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Abstract 
Deploying cyber-physical models at the edge or in the 
cloud as software components is the key step of model-
based-design. Depending on run-time environment, an 
extensive customization often needs to be made. To 
streamline and facilitate the deployment of models and 
simulators in production, a unified framework is 
developed. The implementation utilizes functional 
mockup units (FMUs) as the executable binary for the 
models and JavaFMI as the simulation engine. Each 
model deployment is encapsulated inside a microservice 
with all the software dependencies, with communication 
realized through RabbitMQ. A generalized approach to 
manage the model namespace has been implemented, 
ensuring that the FMU executor remains agnostic to 
changes in both model and application, as long as the 
AsyncAPI specification includes a mapping of the model's 
input-output space to the protocol’s topics. Two examples 
are presented to illustrate the convenience and 
effectiveness of the proposed framework: a winch 
controller at the edge for oil and gas wireline operation 
and a wireline logging unit simulator in the Azure DevOps 
pipeline for software-in-the-loop testing. 
 
Keywords: FMU, Edge, Wireline, Oil&Gas, FMI, Cyber-
Physical Systems, Deployment, Microservices 

1 Introduction 
Rapidly evolving edge computing prioritizes convenience 
of deployment of advanced physical models designed for 
real-time control applications and data processing. The 
shift from monolithic software architecture to 
microservices has been facilitated by containerization 
tools like Docker and Kubernetes, which allow isolation 
of applications into distinct environments, thereby 
enhancing the scalability and manageability aspects via 
smaller and independently deployable services. 

The workflow requires careful handling of parameters, 
inputs, and outputs. Dealing with unique namespaces is a 
part of a larger challenge - the need to manually adjust 
naming conventions and identifiers for each functional 
mockup unit (FMU) import, which significantly 
complicates the deployment process. We present a 
solution of using an interim Java layer to abstract the 

FMU's namespace that addresses the “at the edge 
integration” challenge by standardizing the interface 
between the FMUs and the microservices architecture.  

Before discussion of specifics of our proposed framework, 
it is essential to provide an overview of the current state 
of the art. This will contextualize our work within the 
broader landscape of this technology block and highlight 
gaps and opportunities that our approach aims to address. 
The papers analyzed below stress the complexity and 
challenges involved in FMU integration and deployment, 
especially when FMUs from different tools form a single 
simulation environment. 

The functional mockup interface (FMI) has been 
instrumental in advancing interoperability and integration 
within the modeling and simulation community (Gomes 
et al. 2018; Blochwitz et al. 2011). Multi-year efforts from 
various cross-domain institutions have explored diverse 
FMI applications. One of the earliest studies (Chen et al. 
2011) introduces a generic FMU interface for Modelica 
for enhanced reusability and interoperability within the 
OpenModelica framework for multiple instances of an 
imported FMU. While this approach effectively facilitates 
FMU integration and connection within the designated 
simulator engine, it lacks interoperability extension to a 
wider range of modeling environments. The work by 
Cabral et al. (2018) explores FMI applications in 
industrial automation by enabling co-simulation (Gomes 
et al. 2018) per the IEC 61499 standard for distributed 
systems, which facilitates the virtual commissioning 
process by allowing co-simulation of physical plants and 
their PLC-based control by elevating mapping of internal 
variables, parameters and inputs/outputs between IEC 
61499 models and the FMI. Despite its contributions to 
Industry 4.0 automation via paying great attention to 
correlation between the inter-standard data types, this 
research does not scale up deployment scenarios and 
model types and thus avoids the context of cloud and edge 
computing. 

