Implicit Unit Conversion in Modelica

Henrik Tidefelt!

Quentin Lambert!

I'Wolfram MathCore, Sweden, {henrikt, glambert }@wolfram.com

Abstract

There are many situations in which a Modelica model
needs to handle quantities which are not expressed in the
often preferred unscaled SI units. Applying correct unit
conversions is extremely important in such situations, and
the risk of human error needs to be mitigated using unit-
aware technology. Considering the power of unit check-
ing mechanisms in several Modelica tools today, one can
be surprised that unit conversion in Modelica still needs to
be performed using error-prone user-written formulas and
functions. It is demonstrated how automatic and implicit
unit conversion can be introduced in Modelica, and that
this can be done safely. The benefits of this approach are
illustrated in a variety of examples and applications.

Keywords: unit checking, unit conversion, Modelica

1 Introduction

1.1 Why model with units?

Units of measurement, in this work simply referred to
as units, play an important role in the modeling domains
where Modelica is used for several reasons. An often cited
reason is that attention to units of measurement would
have avoided some spectacular engineering failures in the
past due to mixing up numbers in metric units with num-
bers in non-metric units. Another reason is that use of
units of measurement allows dimensional analysis of pro-
grams, allowing certain errors in expressions and equa-
tions to be detected during model translation. Units of
measurement also enrich the presentation of computed re-
sults, and give hints regarding the kind of quantity that
computed numbers represent. A key convenience of work-
ing with unit aware tooling is also the possibility of sepa-
rating the units used in numeric computation and storage
of results, from the units used to conveniently enter pa-
rameter values and display results.

1.2 The use of unit conversion in Modelica

If all units in the world of Modelica models were equiv-
alent to unscaled SI base units, there would be no reason
to have support for unit conversion. However, many Mod-
elica models exist in a context where also other units are
used, and in such tool chains there needs to be proper sup-
port for keeping track of and converting between units in
order to avoid the sometimes subtle but catastrophic con-
sequences of interpreting numeric values with an incorrect
understanding of the associated units. In a complex envi-

ronment where a Modelica model is interfaced with sur-
rounding systems, it is hard to imagine a better place for
performing the necessary unit conversions than inside of
the Modelica model — it would be unreasonable to expect
that all of the surrounding systems should be capable of
adapting their interfaces to a choice of units governed by
the Modelica model.

1.3 Unit conversion in Modelica today

There are two common approaches to performing unit
conversions in Modelica models today, namely unit con-
version factors (possibly embedded in gain blocks) and
unit conversion functions. The Modelica Standard Library
contains a selection of unit conversion functions as well as
examples of using gain blocks with conversion factors.

The approach of using a dedicated function for every
supported unit conversion does not scale well to the gen-
eral task of performing conversion between any pair of
conversion compatible units.

With the conversion factor approach, conversions are
often created as needed instead of being provided as a col-
lection of predefined conversions. This makes the method
of using displayuUnit = "1" aviable technique for man-
ually setting the correct value of the conversion ratio — the
correct value is 1 when expressed in the unit "1", reflect-
ing that there is no scaling in terms of value of quantity:

Real x(unit = "m");

Real y(unit = "yd");

final constant Real m_per_yd(

unit = "m/yd", displayUnit = "1")
= 0.9144;
equation

x = m_per_yd x y;

However, when a conversion factor is used in equations
like above there is a high risk that the value will rarely be
seen expressed in the display unit, making it a potential
source of error.

On the other hand, when the conversion factor is em-
bedded in a gain block, the gain block with a gain dis-
played as 1 may appear as unnecessary clutter to an un-
trained eye, or to someone who is not familiar with the
need for explicit unit conversion in Modelica. If the
displayUnit is removed, the gain block might appear
less like unnecessary clutter due to no longer displaying
a gain of 1, but at the cost of no longer making it obvious
that the block is merely performing a unit conversion, not
actually scaling the value of quantity.

DOI
10.3384/ecp21827

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

27

Implicit Unit Conversion in Modelica

1.4 State of the art

General purpose computer algebra systems with unit han-
dling tend to allow implicit unit conversion. For instance,
all of the following computer algebra systems support
adding values of quantity expressed in different units:
Wolfram Language, Maple (through the Units package),
Python (through the Pint package), Julia (through the
Unitful.jl package), and JavaScript (through the Math.js
library). Further, none of the systems allow adding, say,
a length to a numeric value. (Wolfram Language — Quan-
tity 2025; Maple — Tutorials Part 10: Units 2025; Pint
— Tutorial 2025; Unitful jl — Conversion/promotion 2025;
Math.js — Units 2025)

An interesting feature of Unitful.jl which is particularly
relevant for the current work is the Fixedunits concept.
It is a mechanism for locally taking control over the im-
plicit unit conversion by disabling it.

