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Abstract
This paper describes the integration of generative deep
learning models for data-driven building energy simula-
tion. The generative models (GMs) are trained to learn
distributions of building input signals from data using
Python and PyTorch and interfaced with physics-based
Modelica models. The developed integration require-
ments provide background on typical needs that focus
on building energy simulation performance. Simulation
examples using models from the Buildings library, re-
factored to receive GM inputs, are presented to illustrate
the benefits of the proposed integration approach and how
GMs can be used for building energy performance analy-
sis.
Keywords: Machine learning, generative models, Build-
ings library, building energy simulation

1 Introduction
Building simulation tools are frequently used during the
design phase to size equipment and perform simulation-
based studies that help estimate annual energy use or car-
bon emissions. The demand for such simulation studies,
combined with the emergence of new design scenarios
such as building electrification, has driven the creation of
advanced physics-based building simulation models. The
Modelica Buildings library (Wetter, Wangda Zuo, T. S.
Nouidui, et al. 2014) is one of the best-known collections
of such models, which enable the simulation of the cou-
pled dynamic behavior of building envelopes and heating,
ventilation, and air conditioning systems (Chakrabarty,
Maddalena, Qiao, et al. 2021; Zhan, Wichern, Laughman,
et al. 2022). Modelica-based tools offer distinct benefits
in analyzing building performance, as they facilitate sys-
tematic controller design (Wetter, Ehrlich, Gautier, et al.
2022) and realistic closed-loop control performance as-
sessment (Stoffel, Maier, Kümpel, et al. 2023).

While such physics-based Modelica models can effec-
tively simulate the energy and mass transfer processes
for the building envelope, together with the thermofluid
physics of HVAC systems, there are other processes that
influence the heating and cooling load that the HVAC sys-
tem will experience that are not driven by physics alone,
but also by human actions. Building occupants generate
and absorb latent, sensible and radiant heat, and their ac-

tions can significantly impact the efficiency of an HVAC
system in terms of energy usage, comfort levels, and
indoor air quality, among other factors (Mirakhorli and
Dong 2016). As models of such behavior are also required
for building design and performance analysis, a common
practice is to make engineering assumptions that define a
‘nominal’ behavior for variables such as occupancy (num-
ber of people occupying a zone), activity level and sched-
ule, and then augmenting this nominal model by repre-
senting the time-varying behavior as an input disturbance
(e.g. a constant or ramp) during simulation. The reliabil-
ity of simulation outcomes is compromised by such a lim-
ited representation of human behavior variables influenced
by human behavior, as these variables are challenging to
model using physics-based or first-principles methods.

Data-driven approaches have demonstrated their effi-
cacy in characterizing the observed distribution of single-
output operational building profiles, such as energy us-
age (Ye, Strong, Lou, et al. 2022), thermal comfort (Das,
Tran, Singh, et al. 2022), and occupancy patterns (Chen
and Jiang 2018). A diverse set of building simulation
scenarios, including typical or extreme occupancy pat-
terns for a specific building, could be created by integrat-
ing these machine learning-based generative models with
Modelica-based building models. Such tools could assist
in pinpointing improvement opportunities in the existing
HVAC system (i.e. retrofitting) or assess the effectiveness
of a particular control scheme for existing buildings. and
would also enable the creation of data-driven occupancy
models to be used in building design when specifying and
calibrating the HVAC system to be deployed.

Although explicit neural network (NN) models have
previously been created in Modelica (Codeca and Casella
2006), this approach does not enable integration with ma-
jor ML platforms for NN design (e.g., PyTorch), and
attempting it would require a ground-up reimplementa-
tion in Modelica. This would require a parallel effort
to that in the discipline of machine learning, where ad-
vancements in ML platforms are made rapidly and by
a large community compared to that of Modelica spe-
cialists. Recent efforts have also been made to integrate
NNs with physics-based simulators, including the use of
the Functional Mock-Up Interface (Modelica Association
2019) to exchange the trained NN model with other frame-
works (The MathWorks n.d.). Two approaches of note that
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support the use of trained NN models directly in Model-
ica include the SmartInt (XRG Simulation GmbH n.d.)
library, which allows the use of TensorFlow TFLite mod-
els (XRG Simulation GmbH n.d.) and the NeuralNet
library, which supports the Open Neural Network Ex-
change (ONNX) format (Wolfram Research n.d.). Un-
fortunately, limitations in the implementations of both of
these libraries make them unsuitable for this work. In
particular, the lack of support for NN models trained in
PyTorch and the added complexity caused by its depen-
dencies (e.g. TensorFlow API) made it difficult to use
the SmartInt library, whereas the NeuralNet library
is only available for use in the Wolfram SystemModeler
Modelica tool where, as of the time of writing, models
from the Buildings library cannot be compiled. More-
over, this tool requires the use of the ONNX Runtime li-
brary and its C API, which adds not only complexity but
also overhead in software integration.