The co-simulation FMU-proxy framework (Hatledal et al. 
2019) achieves language and platform independence 
using a remote procedure call (RPC) technique in a client-
service architecture and offers FMU discovery. The 
solution significantly contributes to collaborative 
modeling and heterogeneous simulation expanding array 
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of previously unsupported languages and on incompatible 
platforms. However, it primarily focuses on co-simulation 
and intellectual property protection and does not address 
the emerging need for flexible and scalable model 
deployments, such as microservice-based architectures. A 
recent work (Juhlin et al. 2022) breaks long-standing lack 
of interoperability at the system level and presents a 
cloud-enabled simulation platform for drive-motor-load 
systems using asset administration shells 1  (AAS) and 
FMUs. This approach significantly enhances the flexible 
deployment of asset models in complex simulations by 
leveraging containerization. However, it does not fully 
exploit the potential of microservices for heterogeneous 
applications, as it relies on a more rigid RESTful API 
server architecture. 

A noteworthy paper by Stüber and Frey (2021) presents a 
cloud-native simulation as a service (SIMaaS) 
implementation utilizing FMUs for co-simulation, 
leveraging the FMPy2 framework. This implementation is 
realized as a microservice in the form of a RESTful API. 
In our development, though, we have identified that 
JavaFMI3 is a more performant alternative (Hatledal et al. 
2018). Our generalized approach for model namespace 
management ensures that the FMU executor remains 
agnostic to model-application mapping changes, with 
much less restrictions on FMU parametrization as offered 
in the analyzed paper. Furthermore, our study showcases 
a practical, real-time, complex industrial automation 
systems example (Segura et al. 2023), offering a 
significant advancement in solution integration over the 
SIMaaS demo. 

2 Concepts 
The method described below abstracts models from 
Simulink or other modeling environments, enhancing 
workflow efficiency and user-friendliness from inception 
to Dockerized edge deployment using a microservices, 
RabbitMQ, Linux VM, Kubernetes, and Rancher 
ecosystem. The revealed methodology utilizes FMI and 
streamlines model’s input/output space, to suit better 
microservice deployments outside the original, often 
Windows-based, software ecosystem. The FMI concept, 
combined with our mapping explained below, ensures that 
abstracted and vectorized models maintain their 
functional integrity and ease integration with various 
computational environments. The JavaFMI engine 
enables cross-platform configuration and execution of 
models, regardless of the originating modeling tool and 
allows for scalable complexity. The presented technology 
extends beyond the edge, allowing physical models to be 
embedded as FMU objects in web applications and cloud 

 
1 A central concept in the context of Industry 4.0, the digital 
representation of an asset. 
2 https://pypi.org/project/FMPy/  
3 https://bitbucket.org/siani/javafmi/src/master/  

platforms or even be invoked via command line interface 
during quick prototyping.  
In our approach, we introduce a novel concept of model 
anonymization 4 , which allows integrators to use the 
model without needing prior knowledge of the exact 
namespace of its inputs and outputs. We employ I/O 
vectorization specification and an inter-system mapping 
layer on top of FMU, which generalizes the interface and 
allows flexible interaction. This approach simplifies the 
integration process and also somewhat obfuscates 
sensitive details, while enhancing flexibility and ease of 
integration in complex systems. Application teams can 
now work with standardized interface definitions focusing 
on a single or a limited set of specification files, such as 
YAML for AsyncAPI/OpenAPI or similar, instead of 
navigating through specific I/O names. This technique is 
particularly beneficial in environments where model 
reusability and interoperability are paramount, providing 
a seamless cross-platform method for deploying and 
interacting with models in real-world physical systems. 
 
The abstraction of models from Simulink or other model-
based design tools for Dockerized edge deployment using 
FMI is still an emerging concept, particularly in the 
context of Kubernetes on Linux VM platforms. This area 
appears to be underexplored in the current literature, 
highlighting the avenue for our work. While the use of 
FMU/FMI for model exchange and co-simulation is well-
adopted (Modelica Association 2022), the specific edge 
deployments in containerized environments is less 
discussed (Schranz et al. 2021). 
 
Abstracting models to enhance workflow efficiency and 
deploying them as microservices on the edge, while 
preserving functional integrity through vectorized 
mapping of I/O specifications, introduces a less explored 
approach, particularly for the oil and gas industry, and 
when integration with “system of systems” architecture 
solutions is considered.  
 
