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Abstract
This paper will present a new unified algorithm for unit
checking and inference, and showing the benefits for var-
ious libraries.

The Modelica Language supports declaring units for
variables using the SI-standard. This allows dimensional
checking to detect possible errors in equations. The units
for variables make it easier to interpret, input and plot their
values. When we infer the unit of a variable we get the
same benefits also for variables without a declared unit.
We will use unit inference and checking for the combina-
tion, even if the check is primarily a dimensional check.

Both dimensional checking and unit inference are al-
ready implemented in several Modelica tools, but not con-
sistently. The original motivation for this paper was to un-
derstand the different approaches, and demystify the unit
handling with the goal of making it more available. Based
on that understanding, this paper will also present a new
unified algorithm combining the different strengths, and
showing the results for various libraries.
Keywords: unit, Modelica, Hindley-Milner

1 Unit background
This will explain the various considerations for the units
of variables and unit equality in expressions.

1.1 Allowed units
The stated goal in Modelica is that variables should use
SI-units – for the unit-attribute, the displayUnit-attribute is
not considered in this paper. The SI-system (BIPM 2019)
is based on seven base quantities, and every quantity is a
product of them raised to various powers (called the di-
mension of the quantity). If all powers are zero it is called
dimensionless. The seven base quantities correspond to
the seven base units of the SI-system, and all units are di-
rectly expressed – without any conversion factors. This
eliminates some causes of errors, provided only SI-base-
units are used. However, when equations contain different
prefixed SI-units (e.g., mm instead of m or g instead of
kg1), or SI-acceptable units like bar or kWh the dimen-
sional analysis does not suffice, and that is an important
aspect that will be considered. Additionally to directly
quote (BIPM 2019)

“In practice, with certain quantities, preference
is given to the use of certain special unit names

1Remember that the base-unit for mass is kg

to facilitate the distinction between different
quantities having the same dimension. ... Even
though torque has the same dimension as en-
ergy (SI unit joule), the joule is never used for
expressing torque.”

Plane angles (with unit radian "rad") and solid angles
(with unit steradian "sr") are a supplementary units in the
SI-system, and even if they are useful for human under-
standing they are formally dimensionless. Since radians
are important we follow Mattsson and Elmqvist (2008)
and the FMI-standard (see (Modelica Association 2014))
and treat them similarly as the seven base units when pos-
sible – but allow mismatches.

It has also been proposed to add new orthogonal non-
physical base quantities like currency to Modelica; the ap-
proaches in this paper support them as well.

1.2 Unit Strictness
This paper builds on the proposal from Casella (2016) for
unit checking. The basic idea is that literal values inside
multiplicative expressions are dimensionless, while literal
values on their own can have any unit. That has been
found to be a pragmatic solution that allows checking and
infering units in a large number of existing Modelica mod-
els without any changes. Consider

parameter SI.Capacitance C=2; // Ok
SI.Energy E1=C*v^2/2; // Ok
SI.Energy E2=C*v*4; // Error
SI.Voltage v;

On the first line 2 gets the desired unit, but on the next line
two 2 are dimensionless. The E2 line is rejected even if
we could find a unit for 4 that makes it correct.

Note that for this proposal the equal sign does not fully
represent equality, since replacing C by 2 in another equa-
tion leads to unit errors – or incorrect unit inference. In
particular this is an issue if the model was originally con-
structed by manually substituting expressions based on
equality.

The approaches described in this paper work with other
rules as well. Alternatives include allowing numeric liter-
als to have any unit everywhere except for 1/x see (Matts-
son and Elmqvist 2008), the same without the exception,
or only allowing the zero literal to have any dimension
see (Kennedy 1996). The future work will contain some
proposals to modify the rules, both to strengthen them for
some common cases, and weaken them for experimentally
derived equations.
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1.3 Arrays
Most arrays are homogenous, i.e., all of their elements
have the same unit. However, there are some arrays that
are heterogenous – in particular the state of the transfer-
function (each element is the derivative of the previous
one) and polar coordinates as an array of two elements
(magnitude and angle). Thus this paper will allow arrays
to be heterogenous, but try to infer the common unit if
it exists and/or infer units for specific elements (for array
elements with literal subscripts – they are seen as scalars).

One can consider variants of this, one would be to en-
force that all arrays are homogenous, and another would
be to perform all unit inference on the scalar level. Nei-
ther extreme seems acceptable, but the first approach will
be discussed more later.

Instead the solution is to view an array built as C=[A,B]
as only having a unit if it is homogenous (the implications
will be discusssed later). Similar considerations apply to
subscripted elements of arrays.

The subscripts themselves are integers and should thus
be dimensionless.

1.4 Unit for variables
The general idea is that a variable has a statically deter-
mined unit, or is free to have any unit. That may seem ob-
vious, but apart from heterogenous arrays some libraries
(Zimmer, Meißner, and Weber 2022) have variables get-
ting different units depending on an evaluable parameter.
Another case are constants such as eps – that are treated
like small literal values. Trying to deduce a unit would be
especially problematic for package constants, because the
same constant can be used in unrelated parts of a model.