In this study, we use trained Generative Models (GMs)
to provide input signals for building models, such as build-
ing occupancy and power demands. These GMs are spec-
ified via a set of input parameters and provide causal out-
puts to the building models, and as such provide valuable
"component models" for the overall building representa-
tion. While this could have been integrated with the build-
ing models via FMI, we chose to build a direct connection
between the GMs and Modelica tools to facilitate the it-
erative refinement of the building models and avoid the
inherent trade-offs that model exchange or co-simulation
has on simulation performance (Schweiger, Gomes, En-
gel, et al. 2019). We thus implement a requirements-based
light-weight integration of generative models trained in
Pytorch with building simulation models in a Modelica
environment, which is accomplished via the external func-
tion standard interface, as is also done in the SmartInt
and NeuralNet libraries. This approach can be of value
to other simulation researchers or practitioners as, for sim-
ulation purposes, it maintains a minimum number of de-
pendencies and attempts to prioritize simulation perfor-
mance.

The remainder of this paper is organized as follows.
Section 2 lists the requirements considered for the pro-
posed implementation shown in Section 3. The simula-
tion results obtained through this integration approach are
illustrated using a model from the Buildings library, and a
GM trained in PyTorch using real-world data are presented
in Section 4. Conclusions and further work are summa-
rized in Section 5, which concludes the paper.

Conventional Modelica notation is used extensively in
this paper. The typewriter font is used along the
dot notation to reference the syntax of the Modelica lan-
guage, including the names of Modelica libraries, mod-
els names, etc. Furthermore, the typewriter font is
used to refer to the names of other software packages.
Meanwhile, the dot notation is used to specify hierar-
chy in object-oriented modeling. As an example, con-
sider the model of a building containing a zone named

zon, which itself is composed of a room named roo.
To access a parameter value, for example, the constant
convection coefficient for room-facing surfaces of opaque
constructions, hIntFixed, the dot notation would be
building.zon.roo.hIntFixed. Finally, syntax in
code listings follows same as that in the Modelica Lan-
guage Specification1.

2 Model Integration Requirements
To combine GM models with building simulation models
based on Modelica, various factors have to be taken into
account. We outline the scope in three main categories: 1)
training and modeling of GM, 2) integration of GM mod-
els with building models, and 3) automation of the simu-
lation workflow. Figure 1 illustrates these categories and
shows how they interact to support building simulation.

2.1 GM Training and Modeling
An important consideration is that the GM models must
be designed to interact seamlessly with the building sim-
ulation model. The following requirements (Req.) must
be met by the GM models and their integration. These re-
quirements result in the implementation shown in Figure
1(A), which is discussed in Section 3.

Req. 1: Deep generative networks should be easily
trained (for example, in PyTorch) with real building
data. This requirement emerged from the need for a
research-focused framework on machine learning that
provides flexibility and ease of experimentation to test
new methods such as the one in (Salatiello, Wang,
Wichern, et al. 2023). Furthermore, the design of the
GM neural architecture should be such that the length
of the output (e.g., number of days a signal is gener-
ated) can be easily provided as a user-input.

Req. 2: The parameters of the trained generative model
must be exchanged in a manner that ensures they are
stored in the smallest possible file formats. Reading
the files must be fast and efficient, especially because
modern GM architectures contain a very large num-
ber of trained parameters. In this work, our GM has
multiple sub-network components to be trained, but
for signal generation (i.e., at inference), only a small
sub-module of the deep network is required: there-
fore, only a small subset of the GM weights need to
be stored.

Req. 3: The generative model must be incorporated into
the simulation environment and should operate with
high computational efficiency. The computational
load of running the generative models in conjunction
with the building model should be minimal (or in-
significant) when compared to running the building
model by itself.

