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Abstract
CasADi is an open-source framework that can be used
to efficiently solve optimization problems involving user-
defined ODE/DAE models. Supported solution methods
include so-called shooting methods, where solvers for
initial-value problems in ODEs or DAEs are referenced
inside in nonlinear programming (NLP) formulations. In
order to solve such NLP formulations with gradient-based
algorithms, CasADi implements a fully automatic sensi-
tivity analysis. This analysis includes forward sensitivity
analysis, adjoint sensitivity analysis as well as the cal-
culation of higher-order sensitivities for the ODE/DAE
models. Because of the variational (differentiate-then-
integrate) approach used, the numerical solution can be
performed with variable-step size, variable-order integra-
tors such as those from the SUNDIALS suite.

In this work, we present a generalization of the sensi-
tivity analysis support in CasADi to systems with events,
as are common in real-world cyber-physical models. In
particular, the event extension enables us to formulate
and solve optimization problems with such event systems,
without a priori knowledge of the number and ordering of
events. Ultimately, we expect the proposed approach to
be compatible with general cyber-physical models formu-
lated in Modelica or available as model-exchange FMUs.

We demonstrate the proposed approach for two proof-
of-concept examples; the classical bouncing ball written
in CasADi directly and a simple hybrid DAE describing
a breaking spring formulated in Modelica and imported
symbolically into CasADi. In the examples, we show that
the forward sensitivities calculated to high precision using
the proposed approach are consistent with a cruder finite-
difference approximation and provide an example of how
they can be embedded into optimization formulations. We
discuss how the approach can be extended to handle stan-
dard FMUs, adhering to FMI 2 or FMI 3, as well as non-
trivial Modelica models imported via a symbolic interface
based on the emerging Base Modelica standard.
Keywords: Hybrid DAEs, sensitivity analysis, CasADi,
Modelica, FMI

1 Introduction
Dynamic models describing cyber-physical systems often
include events that are triggered when some conditions

are met. These events can arise both from the need to
faithfully capture the physics, e.g. an object transition-
ing from being stationary to starting to slide, or to capture
the modes in control systems. Physical modeling environ-
ments, such as those based on Modelica, allow events to
be efficiently described and transformed into a canonical
form compatible with numerical solvers. For Modelica,
the corresponding form is a hybrid differential-algebraic
equation (DAE) as described by the language specifica-
tion (Modelica Association 2021). For a hybrid DAE in
a standard form, events are generally triggered by zero-
crossing conditions for a set of event indicators, which are
evaluated along with the DAE. Certain numerical solvers
such as those from the SUNDIALS suite (Hindmarsh et
al. 2005) used in this work, are able to monitor the event
indicators for zero-crossings and stop the integration pre-
maturely if an event is detected. At the detected event, the
system is then updated according to the finite state ma-
chine semantics described in the hybrid DAE representa-
tion before the DAE integration is resumed.

1.1 Events in dynamic optimization
The handling of events using zero-crossing events and
event transitions is the standard approach for hybrid DAE
simulation. For dynamic optimization problems, i.e. op-
timization problems where the hybrid DAE enters as con-
straints in the formulation, the standard approach is in-
stead to partition the time horizon into multiple stages
(or phases) with events happening between the different
stages but not within them. The time durations between
events then become additional decision variables of the
optimization problem. To illustrate, if we have a single
event at (a priori unknown) time T , the physical time vari-
able t is substituted in the first stage with a dimension-
less time τ according to t = T τ . We can then proceed to
solve the optimization problem as if the event times were
known with stage durations added as an additional opti-
mization variables. While this approach has proven useful
in numerous applications, it is not as general as the hy-
brid DAE representation used for simulation. In particu-
lar, it requires a priori knowledge of the number of stages,
which is often not available.

Using the approach proposed here, this reformulation to
a multi-stage problem, with associated restrictions, is no
longer needed. Instead, we are able to embed the hybrid
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DAEs directly in the dynamic optimization formulations
and still get the exact first and second order sensitivity in-
formation needed by gradient-based numerical optimiza-
tion methods.

1.2 CasADi
CasADi (J. A. E. Andersson et al. 2019) is an open-source
software package for C++, Python, MATLAB and Octave.
It offers versatile environent that in particular can be used
to solve a range of different numerical optimization prob-
lems, using different methods and solvers. In particular,
CasADi can be used to efficiently solve numerical optimal
control problems, i.e. optimization problem constrained
by differential equations. At the core of CasADi is a sym-
bolic framework implementing algorithmic differentiation
(AD) in both forward and reverse (adjoint) modes. In ad-
dition to AD, symbolic expressions can be used for ef-
ficient evaluation, either in virtual machines or in gener-
ated, self-contained C code. Importantly, the symbolic ex-
pressions can embed calls to user-defined, differentiable
function objects. Such function objects can be defined in
number of different ways, including from other symbolic
expressions, by linear or nonlinear systems of equations
or user defined code. In (Joel Andersson 2023), it was
shown how differentiable CasADi function objects could
be created from functional mock-up units (FMUs) adher-
ing to the functional mock-up interface (FMI) standard.
In this work, we present an extention of another imporant
type of function objects in CasADi, Integrator instances,
which are used to simulate and perform sensitivity anal-
ysis for differential equations. A relatively comprehen-
sive and up-to-date description of this functionality is pre-
sented in Section 2. In Section 3, we will show how the
integrators were extended to support general events han-
dling, while still retaining efficient and accurate differen-
tiability.