For algorithms (in particular in functions) one could
imagine that one variable is re-used to store values with
different units – we will consider that an error. Other
common cases where one variable have multiple units
are s-parameterizations, where positive and negative val-
ues have different units – that can be handled by making
both cases dimensionless in the model, see (Mattsson and
Elmqvist 2008). An important consideration is that vari-
ables are free to not have a unit, this allows building blocks
that can be re-used with different units.

2 Approaches to unit inference and
checking

There are multiple approaches to unit inference and check-
ing in various programming languages, both related to the
nature of the language and to the goals of the check.

2.1 Simple unit inference and checking
In traditional imperative programming languages it is
straightforward to propagate unit forwards from variables,
so that the unit of z=x*y gets the unit of x multiplied by
the unit of y, and addition will just check that the two
terms have the same unit, and give the result that unit.

This has been implemented multiple times, see (Hilfinger
1998) for an early variant for ADA.

This propagation up-wards is insufficient in an
equation-oriented language such as Modelica. Dymola
has traditionally extended this with also propagating the
unit down-wards, i.e., if we know the units of z and x in
z=x*y we conclude the unit of y is the unit of z divided
by the unit x. The basic framework for unit checking in
Dymola is described by Mattsson and Elmqvist (2008)
including down-ward propagation. The unit-checking in
Dymola has after that paper built on that framework and
can be configured in different ways. In this paper the rules
for literals (literals have any unit, except for 1/x where 1

is dimensionless) are replaced by the stricter rules from
Casella (2016) that only allow literals to have any unit in
additive contexts so that we can for z=3*x+2 propagate
the unit from x to z. Specifically the multiplicative literal
3 is dimensionless (allowing propagating the unit), but the
additive literal 2 has any unit (avoiding a unit error).

A practical application of this can be seen in the Cou-
pledClutches example for sin1, which simplified has:

RealInput torque.tau(unit="N.m");
equation
sin1.y = sin1.offset + sin1.amplitude*sin

(2*pi*sin1.f*time);
connect(sin1.y, torque.tau);

Here we propagate “N.m” through the connection and
then down-wards to sin1.offset and sin1.amplitude

(knowing that the output of sin is dimensionless).
This approach needs to be iterated (normally just a

handful of times), and at first seems ad-hoc.
It does, however, work fairly well in practice. The ben-

efits of the approach are:

• The results are understandable, for each inferred
variable one can directly see which equation that the
unit originates from. That is useful for analyzing er-
rors for unit checking where having a clear under-
standing of how the various variables got their unit
helps in finding the error.

• For unit inference it can preserve the exact units
used; so if a variable has unit “N.m” variables that
are equal to it can also get unit “N.m” instead of
“kg.m2.s-2” or the even more confusing “J”. This
is also important when not using SI-base-units, e.g.,
“mol/l”. Apart from "N.m" being required by the
SI-standard for torque this also works together with
non-SI displayUnits (suggesting “kcal” or “kWh” as
display unit for a torque is not good).

• Simple and consistent handling of arrays variables:

– We can treat homogenous arrays as scalars, and
if we infer a unit for an array that is valid for
the entire array. Conversely, if we know that
array is heterogenous we can treat it as hav-
ing unknown unit (see (Mattsson and Elmqvist
2008)).
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– It is straightforward to limit the unit inference
to going in one direction (conditional unit as-
signments). An example where this is useful
is an equation involving array indexing. If the
entire array has one unit that should also be the
unit for the array element, but in order to sup-
port heterogenous arrays the inference cannot
go from unit of an array element to unit of the
entire array.

– It is also straightforward to handle a C=[A,B]

such that if we have a unit for C we can infer
the unit for A and B, and if A, B both have a unit
and it is the same, we can infer that C has the
same unit. It is deliberate that if only A has a
unit we do not assume that B (and C) must have
that unit as well.

– Array elements with literal indicies can be
treated as scalars.

That it works for arrays is not limited to simple cases like
adding two vectors with units, but also extends to scalar
products, cross products, and matrix multiplications.

2.2 Hindley-Milner unit inference
The Hindley-Milner (or Damas–Hindley–Milner) unit in-
ference traces it origins to the Hindley-Milner algorithm
for type inference, and is presented as Damas-Milner by
Kennedy (1996) (an alternative reference is his PhD the-
sis from the same year). It has previously been discussed
for Modelica by Broman, Aronsson, and Fritzson (2008)
and proposed by Lambert and Tidefelt (2024). We will
go through it in detail, but it basically collects all unit-
equations and in one sense solves them one by one and
then substitutes the result in the other equations (and sub-
stitutions), until all of the unit equations have been han-
dled.

The benefits of this approach are:

• Uses all of the unit information and nothing more,
i.e., it is complete and consistent.

• Known convergence and practically linear.