1See Ch. 1.4 Notation in the Modelica Language Specifi-
cation: https://specification.modelica.org/master/
introduction1.html.



180 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024   OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207178         DOI

cacheDataPath:
modelica://*/Resources/NetworkParams/

GM Training GM Model Implementation in C
and Interfacing with Modelica

Physical Model 
Refactoring and GM Model Integration

Simulation Executable

Simulation Workflow AutomationGM Training and Modeling GM Model Integration with Building Models

Automation Functions

genCTS(const char *dataPath,
...double* timeSeries)

external "C" genCTS(
cacheDataPath,...,
timeSeries)

Measurement 

Data

GM 

Architecture

Training

Network Weights
*.bin files

Python and PyTorch

f

C Language

Calls

Returns

Modelica Lang. Modelica Lang.

Re-implement

Read

*dataPath:
modelica://*/Resources/NetworkParams/

Calls

Returns

Refactored Room Model with Fan 

dymosim.exe

Dymola-Python
API

Dymola

Simulation Results
*.mat files

Python

dymola = DymolaInterface()
...
ok = dymola.simulateModel(
            myModelsName,
            startTime = tstart,...
            resultFile="dsres.mat");

Calls

Read

Calls

(A) (B) (C) (D) (E) (F)

Figure 1. Overview of the Desired Integration of a Generative Model with a Single-Zone Thermal Model of a Building

2.2 Interfacing Deep Generative Networks
with Building Simulation Models

Because the building models are implemented in the Mod-
elica language; thus, it is necessary to integrate the GMs
with them. To interface them the following requirements
are made:
Req. 4: The GMs need to be incorporated into the build-

ing simulation model using a tailored block. In-
puts to the GM should be routed through the Modelica
model. Outputs from the GM should be connected via
RealOutput or IntegerOutput interface blocks
from the MSL. These interfaces can, for instance, be
used to provide the occupancy, equipment, ventilation,
and lighting loads of the building.

Req. 5 The GM’s output should generate a time series
that fills a CombiTimeTable from the MSL with
predicted variable values at specified time intervals.
The lookup table must implement a sample-and-hold
mechanism and suitable methods for extrapolation for
values outside its defined range for each variable.
These features should be included within the block
described in Req. 4.

Req. 6: The block from Req. 4 must also provide the
parameters for the deep generative network. In the
case of the weights obtained through training, a string
parameter will indicate the location of the file(s) stor-
ing the weights.

These requirements guided the implementation shown in
Figures 1 (see labels (B)-(D)) and 2, which are discussed
in Section 3.

2.3 Simulation Workflow Automation
Referring to Figure 1 (see labels (E) and (F)), one final
aspect to consider in the scope of this work is that of sim-
ulation. As illustrated above label (E), once the GM and
building models are integrated, it is possible to create a
simulation executable and obtain simulation results. It is
beneficial to offer a method for automating the workflow,
specifically to alter parameters in the Modelica model pro-
grammatically, herein reflected by:
Req. 7: When possible, the simulation executable shall be

reused, i.e. limit the re-translation/compilation of the

Modelica model, to perform trade-off analysis stud-
ies. Such studies shall include changing any of the
parameters of the Modelica model, and allow for post-
processing of the simulation results.

3 Prototype Implementation
To meet the requirements emerging from the three aspects
considered in the previous section, the design choices and
implementation pursued are defined next. For illustrative
purposes, Figure 1 shows how the implementation was
carried out to meet the requirements. A detailed descrip-
tion of the implementation to meet the requirements above
labels (B)-(D) in Figure 1, explaining how the interfacing
between C and Modelica of the GM models was done, is
shown in Fig. 2.

The main goal of the software integration approach
used was to minimize dependencies (for both ease of
portability and simulation performance purposes) on ex-
ternal software tools other than the C compiler and the
Modelica tool, in this case Dymola (Bruck, Elmqvist, Ols-
son, et al. 2002; Dassault Systemes AB 2023), which re-
quires a C compiler itself. Hence, an attractive feature (as
discussed in the Introduction) is the use of the standard-
ized external function feature of the Modelica language.
Consequently, to minimize dependencies, the integration
of GMs with the simulation model must be done solely
using C. In turn, this requires one to interface the C imple-
mentation of the GMs with a Modelica model that can call
the C code. Meanwhile, simulation workflow automation
can be achieved by interacting with the Dymola-built sim-
ulator executable, which in the case of the approach shown
in Figure 1, contains both the GM and the building mod-
els, with a suitable scripting tool supported by Dymola.

