
170 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207 170 DOI

Advanced Edge Deployment: Abstracting
Cyber-Physical Models via FMU Mastery

Fanping Bu1 Mikalai Filipau1 Nikolay Baklanov1
1Integrated Productivity and Conveyance Center, SLB, USA,

{fbu2, mfilipau, nbaklanov2}@slb.com

Abstract
Deploying cyber-physical models at the edge or in the
cloud as software components is the key step of model-
based-design. Depending on run-time environment, an
extensive customization often needs to be made. To
streamline and facilitate the deployment of models and
simulators in production, a unified framework is
developed. The implementation utilizes functional
mockup units (FMUs) as the executable binary for the
models and JavaFMI as the simulation engine. Each
model deployment is encapsulated inside a microservice
with all the software dependencies, with communication
realized through RabbitMQ. A generalized approach to
manage the model namespace has been implemented,
ensuring that the FMU executor remains agnostic to
changes in both model and application, as long as the
AsyncAPI specification includes a mapping of the model's
input-output space to the protocol’s topics. Two examples
are presented to illustrate the convenience and
effectiveness of the proposed framework: a winch
controller at the edge for oil and gas wireline operation
and a wireline logging unit simulator in the Azure DevOps
pipeline for software-in-the-loop testing.

Keywords: FMU, Edge, Wireline, Oil&Gas, FMI, Cyber-
Physical Systems, Deployment, Microservices

1 Introduction
Rapidly evolving edge computing prioritizes convenience
of deployment of advanced physical models designed for
real-time control applications and data processing. The
shift from monolithic software architecture to
microservices has been facilitated by containerization
tools like Docker and Kubernetes, which allow isolation
of applications into distinct environments, thereby
enhancing the scalability and manageability aspects via
smaller and independently deployable services.

The workflow requires careful handling of parameters,
inputs, and outputs. Dealing with unique namespaces is a
part of a larger challenge - the need to manually adjust
naming conventions and identifiers for each functional
mockup unit (FMU) import, which significantly
complicates the deployment process. We present a
solution of using an interim Java layer to abstract the

FMU's namespace that addresses the “at the edge
integration” challenge by standardizing the interface
between the FMUs and the microservices architecture.

Before discussion of specifics of our proposed framework,
it is essential to provide an overview of the current state
of the art. This will contextualize our work within the
broader landscape of this technology block and highlight
gaps and opportunities that our approach aims to address.
The papers analyzed below stress the complexity and
challenges involved in FMU integration and deployment,
especially when FMUs from different tools form a single
simulation environment.

The functional mockup interface (FMI) has been
instrumental in advancing interoperability and integration
within the modeling and simulation community (Gomes
et al. 2018; Blochwitz et al. 2011). Multi-year efforts from
various cross-domain institutions have explored diverse
FMI applications. One of the earliest studies (Chen et al.
2011) introduces a generic FMU interface for Modelica
for enhanced reusability and interoperability within the
OpenModelica framework for multiple instances of an
imported FMU. While this approach effectively facilitates
FMU integration and connection within the designated
simulator engine, it lacks interoperability extension to a
wider range of modeling environments. The work by
Cabral et al. (2018) explores FMI applications in
industrial automation by enabling co-simulation (Gomes
et al. 2018) per the IEC 61499 standard for distributed
systems, which facilitates the virtual commissioning
process by allowing co-simulation of physical plants and
their PLC-based control by elevating mapping of internal
variables, parameters and inputs/outputs between IEC
61499 models and the FMI. Despite its contributions to
Industry 4.0 automation via paying great attention to
correlation between the inter-standard data types, this
research does not scale up deployment scenarios and
model types and thus avoids the context of cloud and edge
computing.

The co-simulation FMU-proxy framework (Hatledal et al.
2019) achieves language and platform independence
using a remote procedure call (RPC) technique in a client-
service architecture and offers FMU discovery. The
solution significantly contributes to collaborative
modeling and heterogeneous simulation expanding array

171OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207170

of previously unsupported languages and on incompatible
platforms. However, it primarily focuses on co-simulation
and intellectual property protection and does not address
the emerging need for flexible and scalable model
deployments, such as microservice-based architectures. A
recent work (Juhlin et al. 2022) breaks long-standing lack
of interoperability at the system level and presents a
cloud-enabled simulation platform for drive-motor-load
systems using asset administration shells 1 (AAS) and
FMUs. This approach significantly enhances the flexible
deployment of asset models in complex simulations by
leveraging containerization. However, it does not fully
exploit the potential of microservices for heterogeneous
applications, as it relies on a more rigid RESTful API
server architecture.