2.2.1 Details
The first step in this approach is to collect all of the unit
equations as equations.

Consider the model

model Elec
Real pot1(unit="V"), pot2(unit="V");
Real v, i;
Real R(unit="Ohm");

equation
v = i * R;
v = pot2 - pot1;

end Elec;

The variable pot1 is called p1 below, and similarly for
pot2. This gives the unit-equations including substitu-
tions for known units (we use u[v] for the unit of v as

a symbolic value, and reserve v.unit for the correspond-
ing string).

u[p1]→V = kg ·m2 · s−3 (1)

u[R]→ Ω =V ·A−1 = kg ·m2 · s−3 ·A−1 (2)
u[v] = u[i] ·u[R] (3)
u[v] = u[p1] (4)
u[v] = u[p2] (5)

In practice it makes sense to have all unit-equations in the
form 1 = . . . – to ensure that they are normalized, u[x] is
the unit or dimensionality of the variable x, and substi-
tutions are used for solved equations. The substitutions
are seen as solved even if they may depend on other (un-
known) units. Variables with unit-modifiers are also rep-
resented as substitutions.

Another example, which will be discussed later, is:

model SecondOrder
input Real u;
parameter Real w, D, k(unit="1")=1;
Real y(unit="1"), yd;

equation
der(yd) = w*(w*(k*u-y)-2*D*yd);
yd = der(y);

end SecondOrder;

The declaration of k gives:
u[k]→ 1 (6)

The declaration of y gives:
u[y]→ 1 (7)

The subexpression k*u-y gives:
u[y] = u[k] ·u[u] (8)

Introduce α1=w*(k*u-y) giving:
u[α1] = u[w] ·u[y] (9)

The subexpression α1-2*D*yd gives
u[α1] = u[D] ·u[yd]· (10)

The equation der(yd)=w*(α1 − . . .) gives:

u[yd] · s−1 = u[w] ·u[α1]· (11)
The equation yd=der(y) gives:

u[yd] = u[y] · s−1 (12)

Equations 8 to 11 all derive from one Modelica equation.
The variable α1 is only introduced as part of unit-checking
and may more accurately be described as only introducing
u[α1] corresponding to the unit of w*(k*u-y), but not α1
itself. Using such intermediate variables makes the con-
struction of the unit-equations more straightforward even
for complicated equations. Additionally they are needed
in the proposed combined algorithm for some cases. They
can trivially be excluded when reporting the result of the
unit inference.

One could even introduce α2 = k ·u−y replacing (8) by
u[α2] = u[y] and u[α2] = u[k] ·u[u], and for (9) use u[α1] =
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u[w] ·u[α2]. However, since u[α2] = u[y], one can use u[y]
as above.

This example will be used to illustrate that Hindley-
Milner can give additional units compared to the simple
algorithm (which cannot find the units for D and w).

If performed naively a second intermediate step (nor-
mally included in the first step) solves some issues:

• Combine exponents for the same variable, which
may even cause a variable to disappear from the unit
equation (if it appears on both sides of the equation
with equal exponents).

• To support sqrt and nthRoot the original unit-
equations may contain rational exponents for the
unit-variables, to simplify the analysis each unit-
equation is raised to a suitable power to get integer
coefficients (either for just the unit-variables or also
extended to known units).

The third step is to take these unit-equations (in any
order) and for each find a unit-variable with the exponent
that is smallest in magnitude. As listed by Kennedy (1996)
there are number of cases:

• There is no unit-variable, just check that equation is
unit-correct.

• There is only one unit-variable remaining, find its
unit and substitute its unit in the other unit-equations
and substitutions.

• There are multiple unit-variables, and the smallest
exponent is +/-1 or more generally the smallest expo-
nent divides the exponents of all other unit-variables.
In this case solve for such a unit-variable (as a
product of fixed units and a product of other unit-
variables).

• The remaining gcd-case where we introduce a new
unit-variable by dividing the other exponent as much
as possible, and forming a new unit-equation with the
remainders, and then iterate on this unit-equation un-
til we get to one of the other cases. This will conver-
gence in a finite number of steps and can be seen as
way of finding the greatest common divisor of those
exponents, see Appendix B for details.

As an alternative to the last step one could allow rational
numbers as exponents for variables, and use the penul-
timate step in all remaining cases (Lambert and Tidefelt
2024). The main disadvantage would be that it spreads
the rational numbers.

The only really difficult part of this algorithm is un-
derstanding that it actually works, and implementing the
gcd-case (or using rational numbers). Actually working
mean that the algorithm finishes and it either produces a
unit error, or the same unit inference (independent of the
order of the unit-equations) and that the results are con-
sistent. The gcd-case is the only concern for showing that

the algorithm finishes, and that relies on the convergence
of the Euclidean algorithm for computing the gcd of in-
tegers. Consistency also imply that if we add any of the
inferred units for the variables to the unit-equations and
re-run the algorithm it will produce the same result.