3.1 GM Training and Modeling
Training the NN of the GM was conducted using Python
and PyTorch, as illustrated in Figure 1, in the portion over
the under-brace labeled with (A), which helps to meet
Req. 1. To train the models, measurement data and the
designed architecture for the NN are provided in PyTorch
to perform the training. This results in the weights of the
network, which are stored in *.bin files, i.e. binary data,
which helps to meet Req. 2.
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Figure 2. Integration between C and Modelica

To meet the third requirement (Req. 3), the GM needs
to be translated to C, as illustrated above label (B) of
Figure 1. This implies that the network architecture and
different activation layers need to be coded, while the
weights resulting from training only need to be read. To
illustrate this, consider Listing 1. In lines 2-4, the NN’s
graph is defined via a structure, i.e., the architecture is
defined. Here, only one hidden layer is shown; how-
ever, the NN has others (see (Chakrabarty, Vanfretti, et
al. 2024)). Next, in lines 6-10, the activation functions are
defined, here only the Softplus(x) function is shown; how-
ever, other functions are used (see (Chakrabarty, Vanfretti,
et al. 2024). Finally, in lines 11-23, the fourth layer’s out-
put is calculated using the output of the previous layer, ap-
plying the weights for this layer, adding biases, and finally
applying the Softplus(x) function.

Listing 1. Excerpt of the GM Implementation in
conditionalGenerativeModel.c

1/∗ Structure to r ep r e s en t network graph ∗/
2typedef struct {...
3cLayer hidden4_output;
4} cGenerativeModel;
5...
6/∗ Sample Act i va t i on Funct ions ∗/
7double c_SoftPlus(double x) {
8return log(1 + exp(x));
9}
10...
11/∗ Sample Network Layer and Output ∗/

12double* c_forward(cGenerativeModel network,
double *input){

13...
14// Hidden Layer to Output
15for (int i = 0; i < c_layerSizes[5]; i++) {
16output[i] = 0;
17for (int j = 0; j < c_layerSizes[4]; j

++) {
18output[i] += hidden4[j] * network.

hidden4_output.weights[i *
c_layerSizes[4] + j];}

19output[i] += network.hidden4_output.
biases[i];

20output[i] = c_SoftPlus(output[i]);

While C-implementation of such kind of NN’s is not
trivial, this choice was intentionally made taking into ac-
count the needs to minimize dependencies and maximize
simulation performance. With the proposed approach, the
GM model becomes part of the source code of the simula-
tion executable, in Dymola (called dymosim.exe, see
Figure 1(F)). In addition to this, other C functions are
needed, e.g., to load the binary files, and provide other
functionalities (see Figure 2). Finally, in addition to im-
plementing the network, the C code needs to include a
function to interface with Modelica, as discussed next.

3.2 Interfacing GM Models with Building
Models

To fulfill the requirements pertaining this aspect, i.e.
Req. 4-6, it is useful to refer to Figure 1, paying
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attention to what is presented above the labels (B)-
(D). This gives a high-level overview of the main
parts of the interfacing. As can be observed, R4
and R5 are fulfilled by invoking a Modelica function,
generateConditionalTimeSeries (see above la-
bel (C) 1), which provides input parameters and invokes
the C-function, genCTS (see above label (B) 1), evaluat-
ing the GM and asking for its output to fill a lookup ta-
ble called timeseries. Meanwhile, to fulfill Req. 6,
the timeseries output is provided to a table within the
genModel, which is a block that is interfaced with the
building model (see above label (D) in Figure 1).

To expand on this overview and understand the inte-
gration, refer to Figure 2, which focuses only on the in-
tegration between C and Modelica for the GM alone. In
the LHS, the C implementation is shown, in the middle
the Modelica text is shown, and in the RHS the Modelica
graphical views for the developed package and the main
block component are shown. This figure should be pe-
rused from left to right to understand the implementation
details and from right to left to understand how the differ-
ent pieces work together from a user perspective.

