco, Martins, and Ferraz
2012).

1.2 Background and Related Works

The evolution of power system analysis has advanced com-
puting technologies, notably through the development of
software tools designed to improve the accuracy and ef-
ficiency of modeling and simulation (Isaacs 2017). This
transition has been marked by significant shifts from tra-
ditional methods to more sophisticated software-oriented
approaches that integrate the capabilities of modern com-
puting frameworks (Guironnet et al. 2018). These advances
have facilitated a detailed analysis of the dynamics of the
power system, setting the stage for the addressing of the
complex engineering challenges that arise from the adop-
tion of renewable energy sources (Fachini, Luigi Vanfretti,
et al. 2021; Plietzsch et al. 2022). The widespread com-
modification of computing technologies in the 1900s and
2000s led to the commercialization of domain-specific pro-
prietary software and the rise of open-source software for
power system analysis, often exploiting proprietary general-
purpose computing languages and environments, that is,
mainly tools based on MATLAB (Chow and Cheung 1992;
Milano and Luigi Vanfretti 2009). This technological evo-
lution set the stage for the addressing of more complex
system challenges. One such challenge is linearization of
power system models, a task that is complex due to the
limitations of domain-specific tools, many of which lack
symbolic linearization capabilities.

Many industry standard tools such as Siemens PSS/E
depend on additional tools to perform numerical pertur-
bations for linearization (Nikolaev et al. 2020). Likewise,
CEPEL in Brazil has developed two independent tools, one
for nonlinear time simulation and another for linear anal-
ysis (Martins et al. 2000). However, developers of both
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tools need to provide symbolic expressions, which presents
challenges in maintaining modeling consistency between
the internal model descriptions within each tool (Luigi Van-
fretti et al. 2013). Researchers have developed certain tools,
such as PSAT, that support symbolic linearization (Milano
2005). However, they require users to input symbolic ex-
pressions and have a complete understanding of the source
code of the software to modify or expand it (Li, Luigi Van-
fretti, and Chompoobutrgool 2012). Other software tools
such as DOME have been developed that utilize Python
for power system analysis, demonstrating the viability and
utility of scripting languages in this field, particularly for
their modularity, ease of integration with various libraries
and suitability for academia (Milano 2013).

In contrast, Modelica offers a compelling alternative,
providing robust support for graphical modeling through
software such as OpenModelica (al. 2020) and Dymola,
thus significantly improving user experience and acces-
sibility. Modelica emerges as a formidable language for
power system modeling, especially when integrated with
the Open-Instance Power System Library (OpenIPSL)
(Baudette et al. 2018; De Castro et al. 2023), as elabo-
rated in (Winkler 2017). Unlike the conventional power
system approach of building a monolithic simulation tool,
Modelica serves as a language that numerous software pro-
grams can implement, including proprietary options such
as Dymola, Modelon Impact, Wolfram System Modeler,
etc.

Along with these compliant tools, what the Modelica
language offers is a unique advantage: it facilitates model
linearization (including symbolic-based linearization) with-
out the need of users or developers to specify additional
(linear) models, excelling over other alternatives. This
work explores the capabilities of Modelica symbolic analy-
sis to automatically derive the linear model from exactly the
same model used for non-linear time-domain simulation.

1.3 Paper Contribution
The main contributions of this paper are:
• To construct a multi-machine power system model by

utilizing Modelica and the OpenIPSL library, specially
designed to study intra-plant and inter-area oscillations
(F. De Marco, Rullo, and Martins 2021).

• To extend the model in applying a control system de-
sign derived from the literature (F. J. De Marco, Mar-
tins, and Ferraz 2012).

• To demonstrate the benefits of object-oriented model-
ing for complex power system models.

• To demonstrate the application of the Modelica lan-
guage and the OpenIPSL library for control system de-
sign analysis as a strong alternative to domain-specific
power system tools with simulation results.

While the article aims to illustrate how Modelica and
OpenIPSL can be used for the purposes stated above, some
familiarity with the Modelica language would be beneficial
to the reader. When necessary, the paper briefly introduces

some language constructs and concepts used to guide the
reader.