For the Elec-case the most efficient way would be to
solve the second equation for u[v] and then the first equa-
tion for u[i], but we will show that we can solve them in the
given order, which means that there is no need to describe
an optimal order:

substituting the known units gives
u[v] = u[i] ·Ω (13)
u[v] =V (14)

solving the first (13) for u[v] gives

u[v]→ u[i] · kg ·m2 · s−3 ·A−1 (15)
substitution this in (14) gives

1 = u[i]−1 kg ·m2 · s−3 ·A−1

kg ·m2 · s−3 = u[i]−1 ·A (16)

solving this gives
u[i]→ A (17)

substitution this in (15) gives

u[v]→ A · kg ·m2 · s−3 ·A−1 = kg ·m2 · s−3 (18)
and subsitution in the two remaining equations

u[p1]→ u[v] = kg ·m2 · s−3 (19)

u[p2]→ u[v] = kg ·m2 · s−3 (20)

And thus v.unit="kg.m2.s-3" (or v.unit="V"), and i

.unit="A". As noted above solving (14) from u[v] and
then (13) for u[i] is an alternative giving the same result.

For SecondOrder we can start by handling the trivial
cases to get:

u[k]→ 1 (21)
u[y]→ 1 (22)
u[u]→ 1 (23)

u[yd]→ s−1 (24)
u[α1]→ u[w] (25)

and the non-trivial equations (10) and (11) gives:

u[w] = u[D] · s−1 (26)

s−2 = u[w]2 (27)
the non-trivial part (26) becomes

u[w]→ u[D] · s−1 (28)
substitution in (27) and simplifying gives

1 = u[D]2 (29)
solving (29) and substituting in (28) gives

u[D]→ 1 (30)

u[w]→ s−1 (31)

Improved Unit Inference and Checking in Modelica 
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The key part is that the substitutions combine D and w into
one equation that can be solved, something that the sim-
ple algorithm cannot do. In particular the simple algo-
rithm does not have the unit equation (27) due to how the
equations are written, but would have it for the equivalent
equation der(yd)= w^2*(k*u-y)-2*w*D*yd;

If we remove the unit for y we would not infer units for
yd, u, and α1, but the inferred units for D and w would be
unchanged.

An equivalent approach is to solve integer equations
for the units (this is a traditional approach in dimensional
analysis - and also seen in this context by Karr and Love-
man III (1978), for the connection see (Kennedy 1996))
-– those integer equations correspond to taking the loga-
rithm of the unit-equations used by Hindley-Milner. It is
important to note that the equations are integer equations
and treated as such -– using the same approach for solving
systems of equations with real coefficients is not numeri-
cally robust.

For this case the left-hand side of the integer equations
are:

+1
+1

+1 −1 +1
−1 +1
+1 +1 −1

−1 +1 +1
+1 −1 1


·



log(u[k])
log(u[y])
log(u[u])
log(u[yd])
log(u[w])
log(u[α1])
log(u[D])


(32)

They have been arranged to be in block-lower-triangular
form, where the non-trivial block corresponds to solving
for a combination of variables.

3 Comparison of the approaches
We will both investigate the relationship between the two
approaches in theory, and then practically investigate it for
the Modelica Standard Library.

3.1 Theoretical considerations
If we only consider scalars then the Hindley-Milner ap-
proach can infer more units, and thus also detect more er-
rors.

There are two reasons for this:

• The combination of exponents for variables can infer
the unit of x from the unit of x*x and to all variants of
this (the simple algorithms handles x^2 and extend-
ing it to detect x*x is trivial). Disappearing variables
allows deducing the unit of T from T*der(x)=x (T
has unit “s”), and also from r*x+x (r has unit “1”);
without requiring a unit for x. Basically we for the
first case get u[T ] · u[x]s−1 = u[x], and divide both
sides by u[x] giving u[T ] = s.

• Substitution means that if we have a damping factor
D and a frequency w and the equations der(yd)= w

*(w*(k*u-y)-2*D*yd) and yd=der(y) we can find
the unit for both D and w.

The similarity between the two approaches is that by a
suitable ordering of the unit-equations we can view the
simple inference as prematurely stopping the Hindley-
Milner algorithm. Basically we stop before we get to any
of the problematic cases where we would need to substi-
tute a unit-variable depending on another unknown unit-
variable, or combine unit-exponents. This has some im-
plications consequences:

• The simple algorithm gives a consistent sub-set; not
a different result.

• By continuing with Hindley-Milner after running the
simple algorithm we clearly see which additional
unit inferences (and possible errors) it gives.

There are some caveats here:

• It is only the case for a suitable ordering, the
Hindley-Milner can process the unit-equations in any
order, and thus first find that the unit of z depends on
the unit of x, and after substituting this solve another
equation giving the unit for x.

• It is only the case if the unit-equations are created
in a suitable way, specifically to handle z=a*b+y the
simple algorithm would be stuck if we add the equa-
tions u[z] = u[a] · u[b] and u[a] · u[b] = u[y] instead
of u[z] = u[a] · u[b] and u[z] = u[y]. A solution is to
introduce a new unit-variable α1 and u[α1] = u[z],
u[α1] = u[a] · u[b], u[α1] = u[y], since it ensures that
as soon one of the three unknowns get a unit it can
be propagated to the other two (in this case we can
skip the extra variable and reuse z or y, but in gen-
eral all of them could be complicated expressions).
Hindley-Milner can handle these cases without new
variables.