1.3 Related work
Sensitivity analysis and numerical optimization for hy-
brid dynamic systems have been performed previously,
in particular in the Julia environment, using integrators
formulated in the DifferentialEquations.jl package (Rack-
auckas and Nie 2017). For models available as expres-
sions, derivatives can be calculated analytically by dif-
ferentiating the entire algorithm, giving a integrate-then-
differentiate approach. It is our understanding that this
approach, unlike the variational approach presented here,
can not be readily used with models formulated in Model-
ica or provided as FMUs. We refer to (Corner, C. Sandu,
and A. Sandu 2019) for a recent overview of methods for
hybrid sensitivity analysis.

2 Simulation and sensitivity analysis
in CasADi

CasADi can be used to solve initial value problems (IVP)
in ordinary differential equations (ODEs) or differential-

algebraic equations (DAEs) with fully automatic sensitiv-
ity analysis. This support, which has existed since early
versions of CasADi, has been extended and improved over
the years. In the following, we provide a description of the
current algorithm, which largely corresponds to the refac-
toring of the functionality which enabled the use of FMI
models, as described in (Joel Andersson 2023). In Sec-
tion 3, we will show how this formulation can be extended
to support events, while still maintaining efficient, analytic
differentiability.

The dynamic systems considered, as of CasADi 3.6, are
semi-explicit DAEs with quadratures:





ẋ(t) = fode(t,x(t),z(t), p,u(t))
0 = falg(t,x(t),z(t), p,u(t))

q̇(t) = fquad(t,x(t),z(t), p,u(t)),
(1)

where t ∈ R is time (or some other independent variable),
x(·) ∈ Rnx is a state vector, z(·) ∈ Rnz is a vector of al-
gebraic variables, q(·) ∈ Rnq is a state vector that does
not appear in the right-hand-side, p ∈ Rnp is a (tunable)
parameter and u(·) ∈ Rnu is a control input, which is as-
sumed to be piecewise constant. If piecewise constant
control inputs are too restrictive for a particular applica-
tion, piecewise polynomial approximations can be han-
dled by adding additional state variables (e.g. defined by
ẋpiecewise linear = upiecewise constant). The quadrature states in
this context are especially important for calculating inte-
gral terms but are also used in adjoint sensitivity analysis.

We assume that any DAE is of index-1, i.e. in particular
that the Jacobian of falg with respect to z exists and is in-
vertible. For ODEs, z and falg(·) have dimension zero. If
the index-1 assumption does not hold, an index reduction
should be performed prior to simulation, which has been
implemented both in CasADi natively (for models given
as symbolic expressions) and in coupled modeling enviro-
nents, such as those based on Modelica.

To solve IVPs, the CasADi user creates Integrator in-
stances. These are formed from a given the initial time t0,
an output time grid [t1, . . . , tN ] as well as symbolic expres-
sions of the form (1), or more generally, a (differentiable)
CasADi function object that calculates fode, falg and fquad
from given values for t, x, z, p and u:

f : R×Rnx ×Rnz ×Rnp ×Rnu → Rnx ×Rnz ×Rnq

(t,x,z, p,u) → ( fode, falg, fquad)
(2)

For the typical usage, an Integrator instance is a (differ-
entiable) CasADi function object that given x(t0), p, the
u(t) trajectory and a guess for z(t0), calculates x(tk), z(tk)
and q(tk) at all output times, k = 1, . . . ,N. If the DAE has
quadratures, q(t0) is assumed zero. We can write the func-
tion object defined by the integrator instance as follows:

F : Rnx ×Rnz ×Rnp ×Rnu×N → Rnx×N ×Rnz×N ×Rnq×N

(x0,z0, p,u) → (x,z,q)
(3)



101OCTOBER 14-16, STORRS, CT, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI        10.3384/ECP20799

Solving the initial value problem

The actual calculation of (3) takes places in the CasADi
Integrator class, which relies on successive calls to one of
the solver plugins. The top level solver algorithm is il-
lustrated in Algorithm 1, where the functions RESET and
ADVANCE are implemented in the specific solver plugin.
These two functions correspond to initializing the (for-
ward) integration at some given time, providing the neces-
sary data, and advancing the solution to some given time
point, respectively. Algorithm 1 also includes the helper
function NEXT_STEP which checks the provided control
input and determine when the next step change in the con-
trol occurs. If there are no more input step changes, the
end of the simulation (N) is returned. The algorithm will
ensure that the integration is stopped at such input change
times. The stopping times are also used to prevent a solver
plugin from taking internal time steps past the stopping
times during the ADVANCE step (omitted in Algorithm 1
for simplicity).

Algorithm 1 Integration in CasADi without sensitivity
analysis or events handling

1: procedure SIM(x0 ∈ Rnx , z0 ∈ Rnz , p ∈ Rnp , uk ∈
Rnu , k = 0, . . . ,N −1)

2: kstep := 0 ▷ Index of the next input step change
3: for k = 0, . . . ,N −1 do ▷ Forward integration
4: if k = kstep then ▷ Input step change
5: kstep := NEXT_STEP(k,uk+1, . . . ,uN−1)
6: RESET(tk,xk,zk, p,uk)
7: end if
8: (xk+1,zk+1,qk+1) := ADVANCE(tk+1)
9: end for

10: return xk ∈ Rnx , zk ∈ Rnz , qk ∈ Rnq , k = 1, . . . ,N
11: end procedure

As of this writing, there were four solver plugins avail-
able; two CasADi native fixed-step integrators implement-
ing explicit and implicit Runge-Kutta, respectively, as
well as interfaces to the SUNDIALS solvers CVODES
and IDAS (Hindmarsh et al. 2005). For latter two solvers,
the default algorithm is a variable-order variable-step size
backward differentiation formula (BDF) method that takes
successive steps past the given output time and then eval-
uates the polynomial representation available for the last
integrator step at the given output time. All the inter-
faced solvers rely on CasADi to automatically generate
any derivative information needed, including sparse Jaco-
bians, and use sparse linear algebra for the step size com-
putation.