Reading from the right-hand side (RHS), the
RHS corner of Figure 2 shows the structure of the
GMBuildSimPack package. It contains the Mod-
elica function and block that help to integrate
the GM model with the building. For the user, the
GenerativeModelBlock would be used to drag,
drop, and connect with the building model inputs.
When graphically instantiated as genModel, as shown
by the icon view, one IntegerOutput and several
RealOutput interfaces that route the output of the GM
model. This fulfills Req. 4. Meanwhile, the diagram
view of this block helps to see them in more detail, and to
observe that they are connected to a CombiTimeTable,
which was what Req. 5 requested. This table will be
populated with the timeseries output of the GM
model, which requires a few steps that are explained next.

Now, to understand how the CombiTimeTable
gets the GM model data, it is necessary
to understand how the Modelica function,
generateConditionalTimeSeries, interfaces
with the C function genCTS. This is illustrated in Listing
Listing 2 that shows the call to the external "C"
function in line 5, while also passing input parameters to
run the NN (lines 2-4), and obtaining the GM’s output in
line 5 of the listing, i.e., Real[384] timeSeries 2.

Using the GenerativeModelBlock in Listing 3,
will call genCTS in line 7, while providing it with dif-
ferent required parameters, see lines 2-5. The func-
tion generateConditionalTimeSeries in List-
ing 3 provides the timeSeries output that will pass
its data to lookUpTableValues in Line 9. Next,

2Note that in this prototype implementation the size of the output
timeSeries is fixed to 384 for illustration purposes. In a more
generic implementation, this parameter could be propagated to make
it easier for the user to modify it.

in line 7, CombiTimeTable is instantiated and data
are provided through the lookUpTableValues pa-
rameter. There are several steps required in this pro-
cess, which are listed as steps 3 and 4 in Fig. 2. Note
that in 10 of Listing 3, several modifiers that are needed
have been ommitted; these include those required to set-
up the sample-and-hold and periodic extrapolation (i.e.
smoothness=... and extrapolation=... mod-
ifiers), and the timeScale=... modifier defines the
GM’s output rate, which will be 15 min in the exam-
ples in the forthcoming section. Finally, in line 11,
power_equip_R1 instantiates a RealOutput inter-
face that is connected in Line 14 to the corresponding out-
put of the table, i.e. CombiTimeTable.y[4].

Listing 2. External Function in Modelica Linking the GM’s
Output

1function generateConditionalTimeSeries
2input String cacheDataPath = Modelica.

Utilities.Files.loadResource("modelica://
GMBuildSimPack/Resources/NetworkParams/");

3...
4output Real[384] timeSeries;
5external "C" genCTS(cacheDataPath,

randomVector, conditionalInputs,
timeSeries) annotation (

6IncludeDirectory="modelica://GMBuildSimPack/
Resources/Include",

7Include="#include \"
conditionalGenerativeModel.c\"");

8end generateConditionalTimeSeries;

Listing 3. Excerpt of the Source Code of the Generative Model
Block

1model GenerativeModelBlock
2constant String cacheDataPath=Modelica.

Utilities.Files.loadResource("modelica
://GMBuildSimPack/Resources/
NetworkParams/");

3/∗ Network Input Parameters ∗/
4constant Integer latentDim = 8;
5... /∗ Other parameters ommited .
6/∗ Network Output ∗/
7parameter Real[nSamplesPerDay*nSignals]

timeSeries = GMBuildSimPack.Functions.
generateConditionalTimeSeries(
cacheDataPath, randomVector,
conditionalInputs);

8... /∗ Ommitting : reshape t imeSe r i e s i n to
lookUpTableValues ∗/

9Modelica.Blocks.Sources.CombiTimeTable
combiTimeTable( table=lookUpTableValues

10... /∗ other mod i f i e r s ommitted ∗/)
11Modelica.Blocks.Interfaces.RealOutput

power_equip_R1;
12... /∗ Other i n t e r f a c e i n s t a n t i a t i o n s

ommitted ∗/
13equation
14connect(combiTimeTable.y[4], power_equip_R1);
15... /∗ many connect statmenets ommited ∗/
16end ConditionalGenerateTimeSeriesModel;

Under this category, only one requirement needs to be
addressed, Req. 6. To understand how this is fulfilled, it
can be observed in both Listings 2 (see line 2) and 3 (see
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line 2) that the string called cacheDataPath points to
a specific directory where the *.bin files are located.
It should be noted in this Listing 2 the annotation
points Dymola to the location where the file that includes
genCTS is located, so that it can be included as part of
the integrated simulator code.