• It also requires that we don’t convert known units to
base-units in Hindley-Milner during that part (in or-
der to get the benefit of the original units). In theory
this could be disastrous for performance, but in prac-
tice it does not seem problematic and if it is a prob-
lem it could be limited to units with a few factors.

• Combining arrays and Hindley-Milner causes prob-
lems. This will be discussed later.

Keeping the original units (i.e., not converting to base-
units) in the normal Hindley-Milner would be more com-
plicated due to the repeated substitutions, that problem
practically disappears due to the suitable ordering.

For unit-errors keeping the original units allows the er-
ror message to include both the original units and the re-
sult converted to base-units; where either may be more
helpful depending on the circumstances.
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Additionally, this suggest that the algorithms can be
unified, i.e., first running the part of Hindley-Milner corre-
sponding to the simple algorithm – even extended to com-
bining variables. That will automatically preserve most of
the benefits of the simple algorithm (locality and under-
standable unit strings), and then later running the complete
algorithm for the small additional gain – but restricted to
scalars.

Instead of iterating all equations for the simple algo-
rithm one could keep track of where unit-variables are
used and after updating the impacted ones for each sub-
stitution check those substitutions to check whether there
is at most one unknown unit in that equation. That ensures
that the simple algorithm is practically linear, similarly as
Hindley-Milner.

3.1.1 Array issue

Lambert and Tidefelt (2024) indicate that there are issues
for arrays by limiting it to scalars, but we want to make the
issues clear. The obvious issue is that conditional equali-
ties for arrays (for subscripting and concatenation) do not
naturally fit the unification based on equality.

However, they can be handled by introducing an un-
known array variable (in case the array occurred inside an
expression) and after substitutions check if either that ar-
ray has a unit, or the other side has homogenous units and
only then add it as an equality. It is not known whether
this will give good results when substituting unit-variables
depending on others.

There is also a worse problem that is less obvious, con-
sider T*der(x)=A*x; For scalars we can see that A.unit
="1" (regardless of the unit of x), and simply applying the
algorithm would give the same result for a matrix A. How-
ever, if we have x.unit={"m","s"} then we should have
A.unit=["1","m/s";"s/m","1"] (i.e., only the diago-
nal has unit 1). Solutions to this would be to scalarize be-
fore performing unit inference and checking, or adapting
the algorithm to handle the various kinds of array equa-
tions. In practice both variants would make the imple-
mentation considerably more complicated as one needs to
ensure that scalarization does not perform any simplifica-
tion that would impact unit inference or checking. Neither
approach has been implemented.

Note that the problem does not occur for all array ex-
pressions. E.g., if A is a scalar then the simple result is cor-
rect regardless of whether x is a scalar, vector, or matrix.
Similarly, for v1*x=v2*x or v1.*x=v2.*x we can elimi-
nate x to conclude that v1 and v2 have the same unit(s).

However, even if non-homogenous arrays exist in some
models having an option to test enforcing homogenous ar-
ray is useful — the idea would be to discover missed units,
and manually add them to the model.

3.2 Practical difference
The previous section showed that it is possible to first run
the simple algorithm, and then extend it to the Hindley-
Milner algorithm (for scalars). During these tests we

naively keep the unconditional array equations in the sec-
ond step.

This means that we can isolate the impact of the ad-
vanced parts. This has been implemented and tested on the
Modelica Standard Library (MSL, specifically on (Model-
ica Association 2025b)) and the experience was:

• The Hindley-Milner approach is actually easier to
implement and also easier to get right.

• The reason is that for the simple unit inference one
needs to implement unit-inference going both “up”
and “down”. If there are a large number of differ-
ent operations that can be substantial work, and in-
stead Hindley-Milner only needs to go “up” and col-
lect equations in a standardized form.

• The most complicated part of implementing Hindley-
Milner is the gcd-case, and that does not occur in
MSL (it is unclear if it occurs for any actual models).

• No new unit-errors were reported by the algorithm
compared to the simple algorithm (there are a num-
ber of known unit-issues in the library — even if they
are being reduced).

• Apart from squared variables, it detected new units
for variables in seven models that could not be found
by the simple algorithm; three of them were useful
– three of less practical use, and in one case the re-
sults were incorrect (due to how the model was con-
structed – it did not indicate a problem with the algo-
rithm).

There are two kinds of squared variables, one was prop-
agating a unit down for V=sqrt(re*re+im*im) for elec-
trical models. The other occurs if we keep array equations
and gives that T has unit “1” from r1=transpose(T)*T*
r2 (where r1 and r2 are positions). The latter is the only
case where naively keeping array equations made any dif-
ference. In this specific case the unit is correct (and the
derivation is even correct in general for this specific array
expression), but given that T is the orthogonal transforma-
tion matrix we even know that T T ·T = I3, and thus that
transpose(T)*T does not matter in that equation. This
indicates that at least for MSL skipping array equations in
the second part of the full algorithm has neglible impact.

The useful results were for models such as Secon-
dOrder which has der(yd)= w*(w*(k*u-y)-2*D*yd),
where we can find the unit for both D and w; even if we
cannot find either unit directly.