A noteworthy paper by Stüber and Frey (2021) presents a
cloud-native simulation as a service (SIMaaS)
implementation utilizing FMUs for co-simulation,
leveraging the FMPy2 framework. This implementation is
realized as a microservice in the form of a RESTful API.
In our development, though, we have identified that
JavaFMI3 is a more performant alternative (Hatledal et al.
2018). Our generalized approach for model namespace
management ensures that the FMU executor remains
agnostic to model-application mapping changes, with
much less restrictions on FMU parametrization as offered
in the analyzed paper. Furthermore, our study showcases
a practical, real-time, complex industrial automation
systems example (Segura et al. 2023), offering a
significant advancement in solution integration over the
SIMaaS demo.

2 Concepts
The method described below abstracts models from
Simulink or other modeling environments, enhancing
workflow efficiency and user-friendliness from inception
to Dockerized edge deployment using a microservices,
RabbitMQ, Linux VM, Kubernetes, and Rancher
ecosystem. The revealed methodology utilizes FMI and
streamlines model’s input/output space, to suit better
microservice deployments outside the original, often
Windows-based, software ecosystem. The FMI concept,
combined with our mapping explained below, ensures that
abstracted and vectorized models maintain their
functional integrity and ease integration with various
computational environments. The JavaFMI engine
enables cross-platform configuration and execution of
models, regardless of the originating modeling tool and
allows for scalable complexity. The presented technology
extends beyond the edge, allowing physical models to be
embedded as FMU objects in web applications and cloud

1 A central concept in the context of Industry 4.0, the digital
representation of an asset.
2 https://pypi.org/project/FMPy/
3 https://bitbucket.org/siani/javafmi/src/master/

platforms or even be invoked via command line interface
during quick prototyping.
In our approach, we introduce a novel concept of model
anonymization 4 , which allows integrators to use the
model without needing prior knowledge of the exact
namespace of its inputs and outputs. We employ I/O
vectorization specification and an inter-system mapping
layer on top of FMU, which generalizes the interface and
allows flexible interaction. This approach simplifies the
integration process and also somewhat obfuscates
sensitive details, while enhancing flexibility and ease of
integration in complex systems. Application teams can
now work with standardized interface definitions focusing
on a single or a limited set of specification files, such as
YAML for AsyncAPI/OpenAPI or similar, instead of
navigating through specific I/O names. This technique is
particularly beneficial in environments where model
reusability and interoperability are paramount, providing
a seamless cross-platform method for deploying and
interacting with models in real-world physical systems.

The abstraction of models from Simulink or other model-
based design tools for Dockerized edge deployment using
FMI is still an emerging concept, particularly in the
context of Kubernetes on Linux VM platforms. This area
appears to be underexplored in the current literature,
highlighting the avenue for our work. While the use of
FMU/FMI for model exchange and co-simulation is well-
adopted (Modelica Association 2022), the specific edge
deployments in containerized environments is less
discussed (Schranz et al. 2021).

Abstracting models to enhance workflow efficiency and
deploying them as microservices on the edge, while
preserving functional integrity through vectorized
mapping of I/O specifications, introduces a less explored
approach, particularly for the oil and gas industry, and
when integration with “system of systems” architecture
solutions is considered.

3 System Design and Implementation
In this section, system architecture and software stacks
chosen to enable easy deployable software for control and
simulation at edge or cloud are introduced. First, a
microservice based system architecture is described in
Section 3.1. Section 3.2 provides descriptions on how we
encapsulate the designed model in an FMU and how the
FMU is executed with a JavaFMI library. Section 3.3
illustrates how interfaces are defined among different
microservices with AsyncAPI, and data (or messages) are
shared among different microservices. Section 3.4

4 Not widely mentioned in literature in the context of
Modelica, Simulink, or other modeling languages. The
anonymization concept for hiding model's namespace
particularities seems has little to no explicit discussions.

172 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207170 DOI

describes how a JavaFMI-based wrapper and RabbitMQ
message passing are combined and executed inside a
Docker container-based microservice. Finally, the
development process of modeling and simulation
microservice, and how we can utilize DevOps pipeline to
automate it, is presented in Section 3.5.

3.1 System Architecture
The microservice-based system architecture is depicted
in Fig. 1. An FMU, combined with a JavaFMI-based
wrapper, is encapsulated within a Docker container-based
microservice. Data sharing and communication among
different microservices is realized through the open-
source message-broker software, RabbitMQ.