Finally, additional Modelica and C functions are built
to support the workflow. For example, the NN must be
initialized with a random vector, this is done through an-
cillary C code whose functions are depicted on the RHS
of Fig. 2, one of which has an accompanying Modelica
function, i.e. generateRandomVectorInC. Mean-
while, as it can be observed in steps 3-4 in Fig. 2, ad-
ditional Modelica functions (i.e., reshapeMatrix), re-
shape the GM’s output before feeding it to the table. We
omit further details about the integration of these fea-
tures, as it is similar to that explained for genCTS and
generateConditionalTimeSeries.

3.3 Simulation Workflow Automation
Finally, to facilitate the automation of the simulation
workflow and meet Req. 7, the only design choice to make
is the selection of one of the available scripting interfaces
provided by Dymola. Among the various interfaces, the
most attractive is the Python Interface for Dymola (Das-
sault Systemes AB 2023), an API to execute Dymola com-
mands using a Python program. This choice was made
because Python is already being used to train NN models
via PyTorch. Using this interface, the models parameters,
weather data files, etc., can be specified and used for spe-
cific simulation cases.

As shown in Figure 1 the Dymola-Python Inteface al-
lows to change the value of the models parameter within
the simulation executable, by instantiating the interface
(i.e. dymola = DymolaInterface()), and run-
ning a simulation through one of its commands (i.e.
dymola.simulateModel(...). To avoid the need
of retranslating/compiling the model, one option is to first
translate the model (see Chp. 1.3 of the Modelica Specifi-
cation) using the translate command of the Dymola-
Python interface, which generates the code of the simu-
lator that can simulate the model. Thus, every time that
parameters are changed3 within a look, the model does
not need to be translated; i.e. code generator is avoided,
reducing time.

4 Results
4.1 Building Models and GM Training Data
4.1.1 Building and System Model

In this section, examples demonstrating the integration of
GM and building models will be presented using the sys-
tem model depicted in Figure 3, which is divided into three
parts. The segment labeled (A) is designated for setting

3Provided that the parameter to be changed is non-structural (Mod-
elica Association 2017).

the temperature setpoints (TSetCoo and TSetHea), the
segment labeled (B) includes the physics-based and GM
models that will be elaborated on later, and finally, the seg-
ment (C) carries out calculations to track building perfor-
mance metrics such as the zone’s temperature (TRoom).

(A) (B) (C)

(a)

(b) (c) (d)

Figure 3. GM integrated with a Re-factored Single-Zone Build-
ing Model including a Fan Control Unit

Let us now describe the physics-based models. Above
the segment labeled (B) in Figure 3, there are four com-
ponents. GM models are identified with the label (a) and
have been described in detail in Section 3.2. Labeled (c),
a simple fan coil unit (FCU) is included to condition the
building, which is shown in Figure 4. The FCU is reg-
ulated by a simple thermostat, which is modeled by a
dual proportional and integral (PI) controller with dual set
point, shown in Figure 5, to maintain room temperature
within the set points of heating and cooling. When the
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Figure 4. Fan Coil Unit labeled (c) in Figure 3

FCU is activated, the supply fan runs at a constant speed
to circulate air through the heating and cooling coils, indi-
cated in Figure 4 as heaCoi and cooCoi, respectively.
The heating and cooling set points are converted to the
supply air temperature set point by the PI controller shown
in Fig. 54, and the coils are activated to reach the set
point. The conditioned air is then supplied to the build-
ing through the supplyAir interface in Figure 4, where
it is assumed to be well mixed. For the illustrative pur-
poses of the examples herein, the energy impact of FCU is

4Observe that the goal here was to provide a simple implementation
of the thermostat. To avoid numerical issues that could appear due to the
use of the Modelica.Blocks.Logical.GreaterThreshold
block set to > 0 could be made.
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simplified, i.e., simple electrical models are used to deter-
mine the consumed power. The electric heating coil has a
constant efficiency of 0.9, and the cooling coil operates at
a constant coefficient of performance (COP) of 3.0.
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Figure 5. Thermostat Model labeled (b) in Figure 3