3 System Design and Implementation 
In this section, system architecture and software stacks 
chosen to enable easy deployable software for control and 
simulation at edge or cloud are introduced. First, a 
microservice based system architecture is described in 
Section 3.1. Section 3.2 provides descriptions on how we 
encapsulate the designed model in an FMU and how the 
FMU is executed with a JavaFMI library. Section 3.3 
illustrates how interfaces are defined among different 
microservices with AsyncAPI, and data (or messages) are 
shared among different microservices. Section 3.4 

4  Not widely mentioned in literature in the context of 
Modelica, Simulink, or other modeling languages. The 
anonymization concept for hiding model's namespace 
particularities seems has little to no explicit discussions. 
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describes how a JavaFMI-based wrapper and RabbitMQ 
message passing are combined and executed inside a 
Docker container-based microservice. Finally, the 
development process of modeling and simulation 
microservice, and how we can utilize DevOps pipeline to 
automate it, is presented in Section 3.5. 
 
3.1 System Architecture 
The microservice-based system architecture is depicted 
in Fig. 1. An FMU, combined with a JavaFMI-based 
wrapper, is encapsulated within a Docker container-based 
microservice. Data sharing and communication among 
different microservices is realized through the open-
source message-broker software, RabbitMQ. 
 

 

Figure 1. System architecture. 
 

Microservice-based architecture has many advantages and 
is popular for both cloud and edge development. Docker 
container-based microservices package all the runtime 
dependencies and thus can be deployed across different 
platforms. At a high level, developers can choose 
appropriate modeling software tools for the development 
of physical system models, plants, or control algorithms. 
If the selected software tool supports FMU export, the 
exported FMU can be plugged into the proposed 
framework for cloud or edge deployment. In a previous 
iteration of our framework, we directly employed a binary 
Linux shared library generated by Simulink to represent 
the system model and control algorithm. This approach 
constrained development to Matlab/Simulink and tied it to 
a specific version of the software. With FMU, the tool 
selection is more flexible if it conforms to the standard.   
 
3.2 FMU Wrapper with JavaFMI 
As shown in Fig. 2, the resulting core of the modeling 
simulation microservice is a wrapper dealing with binary 
inside an FMU. There are many existing libraries that can 
run FMU simulations. We adopted JavaFMI for its fast 
execution capabilities to meet the real-time requirements 
of our field application deployments. 
 

 
 

Figure 2 JavaFMI wrapper interface. 
 

JavaFMI library is a suite of components to interact with 
the FMU interface. The FMU wrapper is a key component 
for easy access to the FMU models in co-simulation 
mode. It provides access to the abstract simulation class 
with a set of methods to interact with inputs, outputs, and 
parameters. A typical algorithm of application to run an 
FMU includes: 

• Creation of simulation class with a pointer to the 
FMU file: Simulation simulation = new 
Simulation("path/to/file.fmu"). 

• Initialization with a start time and, optionally, an 
end time using simulation.init (startTime, 
stopTime) method. 

• Writing parameters with simulation.write 
method. 

• Updating inputs in a loop with desired update 
rate. 

• Updating tunable parameters in a loop. 
• Running one simulation step in a loop with the 

simulation.doStep (stepSize) method. 
• Reading outputs in a loop with the 

simulation.read method. 
• Resetting or terminating the FMU simulation. 

 
Since the co-simulation mode is used, FMU has its 
internal sampling rate, defined during the FMU 
compilation stage. Method simulation.doStep (stepSize) 
requires stepSize time to be a result of multiplying the 
internal sample time by an integer number. To achieve 
continuous model simulation, the process involves 
reading inputs, updating tunable parameters, running the 
FMU synchronously with a specified step size, and 
generating outputs, as illustrated in Fig. 3. 
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Figure 3 JavaFMI-based Java wrapper execution loop. 
 