1.4 Paper Structure
The structure of the paper is as follows: Section 2 demon-
strates the application of the object-oriented modeling tech-
nique to construct the different components of the system.
Section 3 explains the process of creating the model used
for linearization. Section 4 describes the nonlinear simu-
lation of the multimachine system. The simulation results
for the designed control system are presented in Section
5. Finally, Section 6 concludes the work and outlines the
future direction of the work.

2 Object-Oriented System Modeling
Figure 1 shows the package structure of the three-
machine infinite bus package ThreeMIB with several sub-
packages, namely Generation Units, Networks,
Systems, PF_Data, etc. Due to space con-
straints, only the Generation Units package is
expanded in Figure 1 to show its internal structure.
The sub-packages Generation Units, Networks,
Systems are further explained below to describe the
process of system modeling. This package is avail-
able in the Github repository: https://github.com/
ALSETLab/AMCONF2024_ThreeMIB

2.1 Component Modeling
The OpenIPSL contains different component models
that are built using object orientation. For components,
object-oriented modeling can be illustrated using the in-
stance for the bus component. As observed in the
Modelica code excerpt in Listing 1, the Bus model ex-
tends a partial model named pfComponent from
the *.Electrical.Essentials package. This
inheritance approach is a hallmark of object-oriented
modeling in Modelica, allowing the bus model to re-
utilize and extend predefined functionalities, such as
initial parameter setups for algebraic variables that are
crucial for setting initial state values in the models
it comprises. Central to object-oriented design, at-
tributes like final enablev_0=true and final
enableangle_0=true are strategically enabled for
initializing values, while final enableP_0=false
is disabled to comply with KCL, illustrating the model’s
ability to customize through selective inheritance. The
PwPin instance, named p, exemplifies encapsulation, ini-
tializing its algebraic variables, vr and vi, from v_0 and
angle_0. Furthermore, the variables v and angle, in
Lines 13 and 14, which represent the magnitude and angle
of the voltage, are managed within the model to reflect
its link with other components of the system. The calcu-
lations in for voltage (Lines 13-14) and zero current en-
forcement (Lines 15-16) through p.ir and p.ii not only
confirm the model’s functionality but also ensure its inte-
gration within the larger system, underscoring the efficacy
and adaptability of object-oriented modeling for complex
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Figure 1. Package Structure

power systems.

Listing 1. Excerpt of the
OpenIPSL.Electrical.Buses.Bus model

1 model Bus "Bus model"
2 extends OpenIPSL.Electrical.Essentials.

pfComponent(
3 ...
4 final enableP_0=false,
5 ...
6 final enablev_0=true,
7 final enableangle_0=true);
8 OpenIPSL.Interfaces.PwPin p(vr(start=v_0*

cos(angle_0)), vi(start=v_0*sin(
angle_0)));

9 Types.PerUnit v(start=v_0) "Bus v.
magnitude";

10 Types.Angle angle(start=angle_0) "Bus v.
angle";

11 ...
12 equation
13 v = sqrt(p.vr^2 + p.vi^2);
14 angle = atan2(p.vi, p.vr);
15 p.ir = 0;
16 p.ii = 0;
17 ...
18 end Bus;

Similarly to the bus component, other OpenIPSL com-
ponent models are used to develop the system models de-
scribed below. More information on the components avail-
able in OpenIPSL can be found in (L. Vanfretti et al. 2016;
Baudette et al. 2018; De Castro et al. 2023).

2.2 System Modeling
This section explains how the object-oriented features of
Modelica (Fritzson 2014) and OpenIPSL components are
used to construct the multi-machine power system model
from (F. De Marco, Rullo, and Martins 2021), as shown in
Figure 4, allowing modular reusable components that sim-
plify the design of the system model and enhance the sim-
ulation flexibility. The model consists of three generation
units, six buses, two transmission lines, three transformers,
three loads, and an infinite bus. Some of the sub-packages
are explained below.
• Generation Units: The GenerationUnits sub-

package is expanded in Figure 1 to show the internal
structure. The sub-packages within offer various con-
figurations of the three generation units named G1,
G2, and G3:

Figure 2. GenerationUnits.MachineEXPSS.Generator1
Generator1 model diagram view

• MachineOnly: Consists of only the syn-
chronous machine (SM).