The remainder of this section details how Algorithm 1
is extended internally in CasADi to be able to effi-
ciently calculate forward and adjoint sensitivities and re-
quires some familiarity with algorithmic differentiation.
A reader mainly interested in using the framework in ap-
plications may choose to skip these parts as they are not
essential for using the code.

Forward sensitivity analysis

The CasADi integrators support analytic forward sensitiv-
ity analysis via a variational approach (J. Andersson 2013;
J. A. E. Andersson et al. 2019), i.e. an augmented set of
DAEs are formed corresponding to the forward sensitiv-
ity equations. The forward sensitivity analysis is imple-
mented both symbolically and numerically. In the sym-
bolic implementation, which is the older implementation,
a new DAE for the augmented system is created which is
solved as any other DAE, exploiting only the sparsity of
the augmented DAE system. This symbolic differentia-
tion can be done repeatedly, to get analytic derivatives to
any order, assuming sufficiently smooth DAEs.

To better exploit the specific structure of the for-
ward sensitivity equations, a numeric implementation of
forward sensitivity analysis was added (Joel Andersson
2023). The numeric implementation is implementated by
supporting multiple columns in (3), corresponding to dif-
ferent forward seeds/sensitivities, i.e. perturbations with
respect to different combinations of inputs in Algorithm 1.
For Nf forward sensitivities that are calculated along with
the original (undifferentiated) trajectory, the generalized
definition of F can be written:

F̃ : Rnx×(1+Nf )×Rnz×(1+Nf )×Rnp×(1+Nf )×Rnu×(1+Nf )N

→ Rnx×(1+Nf )N ×Rnz×(1+Nf )N ×Rnq×(1+Nf )N

(x0,z0, p,u) → (x,z,q)
(4)

Note that the multiple right-hand-sides are usually hid-
den from the user, who typically embeds the undifferenti-
ated F from (3) in some optimization formulation, and the
sensitivity equations are generated automatically to pro-
vide a gradient-based optimizer with the required deriva-
tive information.

Algorithm 1 continues to be valid when forward sensi-
tivity equations are included in the calculation, with the
only change that calculation of xk, zk and qk is now done
with (1+Nf ) columns at a time instead of one column
at a time. It is up to the solver interfaces, i.e. the imple-
nentation of RESET and ADVANCE to exploit the sensitiv-
ity structure. In the SUNDIALS interfaces, this exploita-
tion is done by providing SUNDIALS with structure-
exploiting linear algebra routines. These linear algebra
routines use second order derivative information – calcu-
lated via forward-over-forward algorithmic differentiation
of the DAE function – to exactly and efficiently solve the
augmented linear system. Note that we do not use SUN-
DIALS native forward sensitivity support.

Adjoint sensitivity analysis

Similar to forward sensitivity analysis, the CasADi in-
tegrators support adjoint sensitivity analysis via a varia-
tional approach (J. Andersson 2013; J. A. E. Andersson et
al. 2019). These equations define a terminal-value prob-
lem coupled to the regular forward integration. Because
the coupling of the terminal-value problem to the initial
value problem is in one direction only, the combined prob-
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lem can be solved with a forward integration, recording
the integrator steps, followed by a backward integration.

The original implementation of adjoint sensitivity anal-
ysis in CasADi supported a general backward differential
equation, as long as it was affine in the “backward states”,
and was implemented symbolically. Because of the spe-
cific structure, the integrator could be differentiated re-
peatedly, giving analytical sensitivities to any order, not-
ing that adjoint-over-adjoint sensitivities can be reformu-
lated as forward-over-adjoint sensitivities.

In CasADi 3.6, a restriction of the formulation was im-
posed, requiring that the terminal value problem to always
be the adjoint sensitivity equations corresponding to the
forward integration. The adjoint equations may in turn
have forward sensitivity equations, which is important to
be able to efficiently calculate second order derivative in-
formation, e.g. for numerical optimization. With Na ad-
joint sensitivities and Nf forward sensitivities, (4) is fur-
ther generalized as follows:

F̂ : Rnx×(1+Nf )×Rnz×(1+Nf )×Rnp×(1+Nf )×Rnu×(1+Nf )N

×Rnx×(1+Nf )Na N ×Rnz×(1+Nf )Na N ×Rnq×(1+Nf )Na N

→ Rnx×(1+Nf )N ×Rnz×(1+Nf )N ×Rnq×(1+Nf )N

Rnx×(1+Nf )Na ×Rnz×(1+Nf )Na

×Rnp×(1+Nf )Na ×Rnu×(1+Nf )Na N

(x0,z0, p,u,λx,λz,λq) → (x,z,q,λx0 ,λz0 ,λp,λu),
(5)

where λx,λz,λq correpond to adjoint (and forward-over-
adjoint) seeds and λx0 ,λz0 ,λp,λu correspond to adjoint
(and forward-over-adjoint) sensitivities. Note that since
z0 is a guess, λz0 is going to be trivially zero, but is kept
in the function signature to get a consistent function sig-
nature (that can easily be embedded into symbolic expres-
sions). The function signature (5), which is the most com-
plex of any of the CasADi core classes, remains the same
with the addition of event support, which we will present
in Section 3.

In Algorithm 2 we show the generalization of Algo-
rithm 1 to handle forward and adjoint sensitivities, which
in addition to RESET and ADVANCE mentioned earlier
also includes two additional methods, IMPULSE to pro-
vide an additive contribution to the adjoint states at a given
time and RETREAT to integrate the system backwards to
a given time point. NEXT_IMPULSE is a helper function,
similar to NEXT_STEP to find the next output time where
an IMPULSE call is needed. Note that whenever there is
a step change in a control input, the forward integration
is repeated starting at the beginning of the previous step
change (or initial time t0).

