
91DOI 10.3384/ECP207 91 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

FMI-3.0 export for models with clock in a signal flow diagram
environment

Masoud Najafi Ramine Nikoukhah

Altair Engineering, France {masoud,ramin}@altair.com

Abstract
The FMI-3.0 standard, recently released, introduces sev-
eral promising features, such as clocks and arrays. FMI-
3.0 supports various clock types, including time-based
clocks, triggered input and triggered output clocks. Altair
Twin Activate (TA), as a modeling and simulation envi-
ronment, inherently supports hybrid systems combining
continuous-time and discrete-time models. The discrete-
time part is typically activated by events and clocks. The
clock types provided by FMI-3.0 however may differ from
those in TA. In the paper (Najafi and Nikoukhah 2022),
we explained how different clocks defined in FMI-3.0
can be successfully imported into TA. Building upon this,
our current paper aims to demonstrate how various clocks
used in TA can be used in the export of a subsystem in
both FMI-3.0 and FMI-2.0 formats. Specifically, we will
explain the way input periodic clocks and input triggered
clocks are exported.
Keywords: FMI, Synchronous clock, Signal based tool,
Modelica tool

1 Introduction
The Functional Mock-up Interface (FMI) (Modelica As-
sociation 2022) has become the de facto tool-independent
standard for the exchange of dynamic models and co-
simulation. The FMI-3.0 version (Specification 2022)
introduces numerous new features that enable more ad-
vanced modeling and support for co-simulation algo-
rithms. Clocks facilitate the synchronization of events be-
tween Functional Mock-up Units (FMUs) and the simu-
lator (importer). Additionally, several new data types and
multi-dimensional arrays are now supported (Junghanns
et al. 2021).

Altair Twin Activate is a modeling and simulation tool
developed by Altair Engineering, built on the open-source
academic simulation software Scicos (INRIA n.d.). The
TA environment allows users to create models of dynam-
ical systems using signal-based block diagrams. Basic
blocks, such as FMUs, can be interconnected to construct
complex models. This approach is very similar to the way
diagrams are created in the SSP (System Structure and
Parametrization) standard 1.

TA can also be used to create Modelica diagrams
(Nikoukhah and Furic 2009). The process begins with

1https://ssp-standard.org/

aggregating Modelica components to create a Modelica
program, which is then processed by the Modelica com-
piler2. In TA, the Modelica compiler generates an FMU
block that replaces the Modelica components in the origi-
nal model. The resulting FMU for Modelica supports both
ModelExchange or CoSimulation.

Due to this FMI-based integration of Modelica in TA,
the tool offers FMU import support via a TA FMU block.
More generally, this block can be used to import FMUs
from other vendors (Nikoukhah, Najafi, and Nassif 2017).

With FMI-3.0 and the introduction of clocks, activa-
tion, and synchronization, FMU import and export in TA
presents new challenges. Although activation signals and
synchronization have been integral parts of the TA seman-
tics from the beginning, slight semantic differences be-
tween FMI-3.0 and TA formalism prevent FMUs from be-
ing imported or exported like other native blocks in TA.
This issue also existed, to a lesser extent, with FMI-2.0, as
discussed in (Nikoukhah, Najafi, and Nassif 2017). The
challenges and solutions for FMI-3.0 import have been
presented in (Najafi and Nikoukhah 2022).

This paper addresses the difficulties and proposed so-
lutions for providing extended support for FMI-3.0 export
in TA. It begins with an overview of how TA handles ac-
tivations (clocks) and discusses the differences with FMI-
3.0’s clock handling. Then, it presents solutions for ex-
porting models as FMI-3.0 in TA, focusing on periodic
and triggered input clock types.

1.1 Activation signals in TA
Activation signals in TA control the execution of block
functions and can be explicitly manipulated, providing
powerful modeling capabilities within the simulation envi-
ronment. These signals are associated with red links con-
nected to ports typically located at the top and bottom of
blocks, as illustrated in Figure 1.

Activation signals are used to specify the activation
times of the blocks to which they are connected. The most
common usage involves the activation of blocks at a fixed
frequency using signals generated by a SampleClock
block. This block produces a series of isolated activa-
tions, known as events, which are regularly spaced in time.
These events correspond to the clock ticks in FMI-3.0.