• MachineEXPSS: Consists of a synchronous
machine equipped with an excitation control sys-
tem (ES) and power system stabilizer (PSS).

• MachineEXPSSIO: Consists of a synchronous
machine equipped with an excitation control sys-
tem (ES) and power system stabilizer (PSS) along
with an input and output (IO) interface.

The three generation units are chosen from
MachineEXPSS to be used in the multi-machine
model shown in Figure 4. Each unit is modeled as a
separate component. The structure of each generation
unit consists of a synchronous machine (SM), which is
the primary component for generating electrical power,
an excitation control system (ES) which regulates the
field voltage, maintaining the terminal voltage stability,
and a power system stabilizer (PSS) which provides
damping of the power system oscillations by modulating
the ES. The diagram view of one of the generation
units G1 is shown in Figure 2. The graphical placement
and connections of the components ensure that the
mathematical relationships are correctly established when
connect(...) statements are generated. In Modelica,
a connect(...;...) statement links the compatible
ports of two components, enabling them to interact within
the simulation environment as described in Chapter 9
(Modelica Association 2023).

The SM and ES are parameterized using the values
of an implementation made in the Siemens PSS/E soft-
ware. *.raw and *.dyr files from (Illinois Center for
a Smarter Electric Grid (ICSEG) 2024) are used to set pa-
rameter values and to obtain a power flow solution that
populates Modelica records within the PF_Data sub-
package in Figure 1. These help provide an initial guess for
the algebraic variables that are used to initialize the model
(see more details in (Dorado-Rojas et al. 2021). PSS mod-
els are specifically parameterized according to optimized
transfer functions from studies on PSS tuning for phase
compensation(F. J. De Marco, Martins, and Ferraz 2012;
F. De Marco, Rullo, and Martins 2021). Furthermore, the
parameters of the individual components that are required
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Figure 3. ThreeMIB.Networks.BasePFnFault multi-
machine Power System Base Model

at higher levels, such as the model shown in Figure 4, are
propagated to provide a user-friendly interaction.
• Networks: The sub-package named Networks is com-

prised of a partial model of the multi-machine
system ThreeMIB.Networks.Base including the
buses B1-B6, transmission lines line1 and line2,
the transformers TF1-TF3, and the System Data
component. Instead of programmatically building it,
this model is built graphically. The components are
dragged and dropped, connected, and parameterized;
the Modelica tool automatically generates the corre-
sponding source code as shown in Listing 2.

Listing 2. Connect equations of the partial model called
ThreeMIB.Networks.Base

1 partial model Base "Partial model
containing network elements"

2 ...
3 OpenIPSL.Electrical.Branches.PwLine line1

(R=0, X=0.036, G=0, B=0);
4 ...
5 equation
6 connect(B1.p, TF1.p);
7 connect(TF1.n, B4.p);
8 connect(B2.p, TF2.p);
9 connect(line1.n, line2.p);

10 ... (more connect equations follow)
11 end Base;

As observed in Listing 2, the instantiation of the
PwLine component named as line1 and the parameter
X=0.036 is set through a modifier, that is, it is changed
from the default values. Similar code is generated for all
other component instantiation and parameterized. Observe
that there are fewer components in Figure 3 than those
shown in Figure 4. This is because the model in 4 is built
through inheritance, i.e., it inherits the components in Fig-
ure 3 and adds new ones. This method allows for the cre-

ation of varied system model variants from partial models,
which are extended and customized through modifications.
The automatically generated connect equations link the
PwPin within each component instance. For example, as
observed from Line 6 of Listing 2, B1.p is connected to
TF1.p, thereby interfacing bus B1 to transformer TF1.
Similarly, line 9 shows how line1 and line 2 are in-
terfaced through the connect equations. For illustration,
this is labeled in red in Figure 4. Similar equations are
automatically generated by the tool for other connections
that were done graphically.

The partial model ThreeMIB.Networks.Base
is extended by adding other components, namely
the power flow component pf, the loads Load1-
Load3, and the fault component pwFault. This
does not include the generation units, which are dis-
cussed later. The resulting base model is called
ThreeMIB.Networks.BasePFnFault shown in
Figure 3.