As in the case of forward sensitivity analysis, the ad-
dition of numerical adjoint (and forward-over-adjoint)
sensitivity analysis in CasADi 3.6 enabled significantly
better structure exploitation in the integrator interfaces,
specifically in the SUNDIALS interfaces. In particular,
it allowed an arbitrary number of forward, adjoint and
forward-over-adjoint sensitivities to be calculated along
with the original simulation without increasing the size of

the linear system needing to be factorized inside the inter-
faced ODE/DAE integrators. Similar to the forward sensi-
tivity analysis, the forward-over-adjoint sensitivity anal-
ysis uses a matrix-free second order correction, imple-
mented via forward-over-adjoint directional derivatives to
exactly solve the augmented linear system.

Algorithm 2 Integration in CasADi with forward and ad-
joint sensitivity analysis but without events handling

1: procedure SIM_S(x0 ∈Rnx×(1+Nf ), z0 ∈Rnz×(1+Nf ),
p ∈Rnp×(1+Nf ), u• ∈Rnu×(1+Nf ), λx• ∈Rnx×(1+Nf )Na ,
λz• ∈ Rnz×(1+Nf )Na , λq• ∈ Rnq×(1+Nf )Na)

2: kstep := 0 ▷ Index of the next input step change
3: for k = 0, . . . ,N −1 do ▷ Forward integration
4: if k = kstep then ▷ Input step change
5: kprev := k ▷ Also keep track of old kprev
6: kstep := NEXT_STEP(k,u•)
7: RESET(tk,xk,zk, p,uk)
8: end if
9: (xk+1,zk+1,qk+1) := ADVANCE(tk+1)

10: end for
11: λ p := 0, λu• := 0 ▷ Initialize to zero
12: for k = N −1, . . . ,0 do ▷ Backward integration
13: if k < kprev then
14: kprev := <retrieve saved value>
15: RESET(tkprev ,xkprev ,zkprev , p,uk)
16: ADVANCE(tk+1)
17: end if
18: if k < kstep then
19: IMPULSE(λxk+1 ,λzk+1 ,λqk+1)
20: kstep := NEXT_IMPULSE(k,λx• ,λz• ,λq•)
21: end if
22: [λ̃x, λ̃p, λ̃u] := RETREAT(tk)
23: λp := λp + λ̃p, λuk := λuk + λ̃u
24: end for
25: λx0 := λ̃x
26: λz0 := 0
27: return x• ∈ Rnx×(1+Nf ), z• ∈ Rnz×(1+Nf ), q• ∈

Rnq×(1+Nf ), λx0 ∈ Rnx×(1+Nf )Na , λz0 ∈ Rnz×(1+Nf )Na ,
λp ∈ Rnp×(1+Nf )Na , λu• ∈ Rnu×(1+Nf )Na

28: end procedure

3 Event support in CasADi
In order to implement event support in the CasADi inte-
grators, we add a zero-crossing output to the DAE function
(2) resulting in the generalized formulation:

f : R×Rnx ×Rnz ×Rnp ×Rnu → Rnx ×Rnz ×Rnq ×Rne

(t,x,z, p,u) → ( fode, falg, fquad, fzero)
(6)

The zero-crossing component calculates ne separate
smooth trajectories which are monitored for zero cross-
ings, as of this writing only from strictly negative to
strictly positive values (this restriction may be removed in
the future). The smoothness property is essential, and will
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be used for finding the exact event time as described as
in Section 3.2 below. Furthermore, the smoothness prop-
erty is necessary to properly calculate forward and adjoint
sensitivities as described in Section 3.3 and Section 3.4,
respectively.

When a zero crossing occurs, an optional reinit function
is called. This is a separate user-provided function which
has the signature:

E : I×R×Rnx ×Rnz ×Rnp ×Rnu → Rnx ×Rnz

( j, t,x-,z-, p,u) → (x,z) (7)

where x- and z- are the values of x and z immediately
before the event, i.e. x-(t) = limτ→t x(τ) and z-(t) =
limτ→t z(τ), respectively. In other words, the function E
explicitly defines a the new state vector and a new guess
for the algebraic variables. If a reinit function is not pro-
vided, the identity mapping is assumed.

A differentiable function with the signature (7) can be
created in various ways in CasADi. In particular, we may
want to create ne different functions of the form:

E j : R×Rnx ×Rnz ×Rnp ×Rnu → Rnx ×Rnz

(t,x-,z-, p,u) → (x,z), j = 0, . . . ,ne −1, (8)

and then use a Switch function in CasADi to combine them
into a single function with the signature of (7). Also note
that we can use an implicit definition of E or E j e.g. by
using a Rootfinder function in CasADi.