The ones of less practical use were UniformNoise
from the Clocked part which has y = u + noiseMin

+ (noiseMax - noiseMin)*noise; where we see that
noise.unit="1". The unit for that variable is of limited
use as it is a protected variable (so no impact on other vari-
ables and not intended for plotting), and unit="1" isn’t
useful for unit conversion.
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The one with incorrect result was the most interesting
and it is the Motor model used in the R3Robot example
where we have:

parameter Real w=4590 "Time constant of
motor";

parameter Real D=0.6 "Damping constant of
motor";

...
Modelica.Electrical.Analog.Basic.Inductor

La(L=(250/(2*D*w)))...;
Modelica.Electrical.Analog.Basic.Resistor

Ra(R=250)...;
Modelica.Electrical.Analog.Basic.Resistor

Rd2(R=100)...;
Modelica.Electrical.Analog.Basic.

Capacitor C(C=0.004*D/w)...;

Just applying the algorithm gives the conclusion that
u[D] → Ω−1 (or Siemens), and u[w] → s−1, which is
based on assuming that literal numbers have unit “1” in-
side equations (but unknown unit when they appear alone).
Since the unit is seemingly correct for w it would be tempt-
ing to consider the entire result correct. However, looking
carefully shows that 0.004=1/250, and an obvious thought
is that all three uses of 250 likely have unit Ohm. Testing
this by replacing 0.004 by 1/250 and then replacing those
three uses of 250 by a common parameter gives the result
u[D] = 1, u[w] = s−1; and a damping constant 0.6 (with
unit “1”) make perfect sense.

The SI-standard, (BIPM 2019), recommends against “s-
1” due to the ambiguity of whether it is a frequency (“Hz”)
or angular frequency (“rad/s”), numerically they differ by
a factor of 2π . However, it is not possible to resolve this
ambiguity automatically and thus the non-recommended
“s-1” is safest. Manual checking (and also the name w)
shows that it is an angulary frequency, “rad/s”. The extra
factor “rad” may seem to be unit-incorrect, but this sup-
plementary unit is dimensionless, and thus the capacitance
and inductance are unit-correct even if they do not contain
a factor “rad”.

Normally the parameter with value 250 would explic-
itly be declared as a resistance parameter, but that could
also be inferred. A pull-request has been prepared that de-
clares w and D with proper types with units, and also add
the resistance parameter; as that is a more understandable
model. Just adding the resistance parameter would still
require Hindley-Milner to infer the units for w and D.

3.3 Impact of unit inference and check

The new algorithm was tested on different libraries and the
variables were split into different categories. Variables in
common models are counted multiple times, but the spe-
cial variable time was excluded. Only models that passed
unit check were considered for the inference statistics.

Library MSL MSL
Version 4.0.0 3.2.3
Scalars 336899 329763
Declared 238268 (70.7%) 239798
Simple 9171 (2.7%) 9325
Advanced 44 (0.01%) 39
Arrays 73553 55222
Homogenous 57312 (77.9%) 38384
Heterogenous 191 (0.3%) 308
Simple 4869 (6.6%) 1035
Advanced 0 0
Elements 40 (0.05%) 55
Tot. Classes 6299 5954
Inference 1083 931
Errors 67 147
Adv. Errors 0 2

And some smaller libraries for comparison.
Library ThermoFluid- VehicleInterfaces
Version Stream 1.1.0 2.0.1
Scalars 43163 9692
Declared 33582 4287
Simple 1268 143
Advanced 0 0
Arrays 3198 10579
Homogenous 2774 8508
Heterogenous 0 0
Simple 15 712
Advanced 0 1
Elements 0 0
Tot. Classes 2156 252
Inference 106 28
Errors 40 14
Adv. Errors 0 0

The "simple" are scalar and homogenous arrays in-
ferred by the simple algorithm. The "advanced" refer to
the additional ones found by the algorithm proposed in
this paper. For MSL the "advanced" cases are the pre-
viously mentioned squared variables in electrical models,
and the seven additional cases – which are counted mul-
tiple times due to model re-use. The "elements" refer to
arrays where units of some elements are inferred by the
simple algorithm. The "declared" and "homogenous" and
"heterogenous" are variables that are declared with units.

Although counting all variables the same is oversim-
plified it still gives an indication of the impact. The per-
centages do not fully capture the advantages, e.g., the sim-
ple algorithm only inferred the unit for 6.6% of the arrays
in MSL 4.0.0, but that represents 30% of the arrays that
lacked a declared unit.

The number of arrays where elements have different
units (both declared as "heterogenous" and deduced as "el-
ements") underestimates their already small number. The
reason is that algorithm is not designed to find them, and
e.g., state-space vectors are not detected as having ele-
ments with different units.

The "tot. class" include a large number of documenta-
tion classes, interface classes (where no inference is pos-
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sible), and other classes without units and thus the classes
with unit inference is more interesting. The "errors" are
the number of classes containing errors, where a single
error may be reported for multiple classes. As the unit-
proposal is yet to be approved, the "errors" do not neces-
sarily indicate quality problems.