• Systems: The sub-package Systems comprises
the final model of the multi-machine power sys-
tem, as shown in Figure 4. To create this,
the ThreeMIB.Networks.BasePFnFault en-
closed in the dotted blue box is extended and
the three generation units G1, G2, and G3
enclosed in the dotted green box are dragged
and dropped from the ThreeMIB.Generation
Units.MachineEXPSS package. Once connected
to the corresponding buses, the generation units are
parameterized with power flow data contained within
the pf record component. The resulting model is the
ThreeMIB.Systems.Grid, which can be readily
used for typical power system time-domain simulations.
This particular package also consists of the models built
for linearization and nonlinear simulation which is dis-
cussed in detail in the following sections.

3 Deriving Linear Models
3.1 Refactoring Models for Linearization
This section discusses the creation of the linearized
model, here referred to as “plant”. To generate
a model that can be linearized, the base model
ThreeMIB.Networks.Base is extended and instanti-
ated as ThreeMIB.Systems.GridIO, and the power
flow component pf and fault component pwFault are
added graphically. It is worth noting here that the
load components added to this model Load1-Load3
are chosen as those with an external input. Fig-
ure 5 shows the detailed extended model with the in-
puts in the green boxes and the outputs within the or-
ange one. This is achieved by choosing the genera-
tion units from the package ThreeMIB.Generation
Units.MachineEXPSSIO with an IO interface depict-
ing a structure as shown in Figure 6. The inputs, enclosed
within the dotted green boundary in Figure 6, are simply
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Figure 4. ThreeMIB.Systems.Grid multi-machine power
system model

connected to a RealInput interface from the Model-
ica Standard Library (MSL). In the case of the outputs,
RealOutput interfaces from the MSL need to be pro-
vided, which are shown enclosed by a dotted orange bound-
ary in Figure 6. These interfaces must be linked to the
desired output variables. This is carried out in the textual
layer of the model, as shown in Listing 3.

Listing 3. Linking output variables to the RealOutput inter-
faces.

1 model GridIO
2 "Multimachine power grid model with input

/output interfaces ..."
3 extends ThreeMIB.Interfaces.

OutputsInterface;
4 extends ThreeMIB.Networks.Base(...
5 GenerationUnits.MachineEXPSSIO.

Generator1EXPSSIO G1(...)
6 ... // More i n s t a n t i a t i o n s f o l l ow
7 equation
8 SCRXin = G1.feedbackSCRX.y;
9 SCRXout = G1.sCRX.EFD;

10 Vt = G1.gENSAE.ETERM;
11 ANGLE = G1.gENSAE.ANGLE;
12 SPEED = G1.gENSAE.SPEED;
13 ... // More connect s ta tements f o l l ow
14 end

Each of the RealOutput interfaces must be linked
to the output of different components. For example, on
Line 10 of Listing 3, the generator’s terminal voltage
G1.gENSAE.ETERM is linked to the interface Vt. This
is done similarly for other machine variables. Meanwhile,
to access the output of the PSS (which is the input of
the ES), the RealOutput interface SCRXin is linked to
G1.feedbackSCRX.y as seen in Line 8 and similarly
the output of the ES, SCRXout, is linked to the field volt-
age G1.sCRX.EFD in Line 9. The plant model shown in
Figure 5 can now be utilized as a block with the specified
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Figure 5. ThreeMIB.Systems.GridIO multi-machine
power system model with IO interface

inputs and outputs for the analysis of the design of the
control system. Figure 7 illustrates this concept where the
inputs to the ThreeMIB.Systems.GridIO can be set
to zero with only one desired functional input and output.
The entire model enclosed in the red dotted lines is treated
as a single-input-single-output (SISO) block. This modu-
larity improves the adaptability and utility of the model in
diverse linearization and simulation needs.