Finally, consider the component labeled (d) in Figure
3, this is the building model, which is expanded in Fig-
ure 6. The modeling hierarchy is shown for three lay-
ers. In the layer labeled (A), it is shown how the GM
model is interfaced, and certain variables are scaled to
match the model’s units. In layer (B), further refactoring
and computations are performed, mainly the interfacing
with a weather data block with the GM and the computa-
tion of the total radiant, convective, and latent heat gains
from the prediction of the GM model. Finally, layer (C)
the underlying model refactored from the Buildings
library. Although the specific case shown here corre-
sponds to Case900FF of the ASHRAE BESTEST val-
idation models (ASHRAE 2007), the refactoring provides
an object-oriented hierarchy that allows one to easily mod-
ify other models by matching the interfaces for radiant,
convective, and latent heat flow (which are constant in the
original model), and move the weather data block to layer
(B) to adapt weather conditions based on input from the
GM.

The building represents a single zone with a window on
the south wall and a constant infiltration mass flow rate.
For the examples considered here, there are two variations
of construction, the light weighted Case600FFF and the
heavy weighted Case900FFF. The exterior walls and
roof of Case600FFF and 900 are, respectively, plaster
board with fiberglass insulation and concrete block with
foam insulation. The floor of Case600FFF is timber
construction and the floor of Case900FFF is concrete
slab.

4.1.2 Measurement Data for GM Training

To train generative models, we use measurement data
collected from SUSTIE, a cutting edge net zero-energy
commercial office building located in Japan5. The name
SUSTIE combines the words “Sustainability” and “En-
ergy” and the building is designed to investigate and
demonstrate technologies that can lead to energy savings
and worker health and comfort. The four-story SUSTIE
building has a total floor area of approximately 6456 m2

5See https://www.mitsubishielectric.com/en/
about/rd/sustie/index.html.

which includes nine office spaces (experimental rooms)
regularly used by around 260 office workers, an open
atrium area, a cafeteria and a gym.

The building management system at SUSTIE gathers
data on electrical energy usage, weather conditions, in-
door environmental parameters, occupancy levels, and
equipment operations to monitor and manage energy con-
sumption and comfort throughout the building’s opera-
tions. The electrical energy consumption is measured sep-
arately for different types of equipment (air conditioning,
ventilation, lighting, hot water supply, and elevators) and
for each room. The occupancy, i.e. the number of peo-
ple in each room, is counted by the access control system
using card readers installed in each area. This constitutes
hundreds of sensing instruments installed throughout the
building measuring more than 2,500 unique data signals
throughout the year, 24 hours a day, with a sampling rate
of 1 minute.

In this work a data set collected at SUSTIE over 20
consecutive months from January 2021 to August 2022
is used for training the GM’s used in the examples be-
low. For more information on the steps required for
pre- and post-processing of data and GM training, see
(Chakrabarty, Vanfretti, et al. 2024).

4.2 Illustrative Example
Let us now present some simulation results obtained by
simulating the model shown in Figure 3.

First, we present the GM predictions in Figure 7, which
correspond to the signals from genModel, (a) in Figure
3 that are fed to the building model (d) in Figure 3. These
figures display the mean of the distribution from the mea-
sured data (nom) as well as a realization from the gener-
ative model (GM). The output of the GM corresponds to
several variables (e.g., occupancy, equipment power, etc.)
that influence the radiant, convective, and latent heat gains
of the room shown, which is represented by a light blue
square with a gray edge in Figure 6 (C). As can be seen in
Figure 7, the GM model provides a time series that reflects
what is expected of such types of building operations. For
example, in Figure 7 (a) the occupancy increases in the
morning and falls to zero during the day, while in Figure
7 (b) the power consumed by the equipment is highest in
the morning and drops to a minimum at night. This il-
lustrates the expressiveness of these generative models, as
multiple simulations can be used to characterize the effect
of the uncertainty in these input quantities.