3.3 RabbitMQ and AsyncAPI 
For proper execution and results exchange during the 
active phase of FMU simulation, communication with 
other microservices is essential. To fulfill this 
requirement, we have adopted RabbitMQ, an open-source 
message broker software. Initially designed to implement 
the advanced message queuing protocol, RabbitMQ has 
evolved through a plug-in architecture to support 
additional protocols such as the streaming text-oriented 
messaging protocol and MQ telemetry transport. 
 
To define the specific content and format (schema) of 
messages exchanged among different services, AsyncAPI 
is used for RabbitMQ communication. The schema may 
reference other files for additional details or shared fields, 
but it is typically a single, primary document that 
encapsulates the API description. Furthermore, the 
AsyncAPI schema acts as a communication contract 
between receivers and senders within an event-driven 
system. It specifies the payload content required when a 
service sends a message and offers clear guidance to the 
receiver regarding the message's properties. 
 
3.4 Modeling and Simulation Microservices 
Modeling and simulation microservices are created by 
combining JavaFMI-based execution wrapper for FMU 
simulation and RabbitMQ communication with other 
microservices. The integration code is implemented in a 
Java loop, as shown in Fig. 4. 
 

 
 

Figure 4 Modeling simulation microservice structure. 
 
During the initialization phase, information about inputs, 
outputs, and parameters are extracted from the FMU's 
ModelDescription.xml to compare against the AsyncAPI 
payload schema. All inputs and outputs are mapped to 
periodically updated “state” topics to reproduce 
continuous input/output signals. Tunable parameters are 
mapped to “configuration” topics updatable by request 
using RPC calls; for example, to achieve the 
anonymization of a model, we map the I/O of an arbitrary 
FMU to the AsyncAPI schema referring to the 
ModelDescription.xml content. The internal structure, 
calculation algorithms, and the origin of the FMU will not 
impact RabbitMQ communication and other services. The 
modeling and simulation microservice with the FMU 
receives messages with inputs and parameters and sends 
messages with outputs from the model. 
 
An example of the definition for an input port of a model 
in AsyncAPI properties is shown below. In this example, 
topic “model.input.command.v1” contains a link to the 
“input_port” model input of array type with four 
elements. 
 

channels: 
  model.input.command.v1: 
    subscribe: 
      summary: Model input topic. 
      message: 
        $ref: "#/components/messages/model_input" 
 
  schemas: 
    model_input: 
      type: object 
      required: 
        - input_field 
      properties: 
        input_field: 
          type: array 
          minItems: 4 
          maxItems: 4 
          items: 
            type: number 
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          x-units: NA 
          x-inport: "input_port" 
          x-initialvalue: [1.0, 1.0, 1.0, 1.0] 

 
With a defined AsyncAPI document, it is easy to find the 
corresponding “input_port” in ModelDescription.xml and 
update the “input_port” of FMU with the values in the 
message received through RabbitMQ. 
 
The main update loop runs at a defined update rate and is 
shown in Fig. 5 below.  
 

 
 

Figure 5 Modeling simulation microservice loop. 
 
The microservice code is responsible for 

• Handling received configuration messages and 
updating tunable parameters of the FMU by 
request. 

• Handling received state messages and updating 
inputs according to the update rate and, in this 
way, mapping sampled time series input signal to 
the predefined input of the FMU. 

• Executing the FMU by running the 
simulation.doStep (stepSize) method. 

• Updating RabbitMQ message topics mapped to 
the outputs of FMU with desired update rate. 

• Providing service information and statistics as 
periodic state messages: model time and model 
states (running/stopped/paused). 

• Handling received control messages to start, stop, 
pause, or reset the FMU. 

 

3.5 Microservice Development Process for 
Modeling and Simulation 
Developers can choose any preferred software modeling 
tools to develop models for physical systems or control 
algorithms. FMUs can then be exported. Modeling and 
simulation microservice can be built with following steps, 
as shown in Fig. 6: 

• Access is added to the FMU utilizing wrapper 
with the JavaFMI library. 