Figure 1. System architecture.

Microservice-based architecture has many advantages and
is popular for both cloud and edge development. Docker
container-based microservices package all the runtime
dependencies and thus can be deployed across different
platforms. At a high level, developers can choose
appropriate modeling software tools for the development
of physical system models, plants, or control algorithms.
If the selected software tool supports FMU export, the
exported FMU can be plugged into the proposed
framework for cloud or edge deployment. In a previous
iteration of our framework, we directly employed a binary
Linux shared library generated by Simulink to represent
the system model and control algorithm. This approach
constrained development to Matlab/Simulink and tied it to
a specific version of the software. With FMU, the tool
selection is more flexible if it conforms to the standard.

3.2 FMU Wrapper with JavaFMI
As shown in Fig. 2, the resulting core of the modeling
simulation microservice is a wrapper dealing with binary
inside an FMU. There are many existing libraries that can
run FMU simulations. We adopted JavaFMI for its fast
execution capabilities to meet the real-time requirements
of our field application deployments.

Figure 2 JavaFMI wrapper interface.

JavaFMI library is a suite of components to interact with
the FMU interface. The FMU wrapper is a key component
for easy access to the FMU models in co-simulation
mode. It provides access to the abstract simulation class
with a set of methods to interact with inputs, outputs, and
parameters. A typical algorithm of application to run an
FMU includes:

• Creation of simulation class with a pointer to the
FMU file: Simulation simulation = new
Simulation("path/to/file.fmu").

• Initialization with a start time and, optionally, an
end time using simulation.init (startTime,
stopTime) method.

• Writing parameters with simulation.write
method.

• Updating inputs in a loop with desired update
rate.

• Updating tunable parameters in a loop.
• Running one simulation step in a loop with the

simulation.doStep (stepSize) method.
• Reading outputs in a loop with the

simulation.read method.
• Resetting or terminating the FMU simulation.

Since the co-simulation mode is used, FMU has its
internal sampling rate, defined during the FMU
compilation stage. Method simulation.doStep (stepSize)
requires stepSize time to be a result of multiplying the
internal sample time by an integer number. To achieve
continuous model simulation, the process involves
reading inputs, updating tunable parameters, running the
FMU synchronously with a specified step size, and
generating outputs, as illustrated in Fig. 3.

RabbitMQ
brokerMicroservice 1 Microservice N

Microservice 2

FMU

Publish

Subscribe

Publish

Subscribe

FMU

javaFMI wrapper
simulation.write(...)

simulation.read(...)

simulation.doStep(...)

173OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207170

Figure 3 JavaFMI-based Java wrapper execution loop.

3.3 RabbitMQ and AsyncAPI
For proper execution and results exchange during the
active phase of FMU simulation, communication with
other microservices is essential. To fulfill this
requirement, we have adopted RabbitMQ, an open-source
message broker software. Initially designed to implement
the advanced message queuing protocol, RabbitMQ has
evolved through a plug-in architecture to support
additional protocols such as the streaming text-oriented
messaging protocol and MQ telemetry transport.

To define the specific content and format (schema) of
messages exchanged among different services, AsyncAPI
is used for RabbitMQ communication. The schema may
reference other files for additional details or shared fields,
but it is typically a single, primary document that
encapsulates the API description. Furthermore, the
AsyncAPI schema acts as a communication contract
between receivers and senders within an event-driven
system. It specifies the payload content required when a
service sends a message and offers clear guidance to the
receiver regarding the message's properties.

3.4 Modeling and Simulation Microservices
Modeling and simulation microservices are created by
combining JavaFMI-based execution wrapper for FMU
simulation and RabbitMQ communication with other
microservices. The integration code is implemented in a
Java loop, as shown in Fig. 4.

Figure 4 Modeling simulation microservice structure.

During the initialization phase, information about inputs,
outputs, and parameters are extracted from the FMU's
ModelDescription.xml to compare against the AsyncAPI
payload schema. All inputs and outputs are mapped to
periodically updated “state” topics to reproduce
continuous input/output signals. Tunable parameters are
mapped to “configuration” topics updatable by request
using RPC calls; for example, to achieve the
anonymization of a model, we map the I/O of an arbitrary
FMU to the AsyncAPI schema referring to the
ModelDescription.xml content. The internal structure,
calculation algorithms, and the origin of the FMU will not
impact RabbitMQ communication and other services. The
modeling and simulation microservice with the FMU
receives messages with inputs and parameters and sends
messages with outputs from the model.