With the addition of the zero-crossing output in the
DAE function and the new reinit function, the DAE for-
mulation (1) becomes generalized as follows:



(x(t),z(t)) = E( j, t,x-(t),z-(t), p,u(t))
if ∃ j : f ( j)

zero(t,x-(t),z-(t), p,u(t)) = 0


ẋ(t) = fode(t,x(t),z(t), p,u(t))
0 = falg(t,x(t),z(t), p,u(t))

q̇(t) = fquad(t,x(t),z(t), p,u(t))
otherwise

(9)

3.1 Generalized simulation algorithm
In Algorithm 3 we show the generalization of Algorithm 2
to also include event handling as described above. Dur-
ing the forward integration, the main generalization comes
from allowing the ADVANCE step to terminate before the
desired output time, in which case it will return the cor-
responding time and the index of the triggered root-zero
crossing component. When this happens, a reinit function
called REINIT in the algorithm is called. For simulation
without sensitivities, the REINIT function is essentially
a call to E from (7). We will show in Section 3.3 below
how this function generalizes to forward sensitivity anal-
ysis. Following an event, the solver plugin needs to be
reset, similarly as for the case of changing inputs. To sim-
plify the presentation, we assume that REINIT returns the
actual algebraic variable z̃. In the actual implementation,
REINITwill just return a guess for the algebraic state and

the actual values will be calculated during the algorithm
to find consistent initial conditions inside the following
RESET. For each event, we record x and z both before and
after the event transition, along with information such as
the zero crossing index and time. This will be used for the
backward integration.

For the backward integration, two generalizations are
necessary. Firstly, before the call to progress the back-
wards integration to the beginning of the interval (tk), there
is a for-loop to first visit all events that were recorded for
the specific interval, in reverse order. After the adjoint
integration has progressed to a specific event, the adjoint
of the event transition function is called. This function is
discussed in Section 3.4. Following the event, during the
backward integration, we need to redo the forward integra-
tion starting at the previous event or input step (whichever
is encountered first), denoted by the PREVIOUS_EVENT
helper function.

3.2 Event detection algorithm
In order to determine the time of zero crossing event with
high precision, the current algorithm is based on lineariz-
ing the zero-crossing algorithm in the time direction. Note
that we currently do not use the zero-crossing detection
capabilities of the interfaced solvers, although we may
switch to doing so in a future version of the code, as dis-
cussed in Section 6.3.

Consider the zero-crossing function as a function of t,
including the indirect dependencies via x, z and u:

e(t) = fzero(t,x(t),z(t),u(t)) (10)

We can linearize this function with respect to time as
follows, assuming known values for ẋ(t) and ż(t):

ė(t) = ∂ fzero
∂ t (t,x(t),z(t), p,u(t))

+ ∂ fzero
∂x (t,x(t),z(t), p,u(t)) ẋ(t)

+ ∂ fzero
∂ z (t,x(t),z(t), p,u(t)) ż(t),

(11)

which can be efficiently calculated using a forward direc-
tional derivative of fzero. Note that there are no partial
derivatives w.r.t. p and u as these are constant during the
interval. As of this writing, we obtain ẋ(t) from evalu-
ating the ODE right-hand-side, i.e. fode in (9) and did
not consider zero crossing functions depending on alge-
braic variables. In a future iteration, we expect to obtain
ẋ(t) and ż(t) from the specific integrator interface, e.g. by
linearizing the DAE equations with respect to time or by
evaluating an exiting polynomial representation of the x(t)
and z(t) trajectories.

The event detection algorithm used consists of three
parts:

• At the beginning of the (now generalized) ADVANCE
function, we predict using linear extrapolation
whether a zero-crossing event is expected before the
given output time. If this is the case, the forward in-
tegration will be done only to this time and not to
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Algorithm 3 CasADi integration, with events handling

1: procedure SIM_E(x0 ∈Rnx×(1+Nf ), z0 ∈Rnz×(1+Nf ),
p ∈Rnp×(1+Nf ), u• ∈Rnu×(1+Nf ), λx• ∈Rnx×(1+Nf )Na ,
λz• ∈ Rnz×(1+Nf )Na , λq• ∈ Rnq×(1+Nf )Na)

2: kstep := 0 ▷ Index of the next input step change
3: t := t0, i := 0 ▷ Current time, event index
4: for k = 0, . . . ,N −1 do ▷ Forward integration
5: if k = kstep then ▷ Input step change
6: kprev := k ▷ Also keep track of old kprev
7: kstep := NEXT_STEP(k,u•)
8: RESET(tk,xk,zk, p,uk)
9: end if

10: while t < tk+1 do ▷ Integrate until tk+1
11: (x̃, z̃, q̃, t, j) := ADVANCE(tk+1)
12: while j ≥ 0 do ▷ Event transition(s)
13: Save x̃, z̃ (pre-call), t, j for event i
14: (x̃, z̃) := REINIT( j, t, x̃, z̃, p,uk)
15: RESET(t, x̃, z̃, p,uk)
16: Save x̃, z̃ (post-call) for event i
17: i := i+1
18: j := <chained event, if any>
19: end while
20: end while
21: xk+1 := x̃, zk+1 := z̃, qk+1 := q̃
22: end for
23: λ p := 0, λu• := 0 ▷ Initialize to zero
24: for k = N −1, . . . ,0 do ▷ Backward integration
25: if k < kprev then
26: kprev := <retrieve saved value>
27: [t, x̃, z̃] = PREVIOUS_EVENT(k, i)
28: RESET(t, x̃, z̃, p,uk)
29: ADVANCE(tk+1)
30: end if
31: if k < kstep then
32: IMPULSE(λxk+1 ,λzk+1 ,λqk+1)
33: kstep := NEXT_IMPULSE(k,λx• ,λz• ,λq•)
34: end if
35: for all events i in interval k in reverse order do
36: [λ̃x, λ̃p, λ̃u] := RETREAT(t(i))
37: [λ̃x, λ̃z, λ̃ E

p , λ̃ E
u ] := ADJ_REINIT(i, λ̃x, λ̃z)

38: [t, x̃, z̃] = PREVIOUS_EVENT(k, i)
39: RESET(t, x̃, z̃, p,uk)
40: ADVANCE(tk+1)