MSL 3.2.1 had two models with advanced errors, they
were both due to the gain k having unit "1" in the PI-block,
which is used in the Controller in the NoiseExamples.
That has later been removed in general, and did not in-
dicate any error in the tested model. Note that the number
of classes, including the classes with inferred units have
increased in the later MSL version – while the number of
errors has decreased.

4 Combined algorithm
The array issues imply that a combined algorithm would
be to run Hindley-Milner corresponding to the simple al-
gorithm (including arrays — both simple array equations
and one-sided; and without combining unit-exponents and
substituting unknown units), then combine exponents and
run the full Hindley-Milner on the remaining unit equa-
tions only involving scalar variables. We would generally
propose this as it is simple to explain and gives reasonable
results.

However, a more detailed analysis shows that also sim-
ple equations involving arrays can be kept in the second
phase, as long as one only combines exponents for scalars
and only uses substitutions with scalars in the right-hand-
side. (The reason is that if an array has a unit depending
only on the unit of scalar variables multiplied by a fixed
unit then it must be a homogenous array.) One could even
extend this from only scalars to scalars and homogenous
arrays, where operations such as sum(v), max(v), or v*u
(where u is homogenous) imply that v is homogenous.

As the practical tests only found one case with any ben-
efit from naively keeping array equations the difference
between these variants will be minor.

One can construct cases where the difference between
these algorithm matters, e.g.,

Real x;
Real v[3];
Real w[3](each unit="m");

equation
v*v=1; // Normalize
v*x=w;
...

Considering equations involving arrays is needed to find
the unit for v and x. Without any special logic for v*v,
we can solve the second equation for u[v]→ m/u[x], and
substitute that in the first equation to give u[x] → m and
thus u[v]→ 1.

5 Future Work
The most important future work for the Modelica Lan-
guage is to get an agreement on the unit rules. For tools
the important part is implementing these rules.

For libraries (not only MSL) the first part is to remove
any unit errors and in some cases incorrect units. A par-
ticular consideration is to use rational exponents consis-
tently, both in units-string (added by Modelica Associ-
ation (2025a)) and in models. For models this implies
one should use sqrt(x) instead of x^0.5 and nthRoot

(V, 3) instead of V^(1/3) (also introduced by Model-
ica Association (2025a)). Automatically handling some
common rational exponents (with diagnostics) is possible
and helpful for users, but using sqrt and nthRoot more
clearly shows the intent.

Unit handling in equations involving arrays could be
investigated further. An obvious improvement would be
to prove that some operations require homogenous input
(such as sum and cross) and view their inputs as homoge-
nous everywhere.

Combining this approach with the analysis on sub-
components for partial result as by Broman, Aronsson,
and Fritzson (2008) would be interesting. Having the pos-
sibility to store the inferred units in the model seems like
a natural possibility for the future, but it seems redundant
and if too automated it may include dubious units like “s-
1” instead of either “rad/s” or “Hz”.

5.1 Proposed Extensions
Adding a generic type for the dimensionless case to
Modelica.Units.SI would make it easy to clarify the
many cases where a variable is known to be dimension-
less (there are already a number of types for specific di-
mensionless quantities).

Having the possibility to disable unit-checking for a
specific equation, or all equations in a model has been
found useful. That basically means that no unit-equations
are added for the corresponding equations. Testing of the
Buildings 10.0.0 library, (Wetter et al. 2014), similarly re-
vealed a need to disable the the new rules for literals on
the package level.

For converting between different prefixed SI-units,
or non-SI-unit it would be beneficial to have a function
UnitConvert(a, fromUnit, toUnit, factor) that
just returns a*factor, that should be the unit-conversion
factor from one unit to another. (Also proposed by
Lambert and Tidefelt (2024)) Having a special name it
clarifies the intent of convertering between the units, and
including the units and the factor it is trivial to implement
for tools that don’t implement units – while still allowing
tools to verify that the factor is correct. The intent is
important as one cannot assume any parameter with such
a unit is a conversion – e.g., an up-hill road could have
slope of 100 mm per m.

6 Conclusions
This paper shows how to unify the simple unit-algorithm
from Mattsson and Elmqvist (2008) traditionally imple-
mented in Dymola with Hindley-Milner unit-inference. It
shows that this will give the benefits of both – preserv-
ing understandable units and locality for the large num-
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ber of simple cases – including arrays, while also getting
units for all the remaining scalar cases. The understand-
able units make it easy to input and interpret values for
variables without a declared units, including switching to
compatible units for display. Any errors will also (with
rare exceptions) be localized to specific equations, where
the units for all involved variables are easy to trace. Even
if the number of additional variables with inferred units
is small, it is still worth in terms of providing a stronger
theoretical basis – especially considering the effort.

Based on experience in Dymola it is even simpler to
implement than the complete simple unit-inference. The
algorithm has been test-implemented in Dymola 2025x
Refresh 1, and will also part of 3D Experience Platform
2026x.

It also shows that only implementing a conventional
Hindley-Milner approach would require more care, both
to get good unit strings and either not work for arrays or
require scalarization for arrays (without any clear benefit).
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A All used unit rules
• Addition, u[z] = u[x],u[y] = u[x] for z = x + y,
z = x - y, z = x .+ y, z = x .- y,
z = min(x, y), z = max(x, y), z=rem(x, y)2,
z = mod(x, y)2, and z = homotopy(x, y)2.