An example of the definition for an input port of a model
in AsyncAPI properties is shown below. In this example,
topic “model.input.command.v1” contains a link to the
“input_port” model input of array type with four
elements.

channels:
 model.input.command.v1:
 subscribe:
 summary: Model input topic.
 message:
 $ref: "#/components/messages/model_input"

 schemas:
 model_input:
 type: object
 required:
 - input_field
 properties:
 input_field:
 type: array
 minItems: 4
 maxItems: 4
 items:
 type: number

Start

Write parameters

Write inputs

Do step

Read outputs

Sleep

YesNo
Update loop

Initialization

RabbitMQ

FMU

javaFMI

Docker

AsyncAPI

Microservice
base image

174 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207170 DOI

 x-units: NA
 x-inport: "input_port"
 x-initialvalue: [1.0, 1.0, 1.0, 1.0]

With a defined AsyncAPI document, it is easy to find the
corresponding “input_port” in ModelDescription.xml and
update the “input_port” of FMU with the values in the
message received through RabbitMQ.

The main update loop runs at a defined update rate and is
shown in Fig. 5 below.

Figure 5 Modeling simulation microservice loop.

The microservice code is responsible for

• Handling received configuration messages and
updating tunable parameters of the FMU by
request.

• Handling received state messages and updating
inputs according to the update rate and, in this
way, mapping sampled time series input signal to
the predefined input of the FMU.

• Executing the FMU by running the
simulation.doStep (stepSize) method.

• Updating RabbitMQ message topics mapped to
the outputs of FMU with desired update rate.

• Providing service information and statistics as
periodic state messages: model time and model
states (running/stopped/paused).

• Handling received control messages to start, stop,
pause, or reset the FMU.

3.5 Microservice Development Process for
Modeling and Simulation
Developers can choose any preferred software modeling
tools to develop models for physical systems or control
algorithms. FMUs can then be exported. Modeling and
simulation microservice can be built with following steps,
as shown in Fig. 6:

• Access is added to the FMU utilizing wrapper
with the JavaFMI library.

• Custom microservice implementation provides
an interface to the AsyncAPI and synchronization
of FMU execution and API state messages to and
from the microservice.

The last stage is deployment of the microservice as a
Docker container as a part of complex software
application.

All steps in building the pipeline may be automated and
integrated into DevOps pipeline (for instance, Azure
DevOps) with automated integration tests and API
validation, providing safe and robust application
deployment.

Figure 6 Modeling simulation microservice development

process.

4 Case Studies
To illustrate the effectiveness, convenience, and
versatility of the proposed framework in real production
software deployment, wireline automation development
for assisted conveyance in oil and gas operations at SLB
is used as an example. Two design cases are presented. In
the cloud, a wireline winch and cable simulator is
deployed in the Azure DevOps pipelines for software-in-
the-loop testing. At the edge, a winch controller is
deployed for an automatic winch control. Although the

Start

Load Model Description

Create List of Inputs, Parameters, Outputs

Update Inputs or Parameters

YesNo

Compare against asyncAPI and initialize

Run FMU

Update outputs

Topic received?

Model

FMU

FMU

javaFMI

FMU

javaFMI

Microservice base
image

FMU

javaFMI

Microservice base
image

Docker

Model
development

Artefact

MBD tools:
MATLAB&Simulink

Process Tool and
technoligy

Code generation FMU builder for
Simulink

javaFMI Wrapper
library

Integration into
Java class

Anonymization

Integration with
RabbitMQ
(AsynAPI)

Legacy MBD
microservice library

Docker

Kubernetes

Deployment

175OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207170

application environments are different between cloud and
edge, the same framework can be used due to the
portability of the FMU and microservice.

Wireline operation is widely used in the oil and gas
industry to measure the properties of a formation using
electronic instruments. Fig. 7 illustrates a typical wireline
logging operation. A drum of electric cable is driven by a
hydraulic winch with a toolstring packed with different
formation measurement sensors attached at the free end of
the cable. The winch drum is rotated by a hydraulic motor
that moves the toolstring up and down along the wellbore.
Sensors packaged inside the toolstring conduct sensing
measurements while moving and send back measurement
results through the connected cable. During operation, an
operator is required to control the hydraulic winch
manually so that the toolstring movement will follow a
desired motion profile.

Figure 7 Wireline logging operation for oil and gas industry.