Likewise, in systems for causal modeling, the
widespread Simulink software offers implicit unit conver-
sion between connected blocks. There is also a block for
explicit unit conversion, but no block for getting automatic
unit conversion at a particular place in a model.(Simulink
— Converting Units 2025)

On the more formal side, Kennedy (1997) argues that
one reason for annotating programs with units of mea-
surement rather than physical dimensions is that it enables
compilers to automatically inject unit conversions.

When it comes to Modelica, unit handling is less de-
veloped, explained partly by the added complexity that
comes with not having prescribed causality of computa-
tions, but probably partly also due to the difficulties caused
by not having a syntax for attaching units to numeric lit-
erals. Early developments include Mattsson and Elmqvist
(2008) and Aronsson and Broman (2009), but to date the
only thing which has been formalized in the Modelica lan-
guage is the string syntax for expressing units. That said,
the use of display units is well established, allowing val-
ues of a variable to be displayed or entered in a different
unit than the unit used for the underlying numeric repre-
sentation. This means that existing Modelica tools already
have capabilities for unit conversion, but these capabilities
are not leveraged by the Modelica language.

Several Modelica tools implement unit checking with
unit inference, and even though implementation details
differ, there are no major controversies regarding whether
a model is using units consistently or not. It is an on-
going work to standardize unit checking in Modelica, so
that a model considered consistent by one tool will also be
considered consistent by other tools. To our knowledge,
no Modelica tool is currently supporting a non-standard
extension for allowing automatic or implicit unit conver-
sions.

1.5 Limitations

This work does not elaborate the handling of units with
offsets — typically temperature units — for which there is

a difference in the interpretation of a unit depending on
whether a value of quantity is relative or absolute. The
limitation is a matter of presentation; the unit handling
framework in which the current work has been imple-
mented also supports the distinction between relative and
absolute values of quantity, but a discussion of its design
in this regard would overshadow the cetral topic of this
work.

The unit symbols required to be recognized according
to the Modelica specification are not even sufficient to sup-
port the Modelica Standard Library — for instance, the unit
of the Pressure_bar type is the “non-standard” (that is,
not supported by the Modelica specification) "bar". In or-
der to more closely relate to real world applications with
need for unit conversion, examples in this work also make
use of non-standard units such as "1b". All of these and
many more are supported out of the box by the computer
algebra systems mentioned in subsection 1.4, and the au-
thors believe that Modelica one way or another will need
to develop in the same direction. In the meantime, there
are several ways in which a Modelica tool could provide
support for non-standard units. For example, the unit han-
dling framwork used here supports all units appearing in
the Modelica Standard Library and a conservative selec-
tion of additional well established units out of the box, and
also supports per-library customization through vendor-
specific Modelica annotations. It is a limitation of this
work that the question of how to ensure a consistent se-
lection of non-standard units across tools is not addressed,
but the proposed ideas for unit conversion would remain
relevant also with only current Modelica’s standard units
since the standard supports the use of unit prefixes (as in
"mm") as well as several unit symbols for time and volume.
For example, "L./min" is a standard Modelica unit which
might require conversion to, say, "m3/s".

2 Notation and preliminaries
2.1 Notation

Concrete units will be written in the style of their Mod-
elica string representation. For example, "m" represents
the meter, and "1" represents the unit of a dimensionless
number.

A numeric value refers to a real number without unit.
For instance, 1.5 is a numeric value. Numeric value is not
the same as dimensionless number, as the latter has a unit
of m1m,

The combination of a numeric value and a unit is de-
noted a value of quantity. (In other contexts, this may also
be referred to as a value or a quantity, but both these terms
already have conflicting established meanings in the Mod-
elica context.)

Objects with unit (values of quantity, variables, expres-
sions, etc) belong to a quantity space, which is either an
affine space or vector space. Values of quantity in affine
space are often said to be absolute, while values in vector
space are sometimes said to be relative.

28 Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp21827

Session: Modelica Tool Development in Track for General Modelica

A numeric literal is said to have empty unit.

2.2 Simple non-standard operators for unit
handling

In order to not distract from the central topic of this work
in the following sections, a few simple non-standard oper-
ators for unit handling will be taken for granted.