In TA, events can be explicitly manipulated: they can be
conditionally subsampled, and unions and intersections of

2The Maplesim Modelica compiler is used in TA

92 10.3384/ECP20791 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 1. Event Delay model

events can be constructed. Blocks can generate delayed
events, enabling operations such as event delaying. In
the model shown in Figure 1, the output activation port
of an event delay block is fed back to its input activation
port. This setup creates a sequence of events where the
time spacing between successive events corresponds to the
value of the delay.

A first event generated by the Event time(s)
block initiates the cycle, producing its first (and only)
event at 1.0 seconds. The union of this activation
signal and the activation signal fed back from the
EventDelay block is generated by the red "Event
Union" block, which then activates the EventDelay
block at 1.0 seconds. At this point, the EventDelay
block creates an event delayed by 2.0 seconds, so the next
event will occur at 3.0 seconds. The simulation result of
the model in Figure 1 is shown in Figure 2. Since the
EventDelay block’s activation output triggers itself, it
continues to create events every two seconds for the re-
mainder of the simulation. This combination of blocks
mimics the behavior of an EventClock block, and indeed,
the EventClock and SampleClock blocks are con-
structed with the same principle in mind.

Figure 2. Event Scope results

Output events are defined by their time instants. Based
on how the time instant of an event is determined, there
are two different types of events in TA: predictable and
unpredictable events.

Predictable or programmed events: When activated
at any event time instant, a block can schedule another
event on its activation output ports either at the current
time instant or at any future time. The block specifies the
event firing delay, i.e., the duration after the block execu-
tion when the event should occur, for each of its output
activation ports.

The block can also schedule initial output events. For
instance, the block Event time(s) only schedules initial
events and remains inactive during simulation.

The programmed events can be considered as similar to
time-based clocks in FMI-3.0, in particular, changing
and countdown time-based clock types.

Unpredictable or zero-crossing events: Activation
signals may also be produced by blocks activated in
continuous-time. If something happens inside the block,
the block can program an event immediately or in the fu-
ture. The EdgeTrigger block is a good example that
produces an event based on a zero-crossing test. It gen-
erates an event when a condition occurs, such as when a
variable reaches a threshold value. Figure 3 represents the
simple model of a thermostat and its results (Figure 4).

Figure 3. Simple Thermostat model

Two yellow EdgeTrigger blocks are used to acti-
vate the heater or the cooler when the temperature falls
below -10 or rises above 10. These events trigger the
SelectInput block, which, depending on the activa-
tion port through which it is activated, copies its first or
second input (values -6 or +6) to its output. This out-
put represents the heat flow added to a random signal
and fed to an integrator, the output of which represents
the temperature. The simulation results illustrate how
the thermostat functionality is implemented by the zero-
crossing blocks. This kinds of events are similar to the
triggered output clock type in FMI-3.0.

The activation signals encountered so far are series

93DOI 10.3384/ECP20791 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 4. Results from Simple Thermostat model

of events, which are isolated activation signals in time,
i.e., discrete events. However, activation signals can be
more general and include time intervals. The simplest
activation signal of this type is the always active acti-
vation signal. Many basic blocks in TA palettes, such
as the SineWaveGenerator or the Integral block,
are "always active" by default, i.e., they are (implicitly)
activated by the always active block; they are active in
continuous-time. There is no similar clock or activation
type in FMI-3.0.

Another activation signal is the "initial activation".
Some blocks are only activated once at the initialization
phase, just before the start of the simulation. For example,
the Constant block is declared initially active.

In the model in Figure 1, a sequence of events firing
at regular intervals was created using the EventDelay
block. This was achieved by programming an event on
a regular basis. The resulting activation signal resem-
bles the signal produced by the SampleClock block,
but it is not of the same type. The one produced by
the SampleClock block is of type periodic. The com-
piler recognizes this signal as periodic, which contains
events firing periodically and synchronously with all other
SampleClock blocks in the model. When a block is ac-
tivated by a periodic signal, it has access to the period and
offset information at compile time. This allows the block
to adapt its behavior by computing specific block simula-
tion parameters. For instance, the SampledData block
computes the discrete-time linear system matrices corre-
sponding to the discretization of a continuous-time linear
system for the operating frequency. This frequency, which
is the inverse of the sampling (activation) period, is avail-
able at compile time. SampledData block cannot be ac-
tivated with non-periodic clock. The regular time-spaced
events is similar to periodic time-based clocks in FMI-3.0,
particularly fixed and constant clock types.