4.1 Winch Simulator
The hydraulic winch drives the drum via a gear
transmission. As shown in Fig. 8, the hydraulic winch is a
hydrostatic transmission system consisting of a variable
displacement pump, a variable displacement motor, and a
charge pump. The pumps are driven by a vehicle engine
through gears. The drum is driven by variable
displacement motor through transmission gears.

Figure 8 Schematics of a hydraulic winch.

The winch simulator model is developed using the
Simulink/Simscape package from MathWorks. The

5 https://www.mathworks.com/help/hydro/ug/hydrostatic-
transmission.html

hydraulic circuit is modeled using components from the
MathWorks’ fluids library and is derived from the
hydrostatic transmission example5 shown in Fig. 9.

Figure 9 An exemplary model of a hydraulic circuit.

During wireline operation, the released cable can be over
thousands of feet long. Therefore, it is necessary to model
the dynamic effect of cable elasticity. The entire cable is
discretized into serialized mass-spring-damper blocks, as
shown in Fig. 10.

Figure 10 Mass-spring-damper node and serialized cable

model.

Calibration tests are conducted to collect data and identify
system parameters. The calibrated system response
matched actual system behavior, as shown in Fig. 11.

Figure 11 Simulation vs testing data.

176 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207170 DOI

Following the procedure described in previous sections,
FMU is exported from the Simulink/Simscape model and
packaged into a microservice. The resulting simulator
microservice was used for the software-in-the-loop testing
of the winch controller and other software services of
wireline automation. Software developers with no
knowledge of modeling software such as
Matlab/Simulink/Simscape could easily incorporate the
simulator microservice into their test need to mimic
hydraulic winch behavior if they follow the interface
specified in AsyncAPI. Those tests can be made automatic
and regressive and can run in Azure DevOps pipeline as
is done today for wireline automation development in
SLB. Other than software testing, the FMU-based
simulator microservice can be deployed in the cloud or at
the edge as the core of digital twin applications for
predictive maintenance, operation planning, and
optimization.

4.2 Winch Controller
As the first step toward automation of the wireline logging
operation, it is necessary to control the hydraulic winch,
or toolstring motion, following a desired motion profile,
automatically, without operator intervention. A nonlinear
model based adaptive robust controller (ARC) is designed
for this purpose. The detailed controller design can be
found in Bu (2020). The designed controller is
constructed in Simulink, as shown in Fig. 12.

Figure 12 Simulink diagram of winch controller.

The winch controller developed in Simulink can be
exported to FMU and packaged into the microservice the
same way as the winch simulator in previous sub-section.
The winch controller can be deployed via two scenarios,
as shown in Fig. 13:

• Software-in-the-loop testing is executed in the
Azure DevOps pipeline in the cloud together with
the winch simulator as a virtual winch. In this
case, a software "switch" will map winch
simulator inputs/outputs to the proper RabbitMQ

6 not limited to, can be a RESTful API wrapping

messages. From the winch controller point of
view, it is receiving sensor inputs, and sending
out actuator commands, from/to the real
hardware.

• In the “edge at wellsite” application, the winch
controller microservice is deployed at the edge,
namely at the automation server physically
installed inside the wireline logging unit at a
wellsite. The software "switch" will map real
sensors and actuator signals from the hardware
interface microservice to the proper RabbitMQ
messages. The winch controller will be able to
control the actual winch drum for automation
purposes.

Figure 13 Winch controller deployments.

It should be noted that by adopting a model-based-design
process, the winch controller has been matured to the
product level and deployed in SLB’s wireline logging
units globally, completing over several million feet in
automated conveyance services.

5 Conclusions
Our work presents a versatile unified framework that is
not bound to specific platforms able to generate FMUs,
expanding FMU support to a broad range of environments
beyond Simulink, Modelica, and similar systems. It
covers the deployment needs of arbitrary multidomain
simulation engines. By fusing FMUs, JavaFMI, and an
AsyncAPI-based anonymization layer 6 , we provide a
standardized platform for co-simulation and verification
suitable for industrial automation systems and well
beyond, demonstrated with real-world O&G oil and gas
applications. This could be applied, but is not limited to,
advanced wireline conveyance assistance systems
comparable to automotive ADAS (MathWorks 2024;
Dassault Systemes 2024) and autonomous driving
functionalities.

Our microservice-based architecture is both flexible and
scalable, serving the needs of both edge and cloud model

RabbitM
Q broker

Hardware
interface

Simulator

Hardware

Winch
controller

Switcher

177OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207170

deployment, promoting collaboration and efficiency in
composite asset engineering. The presented
comprehensive approach enhances interoperability and
streamlines the model delivery process in production
software. It allows the automated wrapping and execution
of highly arbitrary models at the small cost of introduction
of a very thin model-to-RabbitMQ I/O mapping.