3.2 Linearization Process
Each Modelica-compliant tool, such as Dymola or Open-
Modelica, supports symbolic analysis to automatically
generate a linear model from the same model used for
non-linear time-domain simulation. Within Dymola, the
Modelica_LinearSystems2 (MLin2) library can
be used to perform this task, which allows easy conver-
sion of models to representations of linear time-invariant
systems (Baur, Otter, and Thiele 2009). Listing 4 shows the
command needed to linearize the model shown in Figure
5. A state space object and *.mat file are generated as
the resulting output ss which is suitable for further analy-
sis in Dymola or external tools, supporting tasks such as
eigenvalue computation, frequency response analysis, and
advanced control design such as pole placement and LQG
controller design.

Listing 4. Linearization using Modelica_LinearSystems2

1 ss := Modelica_LinearSystems2.ModelAnalysis
.Linearize("ThreeMIB.Systems.GridIO");

Once linearized, the system, input, and output matrices
can be observed from Dymola’s command window.

4 Nonlinear Simulation
This section explores the initialization process and the se-
lection of solvers in time-domain simulations, demonstrat-
ing how these features can accommodate various use cases
with models developed using OpenIPSL.

4.1 Initialization
Providing suitable initial guess values for large-system
models under various operating conditions can be challeng-
ing. To address this, a Modelica record template within
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Figure 6. GenerationUnits.MachineEXPSSIO.Generator1 Generator1 model with IO interfaces.
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Figure 7. ThreeMIB.Systems.GridIOsiso multi-
machine power system with IO interface used as a SISO Block

ThreeMIB.PF_Data.powerflow is associated with
each component of the model to facilitate the entry of data
from the power flow solution as starting values. This map-
ping is done once when creating the model. As shown in
Figure 5, the component pf is added directly as the block
of the yellow record template in the diagram. This allows
for the selection of specific data values for buses, machines,
loads, and transformers. This record structure can be auto-
matically implemented using the pf2rec Python utility,
which transforms the power flow simulation results into
Modelica records (Dorado-Rojas et al. 2021).

Similarly, as mentioned in Sec-
tion 2 the OpenIPSL.Electrical
.Essentials.pfComponent can be provided
with data that are used to calculate the starting values
within each of the components that extend from the
pfComponent. For example, it can be observed in
Listing 1, how the start values for the real and imaginary
parts of the voltage phasor, vr and vi are calculated from
data of voltage magnitude and angle, v_0 and angle_0
(see Line 8).

4.2 Solvers
Domain-specific power system tools like Siemens PSS/E
usually provide a single solver for which the models’
equations have been discretized; a popular choice is to
use the trapezoidal integration method combined with a

Netwon-Raphson solver to solve the DAEs. This approach
typically restricts simulations to a few seconds with a fixed
time step. Modelica tools do not face this limitation when
simulating the models from the OpenIPSL library. As
noted in (Henningsson, Olsson, and Luigi Vanfretti 2019),
Dymola has advanced solvers for sparse large-scale DAE
models, enhancing the competitiveness of power system
simulations with Modelica compared to Siemens PSS/E.
To utilize these advanced features in Dymola, the utility
ThreeMIB.Utilities.SetupSolverSettings
offers a series of functions to enable or dis-
able them. For example, it allows settings
like Advanced.Define.DAEsolver :=
true/false and Advanced.SparseActivate
:= true/false, which activates the DAE solvers
and optimizes for sparsity, respectively. Note that for
linearization tasks, these advanced settings should be
deactivated to ensure the generation of accurate state-space
models.

5 Results
The power system models developed in this work are
utilized to analyze the control system design developed
in the study for PSS tuning using phase compensation
(F. J. De Marco, Martins, and Ferraz 2012). Modelica
tools provide means to visualize and analyze the results.
Custom functions can be used with the necessary path
to the models to perform the required analysis. Within
Dymola, the Modelica_LinearSystems2 (MLin2)
library provides commands to directly linearize and plot
the frequency response from the single-input-single-output
version of the model in Figure 7 as observed in Listing 5.

Listing 5. Custom Function for Bode Plot using Model-
ica_LinearSystems2

1 function bodeplot_GridIOsiso
2 extends Modelica.Icons.Function;
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3 input Modelica.Units.SI.Time tlin = 30;
4 algorithm
5 ...
6 // l i n e a r i z e and p l o t
7 Modelica_LinearSystems2.ModelAnalysis.

TransferFunctions(
8 "OpenIPSL.ThreeMIB.Systems.GridIOsiso",

simulationSetup=
9 Modelica_LinearSystems2.Records.