41: λp := λp + λ̃p + λ̃ E
p

42: λuk := λuk + λ̃u + λ̃ E
u

43: end for
44: [λ̃x, λ̃p, λ̃u] := RETREAT(tk)
45: λp := λp + λ̃p, λuk := λuk + λ̃u
46: end for
47: λx0 := λ̃x
48: λz0 := 0
49: return x• ∈ Rnx×(1+Nf ), z• ∈ Rnz×(1+Nf ), q• ∈

Rnq×(1+Nf ), λx0 ∈ Rnx×(1+Nf )Na , λz0 ∈ Rnz×(1+Nf )Na ,
λp ∈ Rnp×(1+Nf )Na , λu• ∈ Rnu×(1+Nf )Na

50: end procedure

the output time. If there are multiple zero crossing
events predicted, only the soonest one will be con-
sidered. Also, ommitted in the algorithm for ease
of presentation, if a zero-crossing event is predicted
before the next input change, the stopping time for
internal time stepping will be updated accordingly.

• If after this initial integration, the zero crossing func-
tions and their derivatives w.r.t. time indicate that
a zero crossing event has occurred or is still pre-
dicted to occur before the desired output time, a root-
finding iteration will start. The algorithm is an New-
ton method, with a fallback to bisection if ė has the
wrong sign. This fallback can e.g. happen if ė j is
non-positive, even though the sign of e j indicates
that a zero crossing from negative-to-positive has oc-
cured, or if the predicted event crossing happens be-
fore the start of the integration interval. During the
rootfinding iterations, the solver interfaces will be
responsible for updating the state to a given time
(which may require small steps backwards in time).

• When the zero crossing iteration has reached a given
tolerance, or hit a user-selected maximum number
of iterations, the corresponding values for x, z and q
along with time and zero-crossing index are returned
to the user.

We do not include specific handling of the case where
the event time is explicitly given, e.g. as a function of
p, u and non-changing components of x, but note that the
above algorithm will find the exact time of such events in
a single iteration since e(t) is linear in t.

3.3 Forward sensitivity analysis
For the forward sensitivity analysis, the function REINIT
in Algorithm 3 needs to be generalized. To get the correct
sensitivity propagation through the event, we must take
into consideration that the event time t may depend on
the state. We can handle this at the event considering the
time t to be implicitly defined by the corresponding zero
crossing function:

f ( j)
zero(t,x,z, p,uk) = 0 ⇔ t = G(x,z, p,uk) (12)

We can propagate forward sensitivities through this
function using the implicit function theorem, similar to
how forward sensitivities for CasADi’s Rootfinder
class implemented. Since it is a scalar function, the prop-
agation can easily be calculated:

t̂ :=
∂ t
∂x

x̂+
∂ t
∂ z

ẑ+
∂ t
∂ p

p̂+
∂ t
∂u

û

=− 1
ė j

(
∂ fzero

∂x
x̂+

∂ fzero

∂ z
ẑ+

∂ fzero

∂ p
p̂+

∂ fzero

∂u
û,
)

(13)
where t̂ are the forward sensitivities of t and the corre-
sponding forward seeds are x̂, ẑ, p̂ and û, respectively.



105OCTOBER 14-16, STORRS, CT, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI        10.3384/ECP20799

With t̂ for each sensitivity direction calculated, we are
able to propagate the forward sensitivities through the
reinit function:

x̂E :=
∂Ex

∂ t
t̂ +

∂Ex

∂x
x̂+

∂Ex

∂ z
ẑ+

∂Ex

∂ p
p̂+

∂Ex

∂u
û, (14)

where Ex is the calculation of x using E in (7). This calcu-
lation is performed using a forward directional derivative
applied to the reinit function (7). Since the reinit function
will only provide a guess for z (the exact value being deter-
mined by the DAE), no derivative propagation is needed.

Finally, we need to consider that sensitivity of t̂ needs
to be propagated to the duration of the subsequent inter-
val. For example, if a small perturbation ∆p in an input
parameter p leads to the event happening a time ∆t later,
the subsequent integration interval will be ∆t shorter. We
can account for this by using ẋ obtained from (9) and the
known sensitivity in duration length (−t̂).

x̂REINIT := x̂E − t̂ ẋ (15)

3.4 Adjoint and forward-over-adjoint sensi-
tivity analysis

Algorithm 3 also include a tentative implementation of ad-
joint sensitivity analysis and second order (forward-over-
adjoint) sensitivity analysis. During the backward integra-
tion, there is no need to detect zero crossings. Instead we
will simply keep records of the events (times and corre-
sponding event indices) during the forward integration and
then visit the same events in reverse order during the back-
ward integration. Second order derivatives are handled by
allowing all variables to have multiple right-hand-sides.

As of this writing, the extension of the adjoint sensitiv-
ity support to support events is still ongoing. The parts
in Algorithm 3 related to adjoint and forward-over-adjoint
sensitivity analysis therefore reflects the planned imple-
mentation.

4 Examples
4.1 Forward sensitivities for a bouncing ball
In our first example, we perform an analytical forward
sensitivity analysis for a bouncing ball and compare the
results with a finite-difference approximation. The system
has two states corresponding to height h and velocity v,
i.e. the state vector is x = [h;v]. The corresponding ODE
is:

ḣ = v, v̇ =−9.81 (16)

When the ball hits the ground at h = 0, defined by
fzero(x) =−h, an event will be triggered defined by:

x =
[

0
−0.8v−,

]
(17)

where v− is the velocity immediately before the event.

In the leftmost figures of Figure 1, we show the event
simulation, over 7 s for a ball starting at rest at h = 5, us-
ing SUNDIALS/CVODES as the interfaced solver. The
remaining figures show the sensitivities of h and v with
respect to perturbations in h(0) = h0 and v(0) = v0, re-
spectively. The results are compared to a basic finite dif-
ferencing perturbation of the whole simulation trajectory.