• Custom microservice implementation provides 
an interface to the AsyncAPI and synchronization 
of FMU execution and API state messages to and 
from the microservice. 

The last stage is deployment of the microservice as a 
Docker container as a part of complex software 
application. 
 
All steps in building the pipeline may be automated and 
integrated into DevOps pipeline (for instance, Azure 
DevOps) with automated integration tests and API 
validation, providing safe and robust application 
deployment.  
 

 
Figure 6 Modeling simulation microservice development 

process. 
 
4 Case Studies 
To illustrate the effectiveness, convenience, and 
versatility of the proposed framework in real production 
software deployment, wireline automation development 
for assisted conveyance in oil and gas operations at SLB 
is used as an example. Two design cases are presented. In 
the cloud, a wireline winch and cable simulator is 
deployed in the Azure DevOps pipelines for software-in-
the-loop testing. At the edge, a winch controller is 
deployed for an automatic winch control. Although the 
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application environments are different between cloud and 
edge, the same framework can be used due to the 
portability of the FMU and microservice.  
 
Wireline operation is widely used in the oil and gas 
industry to measure the properties of a formation using 
electronic instruments. Fig. 7 illustrates a typical wireline 
logging operation. A drum of electric cable is driven by a 
hydraulic winch with a toolstring packed with different 
formation measurement sensors attached at the free end of 
the cable. The winch drum is rotated by a hydraulic motor 
that moves the toolstring up and down along the wellbore. 
Sensors packaged inside the toolstring conduct sensing 
measurements while moving and send back measurement 
results through the connected cable. During operation, an 
operator is required to control the hydraulic winch 
manually so that the toolstring movement will follow a 
desired motion profile. 

 

 
 

Figure 7 Wireline logging operation for oil and gas industry. 

4.1 Winch Simulator 
The hydraulic winch drives the drum via a gear 
transmission. As shown in Fig. 8, the hydraulic winch is a 
hydrostatic transmission system consisting of a variable 
displacement pump, a variable displacement motor, and a 
charge pump. The pumps are driven by a vehicle engine 
through gears. The drum is driven by variable 
displacement motor through transmission gears. 
 

 
 

Figure 8 Schematics of a hydraulic winch. 

The winch simulator model is developed using the 
Simulink/Simscape package from MathWorks. The 

 
5  https://www.mathworks.com/help/hydro/ug/hydrostatic-
transmission.html  

hydraulic circuit is modeled using components from the 
MathWorks’ fluids library and is derived from the 
hydrostatic transmission example5 shown in Fig. 9.  
 

 
 

Figure 9 An exemplary model of a hydraulic circuit. 

During wireline operation, the released cable can be over 
thousands of feet long. Therefore, it is necessary to model 
the dynamic effect of cable elasticity. The entire cable is 
discretized into serialized mass-spring-damper blocks, as 
shown in Fig. 10.   

 
Figure 10 Mass-spring-damper node and serialized cable 

model. 

Calibration tests are conducted to collect data and identify 
system parameters. The calibrated system response 
matched actual system behavior, as shown in Fig. 11. 
 

 
 

Figure 11 Simulation vs testing data. 
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Following the procedure described in previous sections, 
FMU is exported from the Simulink/Simscape model and 
packaged into a microservice. The resulting simulator 
microservice was used for the software-in-the-loop testing 
of the winch controller and other software services of 
wireline automation. Software developers with no 
knowledge of modeling software such as 
Matlab/Simulink/Simscape could easily incorporate the 
simulator microservice into their test need to mimic 
hydraulic winch behavior if they follow the interface 
specified in AsyncAPI. Those tests can be made automatic 
and regressive and can run in Azure DevOps pipeline as 
is done today for wireline automation development in 
SLB. Other than software testing, the FMU-based 
simulator microservice can be deployed in the cloud or at 
the edge as the core of digital twin applications for 
predictive maintenance, operation planning, and 
optimization. 
 