1.2 Synchronous vs. asynchronous activations
Activation signals are characterized by time periods or
time instances. An event, for example, defines an iso-
lated point in time specifying the time instant when the
blocks receiving the event should be activated. However,
the time of the event does not fully characterize the event,
especially its relationship with other events. Two events
may have identical times (simultaneous) but not be syn-
chronous.

When two blocks are activated by the same event, the
compiler must compute the order in which they should be
activated depending on their connections and direct de-
pendencies between inputs and outputs (port feedthrough
properties) of blocks. If a block requires the value on one
of its inputs to compute its output and this input is con-
nected to the output of another block, then the latter block
should be executed first. Generally, for any activation sig-
nal, the compiler computes an execution order of blocks.
This order includes the blocks receiving the activation sig-
nal directly, or indirectly through inheritance.

Each "distinct" activation source has its own list of
blocks and is treated independently of other activation
sources. Even if two events produced by two "distinct"
activation sources happen to have identical times, they are
treated as independent events. At runtime, the two events
are treated sequentially. Two "distinct" activation sources
produce asynchronous activation signals. In general, any
output activation port on a TA is considered a distinct ac-
tivation source. However, there are two exceptions: basic
blocks with direct event input-output dependencies are the
conditional blocks IfThenElse and SwitchCase.

Consider, for example, the IfThenElse block, which
represents conditional constructs similar to the if-else
statement in classical programming languages such as C.
The IfThenElse block has one activation input port
and two activation output ports. Depending on the value
of the signal on its regular input port, the block redirects
its input activations to one of its output activation ports.
In this case, the output activation signal is synchronous
with the input activation signal. So, the compiler does
not treat the output activation ports of the IfThenElse
block as "distinct" activation sources. In other words, the
origin of the output clocks is the same, making them syn-
chronous. The SwitchCase block is the counterpart of
the switch-case statements in classical languages. Other
blocks, such as Subsample, built on top of these two
basic blocks, also provide synchronous outputs. Note that
all SampleClock blocks, even having periods and offset
values, produce synchronous activations or events.

2 Code Generation and FMU export
Code generation is utilized to create C code from a TA
superblock, capturing its dynamic behavior. The gener-
ated code serves various purposes, including creating new
blocks to replace the original superblock, ensuring intel-
lectual property protection, or exporting to other simula-

94 10.3384/ECP20791 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

tion environments.
Two distinct code generation technologies are available

in TA:

1. Standard Code Generator: This technology
closely mirrors the behavior of the TA simulator, re-
lying on the same libraries used by the simulator, par-
ticularly the libraries containing the simulation func-
tions of the blocks. The generated code essentially
replicates the actions performed by the simulator,
resulting in performance comparable to simulation.
However, the generated code is not intended for in-
spection or direct use and has dependencies on TA
libraries. Therefore, when exported, the FMUs pro-
duced using this code generation technology contain
several shared libraries.

2. Inline Code Generator: Unlike the standard code
generator, the inline code generator does not rely
on TA libraries for block simulation functions. In-
stead, it generates and inlines a specific code based
on the types and sizes of the block input and out-
put signals. The code is customized and highly op-
timized using for example by constant propagation
and threshold based loop rolling. As a result, the
generated code is more efficient and simpler. Ad-
ditionally, all memory used by the code can be stat-
ically allocated. This code generator supports both
discrete-time and continuous-time dynamics and, to
some extent, multiple synchronous clocks. Various
targets can be selected for code generation, such as a
native TA block, a Python block, or an FMU block.

Both code generators support nested FMUs, enabling
the export of Modelica models. In the standard code gen-
erator, the Modelica model is converted into an FMI-2.0
for ModelExchange, while in the inline code generator, it
is converted to an FMI-2.0 for CoSimulation.