To understand the results in the lower right subplot,
which may seem counter-intutitive, it can be shown that
for a ball starting at rest, the derivative of the time of the
first bounce Tbounce with respect to initial velocity can be
written:

dTbounce

dv0
=

1
g
. (18)

Therefore, the first derivative of the ball velocity at impact
vimpact = v0 − gTbounce with respect to initial velocity is
zero:

∂vimpact

∂v0
=

dv0

dv0
−g

dTbounce

dv0
= 1− g

g
= 0. (19)

The first order sensitivity of the ball velocity after the
bounce with respect to initial velocity, is therefore just due
to how much time has elapsed since the bounce:

dv(t;h0,v0)

dv0
=−dTbounce

dv0
(−g) = 1. (20)

This theoretical result, which holds in the almost every-
where sense, is confirmed with the analytical forward sen-
sitivities (blue line). The result repeats itself at subsequent
bounces. For the corresponding finite difference approx-
imation (red line), in contrast, the numerical error will
grow for every bounce.

4.2 Parameter estimation for a breaking
spring

As a second example, we consider the a simple model
of a spring formulated in Modelica. When the spring
is extended too far, an event corresponding to the spring
“breaking” is triggered:

model BreakingSpring
input Real m(start = 1)

"PARAMETER:Mass";
output Real v(start = -5, fixed = true)

"velocity";
output Real x(start = -1, fixed = true)

"displacement";
input Real k(start = 2)

"PARAMETER:spring constant";
input Real c(start = 0.1)

"PARAMETER:damping constant";
input Real d(start = 0) "disturbance";
Real f "spring force";
Boolean b "Is the spring broken?";

initial equation
b = false;

equation
der(x) = v;
f = if not b then -k * x + d else 0;
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Figure 1. Forward sensitivity analysis for a bouncing ball, comparison with finite differences (FD)

m * der(v) + c * v = f;
when x>2 then

b = true;
end when;

end BreakingSpring;

Compared to the bouncing ball model, the breaking
spring model includes the following:

• A free input parameter d, corresponding to u in (1)

• Three tunable parameters, m, k and c, corresponding
to p in (1). To ensure derivative information is avail-
able after compiling the model (e.g. into an FMU),
we will model tunable parameters as controls, using
a Parameter: prefix in the description string to
distinguish them from regular controls.

• A boolean state b, which is updated discontinuously
at events. Since CasADi does not have the concept of
discrete states, we will model discrete states as real-
valued states with zero time derivative, i.e. b is a
component of x (say, index ib) with ẋ[ib] = 0.

Using OpenModelica 1.24, we compile the above
model into an XML file, containing a symbolic representa-
tion of the problem, using the approach described in (Shi-
tahun et al. 2013). This model is then imported into a
CasADi DaeBuilder instance, which in turn is used to
generate an analytically differentiable integrator object in
CasADi, again using SUNDIALS/CVODES as the inter-
faced solver.

CasADi integrator instances can be embedded into ex-
pression graphs corresponding to different optimization
formulations. In Figure 2 (left), we show the result of
solving a parameter estimation problem using the hybrid
integrator. The problem corresponds to finding the param-
eter values m, k and c that minimize a sum-of-squares cost
function:

minimize
m,k,c

N

∑
k=1

(xk − x̃k)
2, (21)

subject to the hybrid dynamical equation and bounds of
the parameter. To generate simulated measurements x̃k,
we add Gaussian noise to the simulation result corre-
sponding to known values of the parameters. The opti-
mization is done for a known disturbance vector d, but
again with random noise added, as shown in Figure 2
(right). The problem is solved using a single-shooting dis-
cretization, using IPOPT as an optimizer.

5 Summary
In this work, we have shown an extension of the DAE sim-
ulation routines in CasADi to handle systems with events.
This includes the efficient calculation of analytical sensi-
tivity information, as needed by gradient-based optimiza-
tion algorithms, also in the presence of events. We pro-
vided details of the forward sensitivity implementation, il-
lustrated with two examples, as well as details on the on-
going work to implement adjoint and forward-over-adjoint
sensitivity analysis with events. While we have thus far re-
lied on relatively simple toy examples available as CasADi
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Figure 2. Parameteter estimation for a breaking spring, with generated measurement values.

symbolic expression graphs, the intention is to use this
feature to implement dynamic optimization for challeng-
ing cyber-physical systems, including but not limited to
systems implemented in Modelica. We will discuss the
path to handle such systems in the following section.

6 Outlook
The work presented in this paper is in active development,
with additional features being added as they become re-
quired by applications. In the following, we discuss some
of the most important extensions planned.

6.1 Event support for models provided as
standard FMUs

The ultimate goal of this work is to enable the formulation
and solution real-world optimization problems with event
dynamics, in particular those formulated in Modelica. In
our initial experiments, presented in Section 4, we used
a symbolic coupling based on a legacy XML-based sym-
bolic coupling between OpenModelica and CasADi. This
coupling is neither well maintained, nor generic enough
to handle realistic systems. It is also restricted to a single
exporting tool (OpenModelica).

A recent addition to CasADi is the import of general
FMUs adhering to FMI 2, as described in (Joel Anders-
son 2023). In pre-release versions of CasADi, this support
has since been extended to FMI 3, including the interface
to adjoint derivatives of model equations. Our plan is to
use the FMI interface together with the event support in

the CasADi integrators to be able to efficiently and conve-
niently solve optimization problems for real-world Mod-
elica models. Note that by relying on FMI, the structure of
the underlying Modelica model becomes irrelivant as long
as it conforms with the FMI standard and has the prerequi-
site smoothness properties for numerical optimization. It
is also possible to use models that include variables that
cannot be represented in CasADi, for example records or
string-valued expressions, as long as these variables are
not manipulated by the optimizer.