2.2.1 Construction of value of quantity

The non-standard expression withUnit (x, u) constructs
a value of quantity with numeric value x and unit #. The
expression x shall have empty unit.

Example:

Real x = withUnit (1.0, "m");

When withunit is used with literal operands, the ex-
pression is referred to as a unitful literal.

There are several appealing alternatives for using spe-
cial syntax instead of calling the operator by its name as
above. In this work, a unitful literal may be constructed
by providing the unit in the form of a quoted identifier fol-
lowing the numeric literal:

Real x = 1.0'm"';

2.2.2 Fixed unit conversion

The expression inUnit (v, u) is used to express the value
of quantity v in the unit u. The expression v shall not have
empty unit. The unit u shall be given by a constant ex-
pression and be conversion-compatible to the unit of v.
The inunit is an affine function of its first operand, and a
tool can inline calls early to reduce the need for symbolic
processing rules.

Example:
Real x(unit = "m") = 1.0;
Real y(unit = "yd") = inUnit (x, "yd");

This operation only uses the same sort of information
that Modelica tools need to possess in order to support
display unit conversions, with the difference that the in-
formation is needed during model translation rather than
when editing values or plotting results.

2.2.3 Extraction of numeric value

The expression withoutUnit (v, u) obtains the numeric
value of the value of quantity v expressed in the unit u.
The expression v shall not have empty unit. The unit u
shall be given by a constant expression and be conversion-
compatible to the unit of v. The returned numeric value
has empty unit.

For example, this can be used to make a unit-safe func-
tion for an empirical relation which only holds for a par-
ticular choice of units, while the function interface is free
to use a more common choice of units:

function empirical

Real u_lb =
Real y_1lb =
someEmpiricalRelationInPounds (u_1b);

end empirical;

withoutUnit (u, "1b");

3 Unit checking machinery

This section gives a very brief overview of the constraint-
based approach to unit checking which is the founda-
tion for the extended semantics proposed in this work.
It is based on ideas found in Hindley-Milner type sys-
tems.(Hindley 1969; Milner 1978) The description in this
section describes the machinery without support for im-
plicit unit conversion, currently in use in Wolfram System
Modeler for checking unit consistency in agreement with
common (still not standardized) understanding of how
units should be used in current Modelica. A more detailed
description of the machinery is outside the scope of this
work, but is available in the form of a pull request within
the Modelica Change Proposal MCP-0027 Unit checking
(currently in the state In Development).(Lambert and Tide-
felt 2024) Although currently not standardized, the unit
semantics resulting from the machinery presented in this
section will be denoted the current semantics. In subsec-
tion 6.2, it will then be shown how the machinery can be
extended to support automatic and implicit unit conver-
sion.

In addition to the unit of an expression, the machin-
ery also keeps track of the quantity space. Similar to unit
checking, there are rules for quantity space checking, and
the rules may be used for inference of quantity space.
While details of the quantity space handling are outside
the scope of this work, it should be mentioned that it is
largely independent of the handling of units. In particular,
the constraint-based approach to unit checking described
in this work is carried out without modification also when
quantity space is considered, but it must be remembered
that unit inference does not consider — and hence does
not determine — unit offsets. For vector quantity space,
unit offsets are irrelevant, and hence units inferred by unit
checking are fully accurate. For affine vector space on the
other hand, unit offsets matter, and in principle it is a re-
sponsibility of quantity space checking to determine them.
Alternatively — and this is by far the most common situa-
tion and corresponding to the limitations of this work — if
an inferred unit has zero offset and all conversion compat-
ible units also have zero offset, then knowing the quantity
space is neither needed to conclude that the correct off-
set would be zero in case of affine quantity space, nor to
perform correct unit conversion. Hence, it would be need-
lessly strict to make unknown quantity space an error in
this situation, and it can be seen that quantity space check-
ing can be safely ignored as long as units with offset are
not considered.

Unit checking is carried out by solving a set of unit

input Real u(unit = "kg"); . e .
ouEput Real y(unit = ..Eg..) _ equivalence compatibility constraints. The unknowns are
inUnit (y_1b, "kg"); a combination of unit variables associated with variables
protected in the model, and auxiliary variables introduced during the
DOI Proceedings of the 16 International Modelica&FMI Conference 29

10.3384/ecp21827

September 8-10, 2025, Lucerne, Switzerland

Implicit Unit Conversion in Modelica

process of collecting the constraints. A constraint is a rela-
tion between two unit meta-expressions, a very simple ex-
pression language with operations for multiplication, rais-
ing to a power, and differentiation.