2.1 Events and clocks in FMU export
In general, the TA model may contain continuous-time
and discrete-time states. Continuous-time states are, in
general, always active and are invoked by the numerical
solver. These states may be reinitialized or experience dis-
continuities at event times. Events can be triggered by ei-
ther a clock or an external event. Discrete-time states are
usually activated by clocks or external activations.

During the code generation process, the periods and off-
sets of all SampleClocks blocks are used to compute
a base frequency which is used as parameter of a unique
periodic clock. This clock drives the periodic part of the
model directly or through subsampling. Thus, the final
generated code is activated by one clock and possibly sev-
eral external activation sources. The clock and external
activations execute their own tasks at activation. These
tasks may or may not have intersections or common vari-
ables.

There are several clock and event types in FMI-2.0 and
FMI-3.0. Most of these event and clock types are success-
fuly imported in Activate (Najafi and Nikoukhah 2022).
In this section, we examine the inverse problem: the way
events and clocks defined in TA can be exported to FMUs.

2.2 FMI export for FMI-2.0
Synchronous clocks or external clocks are not supported
in FMI-2.0. FMI-2.0 for CoSimulation does not support
events. In FMI-2.0 for ModeExchange, events can be ei-
ther time-event, input-event, or state-event. Among these
event kinds, time-event looks appropriate to be used for
export of clocks used in TA. In FMI-2.0, at each time
event, the time instant of the next time-event is retrieved
and the FMU is called at that time instant. This is the ex-
act counterpart of the way events are generated in TA. The
events can be either periodic or aperiodic; see, for exam-
ple, the model in Figure 1.

During the FMU export, the initial event time is used at
the very first time the FMU enters the Event-Mode. For
the later event times, the next event time is programmed
by the FMU and delivered to the FMU importer. The code
snippet for handling the event inside the FMU is as fol-
lows:

if (fabs(comp->eventInfo.nextEventTime - currentTime)<Tolerance){
updateOutput(x,xd,ins1,outs1,outs2);
updateState(x,xd,ins1,outs1,outs2);
comp->eventInfo.nextEventTimeDefined = fmi2True;
comp->clock_tick++;
comp->eventInfo.nextEventTime = comp->start_time+

(comp->clock_tick) *ClockPeriod;
}

The Tolerance and ClockPeriod values are de-
fined by the code generator. The problem with events in
FMI-2.0 lies in event classification inside the FMU. When
an event occurs, the FMU must distinguish whether it oc-
curs due to a time-event, state-event, input-event, or if no
particular event has occurred and the importer has simply
pushed the FMU into event mode. To determine if the
event is indeed a time event, the expected time-event time
instant is compared with the current time of the FMU set
by the API fmi2SetTime. While a good importer usu-
ally sets the current time precisely at the expected time
event, the FMU should consider the general case and take
into account numerical round-off errors by using an error
tolerance in the comparison. This error tolerance may be
problematic in many cases, which is why clocks were in-
troduced in FMI-3.0 to eliminate uncertainties.

2.3 FMI export for FMI-3.0
FMI-3.0 provides a number of new features for both
Model-Exchange and Co-Simulation (Gomes et al. 2021).
Some of the new features of FMI-3.0 are intrinsically sup-
ported in TA, such as arrays. However, despite blocks in
TA having activation (clock) inputs and outputs, the se-
mantic differences between FMI-3.0 clocks and TA ac-
tivations do not allow for a simple mapping of FMI-3.0
clocks into TA activation signals.

95DOI 10.3384/ECP20791 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

In FMI-3.0, besides the legacy time event already avail-
able in FMI-2.0, several clock types have been introduced.
There is no exact one-to-one correspondence between TA
clocks and FMI-3.0 clocks. The way FMI-3.0 clocks
are imported in TA has been explained in (Najafi and
Nikoukhah 2022).

2.3.1 Periodic Clock: Example of Clocked Counter
The simplest and most basic clock type in TA is the
SampleClock, which is defined by offset and period
values. Consider the sample clock shown in Figure 5,
which activates a counter. The counter increaments its
output on each clock tick and once reaches five resets to
zero.

Figure 5. Clocked-counter

The sample clock is mapped to the time-based periodic
clock with intervalVariability="constant".
The intervalDecimal is set to the basic period of
the final clock, and the shiftDecimal or the clock
offset is always set to zero in TA, as its value has been
taken into account in computing the basic period of
the clock. The clocks in TA cannot be exported with
intervalDecimal fixed or tunable. The clocks at-
tribute of the variable Output indicates the dependency
on the clock, i.e., "2".