4.2 Winch Controller 
As the first step toward automation of the wireline logging 
operation, it is necessary to control the hydraulic winch, 
or toolstring motion, following a desired motion profile, 
automatically, without operator intervention. A nonlinear 
model based adaptive robust controller (ARC) is designed 
for this purpose. The detailed controller design can be 
found in Bu (2020). The designed controller is 
constructed in Simulink, as shown in Fig. 12. 
 

 
 

Figure 12 Simulink diagram of winch controller. 

The winch controller developed in Simulink can be 
exported to FMU and packaged into the microservice the 
same way as the winch simulator in previous sub-section. 
The winch controller can be deployed via two scenarios, 
as shown in Fig. 13: 

• Software-in-the-loop testing is executed in the 
Azure DevOps pipeline in the cloud together with 
the winch simulator as a virtual winch. In this 
case, a software "switch" will map winch 
simulator inputs/outputs to the proper RabbitMQ 

 
6 not limited to, can be a RESTful API wrapping 

messages. From the winch controller point of 
view, it is receiving sensor inputs, and sending 
out actuator commands, from/to the real 
hardware.     

• In the “edge at wellsite” application, the winch 
controller microservice is deployed at the edge, 
namely at the automation server physically 
installed inside the wireline logging unit at a 
wellsite. The software "switch" will map real 
sensors and actuator signals from the hardware 
interface microservice to the proper RabbitMQ 
messages. The winch controller will be able to 
control the actual winch drum for automation 
purposes. 

 

 
 

Figure 13 Winch controller deployments. 
 
It should be noted that by adopting a model-based-design 
process, the winch controller has been matured to the 
product level and deployed in SLB’s wireline logging 
units globally, completing over several million feet in 
automated conveyance services. 

 
5 Conclusions 
Our work presents a versatile unified framework that is 
not bound to specific platforms able to generate FMUs, 
expanding FMU support to a broad range of environments 
beyond Simulink, Modelica, and similar systems. It 
covers the deployment needs of arbitrary multidomain 
simulation engines. By fusing FMUs, JavaFMI, and an 
AsyncAPI-based anonymization layer 6 , we provide a 
standardized platform for co-simulation and verification 
suitable for industrial automation systems and well 
beyond, demonstrated with real-world O&G oil and gas 
applications. This could be applied, but is not limited to, 
advanced wireline conveyance assistance systems 
comparable to automotive ADAS (MathWorks 2024; 
Dassault Systemes 2024) and autonomous driving 
functionalities.  
 
Our microservice-based architecture is both flexible and 
scalable, serving the needs of both edge and cloud model 
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deployment, promoting collaboration and efficiency in 
composite asset engineering. The presented 
comprehensive approach enhances interoperability and 
streamlines the model delivery process in production 
software. It allows the automated wrapping and execution 
of highly arbitrary models at the small cost of introduction 
of a very thin model-to-RabbitMQ I/O mapping.  
 
Our results demonstrate that the proposed solution enables 
scalable, flexible, and practical modular deployment of 
models as software components in cyber-physical and 
control systems, with a particular focus on Docker and 
Kubernetes for real-world commercial products in 
modern computing environments (Segura et al. 2023). 
Cross-platform model wrapping, configuration, and 
execution enable the reuse of models in various 
deployment scenarios. 
 
Our future work focuses on scalability and performance 
optimization for large-scale deployments, enhancing 
security measures for edge and cloud, and integrating 
alternative communication protocols for broader 
interoperability. The introduced solution utilizes the FMI 
2.0 standard, and we are moving onto FMI 3.0, which lets 
us naturally reduce restrictions for data types. 
Additionally, we are exploring automated mechanisms for 
model updating and versioning, with deeper DevOps 
pipeline integration.  
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