SimulationOptionsForLinearization(
10 linearizeAtInitial=false,
11 t_linearize=tlin));
12 end bodeplot_GridIOsiso;

Figure 8 illustrates the frequency response of the sys-
tem, showing both the magnitude and phase of the terminal
voltage as functions of frequency for increasing values of
the PSS gain (Kw). These values were obtained from the
designs in (F. J. De Marco, Martins, and Ferraz 2012). The
adjustment Kw adjusts the phase change introduced by the
system as shown in Figure 8a. When the PSS is disabled
by setting Kw = 0, the phase curve introduces a negative
phase shift in the frequency response. Increasing Kw to 15
and 35 shows an improvement in phase around the reso-
nant frequency, reducing the phase lag, which is crucial to
effectively damp system oscillations. The magnitude plot
as shown in Figure 8b reveals the system’s sensitivity to
frequency changes for different PSS gains. With increasing
Kw, there are noticeable peaks in the magnitude response,
particularly around the resonant frequencies, suggesting
an enhanced ability of the PSS to counteract perturbations
effectively. However, higher gains (Kw = 35) introduce
sharp peaks that could lead to potential system instability
under certain conditions.

The PSS is tuned by receiving a feedback signal from the
rotor speed of the synchronous machine. Figure 9 demon-
strates the time-domain simulation of the rotor speed of
Generator 1 after a load disturbance at t = 30.5 seconds,
clearly demonstrating the impact of varying PSS gain val-
ues on the stability of the system. With the PSS disabled
(Kw = 0), the rotor speed experiences substantial oscilla-
tions, indicating poor damping characteristics. With an
increase of Kw to 15 and 35 there is an improvement in
damping performance, with the rotor speed quickly stabiliz-
ing and exhibiting minimal oscillatory behavior. This anal-
ysis underscores the effectiveness of PSS in enhancing the
system’s dynamic response to disturbances, highlighting
the critical role of appropriate PSS tuning in maintaining
system stability.

To further investigate this power system dynamics, Fig-
ure 10 provides further insight into the stability of the sys-
tem by illustrating the pole positions of the GridIOsiso
model under varying PSS gains. With the PSS disabled
(Kw = 0), the poles marked with pink crosses highlight
a critically damped system with potential for sustained
oscillations. Increasing Kw to 15 (red) and 35 (dark red)
shows a shift in the poles, which move toward the left in
the complex plane. This indicates improved damping and
stability, thus emphasizing the significant influence of PSS
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Figure 8. Bode Plot of the GridIOsiso model for three values of
the PSS gain (Kw)

tuning on the system dynamics. Moreover, this illustrates
the value of complementing non-linear simulations with
linear methods when assessing control system designs.

6 Conclusions
In this work, Modelica and the OpenIPSL library have been
utilized to build a multi-machine power system model de-
veloped for the analysis of intra-plant and inter-area modes.
The model is refactored and extended to implement a con-
trol system design and analyze its performance. This is
done by exploiting the object-oriented modeling features
of Modelica. Linearization capabilities provide an advan-
tage over other domain-specific tools in implementing this
design and performing an analysis of the model. Given the
complexity of power systems and the critical role of stabil-
ity and dynamic behavior as illustrated in Figure 10, careful
control design analysis is essential to ensure the robustness
of the system to dynamic conditions and disturbances.

This study demonstrates how Modelica and OpenIPSL
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Figure 9. Time domain simulation of the rotor speed of G1 under
a load disturbance at t= 30.5 sec. for different values of PSS
gain (Kw)
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Figure 10. Poles of the GridIO model

can be used to assist in control design analysis and im-
prove power system dynamic performance by testing con-
trol system designs. The modifications (model re-factoring
and extension) aim to effectively address the complexities
of power system stability studies effectively. Additional
work includes the development of detailed examples of
the actual design of the PSS using the unique features of
Modelica and the integration of the models presented into
the OpenIPSL library.

To access the models in this paper before they are in-
tegrated into OpenIPSL, the reader can find them in the
following GitHub repository: https://github.com/
ALSETLab/AMCONF2024_ThreeMIB
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