<Clock name="SampleClock" causality="input"
valueReference="2" variability="discrete"
intervalVariability="constant"
intervalDecimal="0.2" shiftDecimal="0"
description="Constant periodic input clock: 1, nevprt=1" >
</Clock>

<Int32 name="Output" valueReference="3" variability="discrete"
clocks="2" causality="output" description="" >
</Int32>

This code snippet is generated for the above model. At
the clock tick, at first, the model is evaluated, then the
internal states are updated.

fmi3Status fmi3SetClock(fmi3Instance instance,
const fmi3ValueReference valueReferences[],
size_t nValueReferences,
const fmi3Clock values[]) {

...
for (i=0;i<nValueReferences;i++)

if (valueReferences[i]==2) {

...
comp->Clk[k]=values[i];

}
}
...
}

fmi3Status fmi3UpdateDiscreteStates(...) {
...
if (comp->Clk[0]) {
updateOutput_clock_1 (outs1);
updateState_clock_1 (outs1);
....
}
...
}

The exact timing of the clock ticks is computed by the
importer. At each clock time instant, the importer sets the
corresponding clock and informs the FMU that the clock
is enabled. So there’s no place for uncertainty or error
tolerance.

2.4 Triggered Input Clock: Incrementing the
Counter

The next basic event source type in TA is the external ac-
tivation. If a superblock is activated by an external activa-
tion, the compiler has no information about the periodicity
of the events. The model part is executed when the event
happens. This event type is the exact counterpart of the
triggered event in FMI-3.0. Consider the model in Fig-
ure 6 where a counter is activated by an external unknown
source.

Figure 6. Triggered-counter

<Clock name="TriggeredClock1" valueReference="2"
variability="discrete" intervalVariability="triggered"
causality="input"
description="External triggered input clock: 1, nevprt=1" >
</Clock>
<UInt8 name="Output" valueReference="3"
variability="discrete" clocks="2"
causality="output" >
</UInt8>

2.5 Multiple Variable Access: Clocked
Counter and Reset

In TA, several events and clocks can be used to access
and update a single variable. For instance, the output
of the block Selector in Figure 3, is updated by two
input events. Another example is the Counter with
reset block. Consider the model in Figure 7 where the

96 10.3384/ECP20791 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

counter is incremented at activation time instants of the
SampleClock.

Figure 7. Counter-with-reset

Counter is reset to zero whenever the event of the exter-
nal activation is fired.

reset act ouput
0 0 do nothing
0 1 increament by one
1 0 resent to zero
1 1 resent to zero

In this model, the counter output variable is accessed
and updated by two different events.

<Clock name="TriggeredClock1" valueReference="2"
variability="discrete" intervalVariability="triggered"
causality="input"
description="External triggered input clock: 1, nevprt=1" >
</Clock>
<Clock name="SampleClock" valueReference="3"
variability="discrete" intervalVariability="constant"
intervalDecimal="0.2" shiftDecimal="0" causality="input"
description="Constant periodic input clock: 2, nevprt=2" >
</Clock>
<Float64 name="Output" valueReference="4" variability="discrete"
clocks="2 3" causality="output" description="" >
</Float64>

Note that the clocks attribute of the variable Output
lists the dependency of the two clocks, i.e., "2,3".

2.6 Synchronism Issue
Unlike in FMU, in TA, events can happen at the same time
(simultaneous) but be asynchronous. Due to this differ-
ence, several situations should be considered to be han-
dled. Consider, for example, a superblock having two
external input events. In this case, the following table is
considered to handle three possible different tasks in these
situations.

Event-1 Event-2 Task
0 0 do nothing
0 1 task-1
1 0 task-2
1 1 task-3

For instance, if only Event-1 is activated, task-1 should
be run. If Event-1 and Event-2 are activated syn-
chronously, task-3 is run. This distinction between tasks

is important in some situations where there is a common
variable activated by two events. If no common variables
are activated by both events, the execution of task-3 would
have the same result as the execution of task-1 and task-2
in any order. Consider, for example, the counter in Fig-
ure 8.