In order to make unit inconsistency an error according
to the Modelica specification, it needs to be a tool inde-
pendent property of a model. To this end, the collection
of unit constraints takes place at an early stage of model
translation where expressions and equations still have a
close and dirrect correspondence to the original Modelica
input. (Alternative approaches to unit checking applied
at later stages of model translation might be easier to im-
plement, but be difficult to define in such a way that unit
consistency would become a tool independent property of
a model.)

The literals of the meta-expression language, denoted
meta-literals, consist of the concrete units, the empty unit,
and the undefined unit. The concrete units correspond to
well-formed Modelica unit strings. A constraint is triv-
ially satisfied if either side is empty or undefined, and the
inference will never determine a unit variable as empty or
undefined. Hence, after completed unit inference, each
unit variable will either be determined as a concrete unit
or left undetermined.

The notation var, is used for the unit variable associ-
ated with the model variable var.

4 Shift of mindset

4.1 The unit equivalence mindset

In current Modelica there is an unstated mindset based on
unit equivalence. For example, it is generally expected
that this model shall pass unit checking:

Real x(unit = "J/s");
Real y(unit = "W") = x;

That is, the unit of v ("w") does not need to be written
identically to the unit of its binding equation ("J/s").

Adding expressions with equivalent units comes down
to just adding numeric values:

Real x(unit = "J/s") = 1.0;
Real y(unit = "wW") = 2.0;
Real z = x + vy;

It suffices to assume that there is no unit inconsistency in
order to conclude that the numeric value of z is 3.0. Units
only serve as complementary information to the numeric
values, but have no impact on the computation of numeric
values. A unit for z can be determined by unit inference,
and it is not perceived as a problem that the exact form
of the unit is not uniquely defined; knowing that the in-
ferred unit for z will be equivalent to both "J/s" and "w"
is enough.

When all expressions have units, and units are used con-
sistently, mathematical field axioms are fulfilled. For ex-
ample, let

Real x(unit ="
Real y(unit ="

Real z(unit = "s
Real u(unit = "m");

Then the following properties hold:
e Commutativity: x + y=y + x
e Associativity: (x + y) + z=x + (y + z)
* Distributivity: u * (x + y) =u * x + u * y

When empty literals are present, there is a tradeoff be-
tween convenience and possibility of detecting unit incon-
sistencies. Standardization of unit checking is pointing in
the direction of avoiding the “wildcard effect” of literals
in multiplicative expressions:

// OK, 1.0 effectively has unit
Real a(unit = "s") = x + 1.0;
// Error, 1.0 effectively has unit
Real b(unit = "m.s") = u x 1.0;

IISII:

|I1ll:

Unfortunately, this means that multiplication does not dis-
tribute over addition in Modelica:

(x + 1.0); // OK

The semantics proposed in this work will preserve the
important properties of commutativity and associativity.
Likewise, distributivity will be preserved when all expres-
sions have units.

To fix the problem with general distributivity in Model-
ica will require another approach with is outside the scope
of this work, namely broad adoption of unitful literals, so
that all remaining literals written without unit can be as-
signed the unit "1". For example, u » (x + 1.0's'") =

u s+ x +ux*x 1.0"s'.
4.2 The value of quantity mindset

As long as units are used consistently, the particular
choices of units become less important, and it becomes
possible to view the relations in the model in terms of re-
lated values of quantity rather than the numeric values that
would vary with the choice of units. This mindset requires
trust in two things:

¢ Correctness of annotated as well as inferred units.

* That consumers of translated models pay proper at-
tention to units, annotated as well as inferred.

It is of particular importance that a numeric value together
with a unit of measurement is understood as just one of
infinitely many equivalent representations of the same un-
derlying value of quantity.

To establish the required trust is beyond the scope of
this work. However, recent developments in unit checking
in common Modelica tools as well as awareness of gained
quality of existing Modelica libraries thanks to unit check-
ing support in tools, is expected to build up such trust over
time.

30

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp21827

Session: Modelica Tool Development in Track for General Modelica

5 From error to automatic resolution

This section presents a sequence of models, giving a natu-
ral progression from how an equation which is erroneous
according to current semantics, eventually can be inter-
preted as valid thanks to an implicit unit conversion. De-
tails of the implicit unit conversion will be given in sec-
tion 6.

5.1 Unit inconsistency is an error

A prerequisite for this work is that inconsistent use of units
is an error.