• Multiplication3, u[z] = u[x] · u[y] for z = x * y,
z = x .* y, and z = cross(x, y).

• Division3, u[z] = u[x]/u[y] for z = x / y, and
z = x ./ y.

• Trigonometic function, u[z] = 1,u[x] = rad for
z = sin(x), z = cos(x), and z = tan(x).

• Inverse trigonometic function, u[z] = rad,u[x] = 1 for
z = asin(x), z = acos(x), and z = atan(x).

• Differentation, u[z] = u[x]/s for z=der(x).

• Dimensionless function, u[z] = 1, u[x] = 1 for
z = log(x), z = log10(x), z = exp(x),
z = sinh(x), z = cosh(x), and z = tanh(x).

• Propagate first argument, u[z] = u[x] for z = -x,
z = skew(x), z = fill(x, . . .), z=hold(x),
z = noEvent(x), z = noClock(x), z = min(x),
z = max(x), z = abs(x), z = sample(x, . . .)

(clocked version), z = superSample(x, . . .),
z = subSample(x, . . .), z=backSample(x, . . .),
z = shiftSample(x, . . .), z = previous(x),
z = scalar(x), z = vector(x), z = matrix

(x), z = promote(x), z = transpose(x),
z = diagonal(x), z = delay(x, . . .), z = pre(

x), z = actualStream(x)2, and z = inStream(

x)2.

2Implemented after testing
3With special treatment of literals
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• Smooth, u[z] = u[y], for z = smooth(p, y).

• Reinit, u[x] = u[y] for reinit(x, y).

• Root, u[z]n = u[x] for z = nthRoot(x, n) (if we
can evaluate n) and with n = 2 for z = sqrt(x).

• Relations u[x] = u[y] for z = x > y, z = x >=

y, z = x < y, z = x <= y, z = x == y, and
z = x != y.

• Time-units, u[z] = s, for z=time, and z=interval()

• Truncated division u[z] = 1, u[x] = u[y] for
z = div(x, y)2.

• Rounding u[z] = 1, u[x] = 1 for z = floor(x)2,
z = ceil(x)2, and z = integer(x)2.

• Arctan2 u[z] = rad, u[x] = u[y] for z=atan2(x, y)2.

• Semilinear u[z] = u[m] · u[x], u[x] = u[y] for
z = semiLinear(m , x, y)2.

• Integer power, u[z] = u[x]n for z=x^n if integer ex-
pression n (and ignored unless we can evaluate n).

• Non-integer power, u[z] = 1, u[x] = 1, u[y] = 1 for
z=x^y if y is not an integer expression.

• Sample, u[x] = s, u[y] = s for sample(x, y)2 (non-
clocked version).

• Condition, u[z] = u[x], u[y] = u[x] for z=if c then
x else y if c is not an evaluated expression.

• Only propagate arrays if either side has homogenous
unit, u[z] = u[x1] = . . .= u[xn] for z = {x1, . . ., xn}

, z = [x1, . . ., xn], z=[x1; . . .; xn], and z = cat

(p, x1, . . ., xn) (ignoring p).

• Array subscripting z = x[i] if i is literal then treat
u[xi] as scalar, otherwise only propagate from ho-
mogenous u[x] to u[z],

• Special case for literals and zeros(. . .) (the latter to
handle equation a.f + b.f = zeros(3);).

• Connect-statements are handled by checking the
equations generated from the connection-sets, the de-
tails will only impact diagnostics for incorrect mod-
els.

B Gcd-case
For completeness we will present the gcd-case for the al-
gorithm, even if we haven’t seen any practical models re-
quiring this.

model GcdCase
Real x;
parameter Real y=1;
Real area(unit="m2");
parameter Real T(unit="s");

equation
der(area)=x^4*y^6;
T*area=x^4*y^(-6);

end GcdCase;

After some substitutions we get the unit-equations:

1 = u[x]4 ·u[y]6 · s
m2 (33)

1 = u[x]4 ·u[y]−6 · 1
s ·m2 (34)

for the first equation we introduce a new variable
u[z]→ u[x] ·u[y] (35)

giving (36)

1 = u[z]4 ·u[y]2 · s
m2 (37)

1 = u[z]4 ·u[y]−10 · 1
s ·m2 (38)

importantly we solve the same equation again for y

u[y]→ (m2 · s)1/2 ·u[z]−2 (39)

1 = u[z]24 · s4

m12 (40)

giving

u[z]→ s1/6

m1/2 (41)

u[y]→ s−1/6 (42)

u[x]→ m1/2 (43)

The example is as contrived as it looks, but it shows that
the case can be handled. The introduced variable has ex-
ponents corresponding to truncated integer division for all
of the other exponents, which corresponds to one step in
the normal algorithm for greatest common divisor. It stops
when the new smallest exponent divides all others, and
that exponent is the greatest common divisor (in this case
2).
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