Our results demonstrate that the proposed solution enables
scalable, flexible, and practical modular deployment of
models as software components in cyber-physical and
control systems, with a particular focus on Docker and
Kubernetes for real-world commercial products in
modern computing environments (Segura et al. 2023).
Cross-platform model wrapping, configuration, and
execution enable the reuse of models in various
deployment scenarios.

Our future work focuses on scalability and performance
optimization for large-scale deployments, enhancing
security measures for edge and cloud, and integrating
alternative communication protocols for broader
interoperability. The introduced solution utilizes the FMI
2.0 standard, and we are moving onto FMI 3.0, which lets
us naturally reduce restrictions for data types.
Additionally, we are exploring automated mechanisms for
model updating and versioning, with deeper DevOps
pipeline integration.

Acknowledgements
The authors would like to thank Ken Ditlefsen (SLB) for
his initial “abstract executor” architecture and non-FMU
code implementation, which we developed and elevated
to the solution presented in this paper. We also express our
appreciation to MathWorks for providing consultancy
services for their tools, which significantly contributed to
the success of our project.

References
 Blochwitz, Torsten et al. (2011). “The Functional Mockup

Interface for Tool independent Exchange of Simulation
Models”. In: the 8th International Modelica Conference, 105-
14. Dresden, Germany. DOI: 10.3384/ecp11063105

Bu, Fanping. (2020). "Nonlinear adaptive robust motion control
for hydraulic winch in oil and gas wireline operation." In: 21st
IFAC World Congress, 8991-96. Berlin, Germany. DOI:
10.1016/j.ifacol.2020.12.2015

Cabral, J. et al. (2018). "Enable Co-Simulation for Industrial
Automation by an FMU Exporter for IEC 61499 Models." In:
2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), 449-55.
Turin, Italy. DOI: 10.1109/ETFA.2018.8502654

Chen, Wuzhu et al. (2011). "A Generic FMU Interface for
Modelica." In: the 4th International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools, 19-
24. Zurich, Switzerland.

Dassault Systemes. 2024. "Dymola". URL:
https://www.3ds.com/products/catia/dymola.

Gomes, Cláudio et al. (2018). "Co-Simulation: A Survey", In:
ACM Computing Surveys, 51: 1-33. DOI: 10.1145/3179993

Hatledal, L. I. et al. (2018). "FMI4j: A Software Package for
working with Functional Mock-up Units on the Java Virtual
Machine." In: The 59th Conference on Simulation and
Modelling (SIMS 59). Oslo, Norway. DOI:
10.3384/ecp1815337

Hatledal, L. I. et al. (2019). "FMU-proxy: A Framework for
Distributed Access to Functional Mock-up Units." In: the 13th
International Modelica Conference. 79-86. Regensburg,
Germany. DOI: 10.3384/ecp1915779

Juhlin, P. et al. (2022). "Cloud-enabled Drive-Motor-Load
Simulation Platform using Asset Administration Shell and
Functional Mockup Units." In: 2022 IEEE 27th International
Conference on Emerging Technologies and Factory
Automation (ETFA), 1-8. Stuttgart, Germany. DOI:
10.1109/ETFA52439.2022.9921678

MathWorks. (2024). 'What Is ADAS? 3 things you need to
know'. URL:
https://www.mathworks.com/discovery/adas.html.

Modelica Association. (2022). "Functional Mock-up Interface
for Model Exchange and Co-Simulation. Version 3.0 "
Modelica Association.
URL: https://fmi-standard.org/docs/3.0.1/

Schranz, Thomas et al. (2021). "Portable runtime environments
for Python-based FMUs: Adding Docker support to
UniFMU." In: 14th Modelica Conference 2021. 419-424
Linköping, Sweden. DOI: 10.3384/ecp21181419

Segura, J., Tran, V.V., Meirkhan, J. et al. (2023). "Autonomous
Slickline and Wireline Conveyance Improves Performance of
Offshore Interventions". Paper presented at the SPE Offshore
Europe, Aberdeen, Scotland, 5–8 September. SPE-215586-
MS. DOI: 10.2118/215586-MS

Stüber, Moritz, and Georg Frey. (2021). "A Cloud-native
Implementation of the Simulation as a Service-Concept
Based on FMI." In: 14th Modelica Conference, 393-402.
Linköping, Sweden. DOI: 10.3384/ecp21181393