Since the FMI format, as written, does not natively con-
form to the required formulation (9), some reformulations
of the Modelica models may be needed prior to FMU gen-
eration. In particular:

• Event indicator expressions will need to be linked to
differentiable model outputs. That means that the ar-
gument of when-constructs in Modelica may need to
be assigned to additional model outputs, following
some naming convention. This convention ensures
that derivative information is available for the zero-
crossing functions.

• The reinit equations need to consist of simple
outputs-to-states mappings. This means that at
events, the differential state should be assigned to
some of variable with output causality. Each event
indicator should uniquely map to an assignment,
which may require the addition of additional output
variables. This convention ensures that derivative in-
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formation is available for the reinit functions.

• We may need to reformulate free parameters as in-
puts (as in Section 4.2) to ensure that analytic deriva-
tive information with respect to these parameters is
included in the FMU. Alternatively, we can rely on
tool-specific extensions, such as using the annotation
"evaluate = false" in Dymola to ensure that
the parameter can be manipulated by the optimizer.

6.2 A standardized symbolic interface based
on Base Modelica

A symbolic model interface, such as the XML-based inter-
face used in Section 4.2 will always have some fundamen-
tal advantages over a “black box” binary interface. This
is especially true when the model dimensions are small
or when higher order derivative information is needed.
To be able to take advantage of the fundamental advan-
tages of a symbolic interface, we plan to replace the
XML interface with a new symbolic interface based on
a ANTLR4-based parser for the emerging Base Modelica
standard (Kurzbach et al. 2023). This interface builds on
our previous work with Pymoca and Cymoca, cf. https:
//github.com/pymoca/pymoca and https://
github.com/jgoppert/cymoca, respectively.

Since Base Modelica is intended to become a stan-
dard, with ongoing work to export models in this format
from different Modelica compilers, the approach should
be compatible with multiple tools. The hope is also that
since Base Modelica is in essence a small subset of the
full Modelica language, implementing and maintaining a
parser should be possible with a reasonable effort.

6.3 Event detection in interfaces
In Section 3.2, we presented an approach to locate events
based on an algorithm implemented in the integrator base
class. An alternative to this algorithm would be to use the
solver’s native event-finding algorithm, such as the Illinois
algorithm (Hiebert and Shampine 1980) used in SUNDI-
ALS. This algorithm has proven efficient and robust for
numerous applications. There is also value in using the
same event finding algorithm as the modeler uses for hy-
brid simulation.

6.4 Algebraic variables in the zero-crossing
functions and reinit functions

The implementation of the proposed approach was done in
a way that was generic for both ODEs and DAEs, although
it had yet to be tested with DAEs as of this writing. The
implementation would also need an extension to be able
to handle the case when algebraic variables (z) explicitly
enter in the zero-crossing functions or reinit functions.

Disclaimer
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

Acknowledgements
This material is based on research sponsored by DARPA
under agreement number FA8750-24-2-0500. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon.

The authors also want to acknowledge the helpful re-
marks by the anonymous reviewers.

References
Andersson, J. (2013-10). “A General-Purpose Software Frame-

work for Dynamic Optimization”. PhD thesis. Arenberg Doc-
toral School, KU Leuven.

Andersson, Joel (2023-10). “Import and Export of Functional
Mockup Units in CasADi”. In: Proceedings of the 15th Inter-
national Modelica Conference. Vol. 2855, pp. 321–326.

Andersson, Joel A E et al. (2019). “CasADi – A software
framework for nonlinear optimization and optimal control”.
In: Mathematical Programming Computation 11.1, pp. 1–36.
DOI: 10.1007/s12532-018-0139-4.

Corner, Sebastien, Corina Sandu, and Adrian Sandu (2019).
“Modeling and sensitivity analysis methodology for hybrid
dynamical system”. In: Nonlinear Analysis: Hybrid Systems
31, pp. 19–40. ISSN: 1751-570X. DOI: https : / /doi .org /10 .
1016/j.nahs.2018.07.003. URL: https://www.sciencedirect.
com/science/article/pii/S1751570X1830058X.

Hiebert, Kathie L. and Lawrence F. Shampine (1980-02). Re-
port SAND80-0180: Implicitly Defined Output Points for So-
lutions of ODEs. Tech. rep. Sandia National Laboratory.

Hindmarsh, Alan C et al. (2005). “SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers”. In:
ACM Transactions on Mathematical Software (TOMS) 31.3,
pp. 363–396. DOI: 10.1145/1089014.1089020.

Kurzbach, Gerd et al. (2023-10). “Design proposal of a standard-
ized Base Modelica language”. In: Proceedings of the 15th
International Modelica Conference. Vol. 2855, pp. 469–478.

Modelica Association (2021-02). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.5. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.5/MLS.
html.

Rackauckas, Christopher and Qing Nie (2017).
“DifferentialEquations.jl–a performant and feature-rich
ecosystem for solving differential equations in Julia”. In:
Journal of Open Research Software 5.1.

Shitahun, Alachew et al. (2013). “Model-Based Dynamic Op-
timization with OpenModelica and CasADi”. In: IFAC Pro-
ceedings Volumes 46.21. 7th IFAC Symposium on Advances
in Automotive Control, pp. 446–451. ISSN: 1474-6670. DOI:
https : / / doi . org / 10 . 3182 / 20130904 - 4 - JP - 2042 . 00166.
URL: https : / / www. sciencedirect . com / science / article / pii /
S1474667016384117.