Figure 8. Counter with two-external-activations

If at a time instant both the reset and increment events
are activated synchronously, in TA the output of the
counter will be zero. If event ports are activated simul-
taneously, the order of execution is important. If the in-
crement event input is activated after the reset event input
is activated, the result will be different.

In the FMI-3.0 standard, when the FMU en-
ters the event-mode, the importer should inform the
FMU about the activated clocks by calling the API
fmi3SetClock. With this API, the importer can
enable the clocks one by one and then call the API
fmi3UpdateDiscreteStates to execute the tasks
corresponding to each clock of the FMU. The other possi-
bility is to activate all clocks at once and then call the API
fmi3UpdateDiscreteStates.

Actually, since there is no way in FMI-3.0 to indicate
if input clocks are synchronous, i.e., should tick together,
the result of the simulation may be different in different
importers. The only way to avoid this situation is to avoid
using variables activated by different clocks. In this case,
the order of execution does not matter. But this becomes a
limitation for exporting a tool independent FMU.

2.7 Periodic Input Clock Connections
In TA, every clock source, dependent or independent, de-
fines the information flow toward other input clock ports.
No clock source can be connected to other clock sources.
If the union of two clock sources is needed, a Union
block can be used. For example, in Figure 9, the counter
is incremented whenever each of the clock sources ticks.

In FMI-3.0, the causality attribute of periodic
clocks is "input", which should be interpreted as if the
clock source is coming from the importer. This makes
an open gate for arbitrary interpretation from FMU im-
porters. For example, what should happen if two periodic
clocks from two FMUs are connected together and con-
nected to the triggered input clock of another FMU. In
TA, this connection raises an error, but other tools may in-
terpret it as the union (OR operation) or the intersection

97DOI 10.3384/ECP20791 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Figure 9. Example of clock unions (EventUnion)

(AND operation) of periodic clock ticks. This lack of def-
inition would result in the FMU export of a model with
such a connection being tool-dependent.

2.8 FMU for Cosimulation: Solver inlining
The way the clock is handled in FMI-3.0 is independent
of the FMU implementation, i.e., the FMU can be either
Model-Exchange or Co-Simulation3. The FMI-3.0 FMUs
work almost identically for both FMU implementations
in handling clocks. The difference between the two im-
plementations is in handling of the continuous-time dy-
namics. The introduction of clocks in FMI-3.0 has offered
TA the opportunity of exporting the internal dynamics in
a new way, i.e., solver inlining.

In the FMU export for Co-Simulation, with the inline
code generation, a variable-step or fixed-step solver is
chosen to be used to simulate the continuous-time part of
the model. Besides the classical solver linking, e.g., link-
ing an Euler or RK4 solver, TA supports solver inlining
which is a transformation method for embedding a numer-
ical solver within the generated code. This transformation
can be applied to a general model or part of it, to turn
it into a purely discrete-time synchronous model with the
resulting discrete-time (super) block behavior matching as
closely as possible that of the original super block.

The model transformation for solver inlining, done dur-
ing the model compilation process, is achieved by em-
bedding a fixed-step numerical solver for discretizing the
dynamics of the continuous-time components of the sys-
tem. The exported model can be considered both as a pure
discrete-time block and a Co-simulation component. The
main usage of the solver inlining is for models exported
by the inline code generator for embedded applications.

The basic idea behind the embedded solver is the con-
version of the differential equations associated with the
dynamics of blocks with internal continuous-time states
to time difference equations. Difference equations are,

3The Scheduled Execution FMU type has not been considered in this
paper

in turn, can be implemented by discrete-time blocks run-
ning on a single base clock. This, however, does not
work for variable step-solvers. The construction of the
discrete-time version of the model in that case requires
complex transformations. To see this difference, consider
the following simple system, which can be implemented
in TA by two blocks: an integrator block and a memory-
less block realizing the function f .

y′ = f (y)

The Euler solver uses a first order discrete approximation
of this system:

yk+1 = yk +h. f (yk)

where
yk = y(tk)

and
tk+1 = tk +h

. The time instances when the state is updated correspond
to a fixed frequency sampling of time t, with period h. The
differential equation in this case is trivially translated into
a difference equation. The system can be represented as a
block diagram by separating the system into an integrator
block and a memoryless block by noting that it can be
rewritten as follows

y′ = u

u = f (y)

The corresponding model can be constructed as fol-
lows.