The influence of the GM model upon the radiant, con-
vective, and latent heat gains is shown in Figure 8. Ob-
serving the flow of radiant heat in Figure 8 (a) while at
the same time observing both the power of the equipment
in Figure 7 (b) and the global horizontal radiation in (f),
it can be observed that during the beginning of the day
both variables influence the radiant heat. Meanwhile, the
convective heat flow in Figure 8 (b) is not as drastically
affected at the beginning of each day by these variables.
Furthermore, it should be noted that the latent heat flow in
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(A) (B) (C)

Instantiates
Instantiates

Figure 6. Hierarcichal Layers of the Single-Zone Building-Model labeled (d) in Figure 3. Observe that layer (C) is a refactored
model from the Buildings library, corresponding to Case900FF of the ASHRAE BESTEST validation models (ASHRAE
2007).

Figure 8(c) is dominated by occupancy. It is worth noting
that in the case of the latent heat flow, not having a good
estimate such as those from the GM can lead to a substan-
tial underestimation of latent heat, as shown by the case
where the variables are assumed to be some ‘nominal’ heat
loads obtained from a nominal schedule of energy use in
the zone.

The GM’s output also influences the heat
and mass balance in the moist air of the room.
Within the room in Figure 6 (C), the component
MixedAirHeatMassBalance determines the heat
and mass balance of moist air (M., W. Zuo, and T.
Nouidui 2011), as can be seen in the sensed air tem-
perature and flow rate of water added to the air using
the MixingVolumeMoistAir component from the
Buildings library. The resulting effect of the dif-
ference between the nominal inputs and a realization
from the generative model can can be observed in
Figure 9(a)-(c); the GM output allows a better estimation
of the resulting heat flow in the room (see (a)) and a
more realistic temperature estimate (see (b)), which can
serve in the sizing of the HVAC system and/or improving
its control. It should be noted that, although small, it is
also possible to quantify the rate of extraction of water
from moist air in Figure 9 (c), which would otherwise
be underestimated when using nominal values instead of
those of the GM.

Finally, to maintain the room temperature shown in Fig-
ure 9 (b) within the specified set points, the FCU and the
thermostat in Figures 4 and 5 must cool the air. The re-
sulting set point provided by the thermostat to regulate the
cooling is shown in Figure 10 (a), with the air flow from
the FCU shown in Figure 10 (b). From these figures, it
can be seen that the impact of including the GM serves
to adapt the performance of the cooling system according
to the operating needs of the building. Observe in Fig-
ure 10 (a) that the new setpoints adapt to changes in the
building conditions that are not prescribed by the mean
of the experimental measurements, allowing the user to

quantify the uncertainty in the system performance related
to variations in the building operation.

5 Conclusions
Bringing together physics-based buildings models with
models that describe variables driven by human interac-
tions has the potential to substantially improve the perfor-
mance of existing buildings or to develop better informed
building designs, particularly when considering heating
and cooling requirements that impact HVAC systems. To
explore this potential, this paper has presented the re-
quirements and a prototype implementation of the integra-
tion of machine learning generative models and physics-
based building models. Once the generative models were
trained, they were linked to a building model by exploit-
ing the external function interfaces for C defined in the
Modelica language specification. This enabled the reuse
of Modelica building models from the Buildings li-
brary, while simultaneously leveraging real-world occu-
pancy, power consumption, and other data for building
energy simulations, as demonstrated by the provided ex-
amples.

Although the prototype implementation proposed here
has proven beneficial in the development of novel building
control performance analysis techniques (Chakrabarty,
Vanfretti, et al. 2024), it has several other application do-
mains. For example, it can be used similarly to character-
ize load patterns and perform power system control perfor-
mance evaluations (Bombois and Vanfretti 2024). There is
also a great deal of room for improvement, for example,
to be able to use multiple and different types of generative
model architectures, which will be subject to future work.
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Figure 7. Outputs of the GM model, (a) in Figure 3, for a 7-day period. (a) Occupancy. (b, c) Power consumed by equipment and
lighting. (d) Outdoor temperature. (e,f) Solar radiation, scattered and global.

Figure 8. (a) Radiant, (b) convective and (c) latent Heat Flow resulting from the GM and a Nominal signal.
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Figure 9. Mixed air conditions in the room in Figure 6 (C). (a) Heat flow balance, (b) temperature and (c) water flow rate.

Figure 10. (a) Thermostat TSupSet output (see Figure 5) and (b) Supply air output measured from senSupFlo (see Figure 4)
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