In this case, the Euler discretization yields

yk+1 = yk +h.uk

uk = f (yk)

So, the discrete-time version of the model is obtained by
simply replacing the integrator block by a discrete block
(Discrete Integral super block). The content of the Dis-
crete Integral superblock is also shown.

The new model which is activated by a SampleClock
block with period h is a purely discrete-time model.
The original model is simply transformed by replacing
the integrator with the Discrete Integral block and a
SampleClock block. In a more general model with
multiple integrator blocks, each integrator block can be
replaced by its discrete-time equivalent, activated the
SampleClock block. The stateless blocks of the model,

98 10.3384/ECP20791 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

represented here by the f block, are not modified. For
higher order approximations of the derivative however, the
computations at each time step cannot be realized by sin-
gle activations of discrete blocks. To see this, consider a
fourth order Runge-Kutta (RK4) solver algorithm for the
same system:

yk+1 = yk +
1
6
(k1 +2k2 +2k3 + k4)

k1 = h. f (yk)

k2 = h. f (yk + k1/2)

k3 = h. f (yk + k2/2)

k4 = h. f (yk + k3)

The computation of the of next discrete state y requires
four evaluations of the function f with different arguments.
To embed this solver in the continuous-time model to ob-
tain a discrete-time model, the RK4 solver equations can
be implemented as a more complex Discrete Integral su-
perblock as shown in Figure 10.

Figure 10. Discreteization of an integrator block using RK4
solver

Once the transformation is done, a C code is generated
for the purely discrete model activated by the sample clock
with period h.

The generated C code, which is activated by a
periodic clock with a known constant period, can
naturally be exported to an FMU. For FMI-2.0, a
periodic regular time-event with the time interval
equal to h will be used in the FMU. For FMI-
3.0, the export is more natural; an input clock
with the intervalVariability="constant" and
intervalDecimal equal to h will be used.

The embedded solver transformation converts the
continuous-time dynamics part of the model to discrete-
time. In other words, the FMU has no continuous-time
dynamics and the whole dynamics has been discretized
and activated by a periodic clock. As a result, dis-
regarding the discretization error, the FMU can be ex-
ported in the same way for both ModelExchange and Co-
Simulation in FMI-3.0.

3 Conclusion
The introduction of clocks in FMI-3.0 has provided
the possibility of exporting more general models with
continuous-time and discrete-time dynamics, particularly
from TA. This paper has explored the integration of clocks
within the context of Altair Twin Activate for FMU ex-
ports. Different clock and activation types are considered
and the way they are exported to FMI-3.0 has been pre-
sented. The introduction of periodic clocks in FMI-3.0
has allowed the inlining of the numerical solver within
the FMU, making it possible to achieve identical discrete
dynamics in FMU export for both ModelExchange and
CoSimulation.

References
Gomes, Claudio et al. (2021). “The FMI 3.0 Standard Interface

for Clocked and Scheduled Simulations”. In: Proceedings of
the 14th International Modelica Conference.

INRIA (n.d.). URL: http://www.scicos.org.
Junghanns, Andreas et al. (2021). “The FMI 3.0 Standard Inter-

face for Clocked and Scheduled Simulations.” In: Proceed-
ings of the 14th International Modelica Conference.

Modelica Association, FMI Website (2022). URL: https://fmi-
standard.org.

Najafi, Masoud and Ramine Nikoukhah (2022). “Importing
FMU-3.0: challenges in proper handling of clocks”. In: Pro-
ceedings of Asian Modelica Conference 2022, Tokyo, Japan.

Nikoukhah, Ramine and Sebastien Furic (2009). “Towards a full
integration of Modelica models in the Scicos environment”.
In: Proceedings of the 7th International Modelica Confer-
ence.

Nikoukhah, Ramine, Masoud Najafi, and Fady Nassif (2017).
“A Simulation Environment for Efficiently Mixing Signal
Blocks and Modelica Components”. In: Proceedings of the
12th International Modelica Conference.

Specification, FMI-3.0 (2022). URL: https://fmi- standard.org/
docs/3.0.