Real x(unit = "m") = 1.0;
Real y(unit = "yd");
equation
// Prerequisite that this is an error:
X = y;

Thanks to being an error to start with, it will be possible
to define semantics without breaking backwards compati-
bility.

5.2 Explicit unit conversion

The inconsistency can be resolved using inunit for ex-
plicit unit conversion:

Real x(unit = "m") = 1.0;

Real y(unit = "yd");
equation

x = inUnit(y, "m");

5.3 Explicit automatic unit conversion

A non-standard operator named autoUnit will be used to
denote explicit automatic unit conversion. The operator is
similar to inUnit, except that the target unit of the con-
version is determined from the context.

Let e be an expression of the form autoUnit (e;), and
let unit(e) denote the unit of the expression e. Similar to
additive operators, a unit variable is conceptually intro-
duced for unit(e). No unit constraints are associated with
the autoUnit expressions, but all of the following shall
hold after completed unit inference:

* unit(e) is a concrete unit.
* unit(e) is a concrete unit.
* unit(e;) is convertible to unit(e).

After completed unit inference, autoUnit (e;) is replaced
with inUnit (e, unit(e)).

Applying autoUnit to resolve the unit inconsistency
above:

x = autoUnit (y);

5.4 TImplicit unit conversion

would otherwise result. Considering that different ways
of resolving a unit conflict using unit conversion may re-
sult in different interpretation of empty unit expressions
as values of quantity, it must be ensured that implicit unit
conversion does not cause any actual or apparent ambigu-
ity of computed values of quantity. How to ensure this is
the topic of section 6.

Now, the equation originally considered to be in error
is instead interpreted as having implicit unit conversion:

X = y;

6 Well-defined values of quantity

This section describes how the unit checking machinery
can be extended to support implicit unit conversion with-
out introducing ill or even poorly defined values of quan-
tity. In order to serve as a viable extension of current Mod-
elica, the design will meet the following criteria:

» No change of semantics for models free of unit errors
according to current semantics.

* No actual or apparent ambiguity of computed values
of quantity.

* Preserved associativity and commutativity of addi-
tion.

The first of these items is obtained by only allowing im-
plicit unit conversion where the current semantics would
have detected a unit inconsistency. Therefore, existing
Modelica programs free of unit inconsistency will remain
unaffected by the introduction of implicit unit conversion
in the language.

The last two items are related, and will be addressed in
the following.

6.1 The potential source of ambiguity

When a potential unit inconsistency is resolved using
inUnit, it is important to be aware that different choices
may lead to different interpretations of empty unit expres-
sions. Consider the following expression, without allow-
ing implicit unit conversion:

1.0'cm" + 0.5 + 1.0'm"

The expression has a unit inconsistency which can be re-
solved using unit conversion. Here, the conflict will be
resolved using inUnit. It would also be possible to use
the more convenient autoUnit, but this might have ob-
scured the fact that the problem is unrelated to the auto-
matic choice of unit.

All of the following are valid ways of resolving the unit
inconsistency:

Finally, as an alternative to explicitly introducing .
) . N K K inUnit(1.0'cm', "m") + 0.5 + 1.0'm'
autoUnit call§ to .re.solv.e unit conflicts, it only remains inUnit (1.0'cm' + 0.5, "m") + 1.0'm’
to let the tool implicitly introduce inUnit calls where a 1 o'cm' + inUnit (0.5 + 1.0'm', "cm")
unit inconsistency between conversion-compatible units 1.0'cm' + 0.5 + inUnit(1.0'm', "cm")
DOI Proceedings of the 16 International Modelica&FMI Conference 31

10.3384/ecp21827

September 8-10, 2025, Lucerne, Switzerland

Implicit Unit Conversion in Modelica

Note how the interpretation of the literal 0.5 is affected
by where inunit is applied. This demonstrates that the
explicit use of inunit (or autoUnit) gives control over
the interpretation of empty unit expressions.

This is also where the danger of implicit unit conver-
sion lies; if the inconsistency was automatically resolved
by the tool introducing inunit somewhere in the expres-
sion, the interpretation of 0.5 would seem ambiguous, es-
pecially to someone who expected addition to be commu-
tative and associative. The authors believe that even if a
unique choice of unit for 0.5 could be defined without
sacrificing commutativity and associativity, the rules for
implicit conversion would become too unintuitive to be
of practical relevance with human users in mind. Instead,
implicit unit conversion needs to be constrained so that the
interpretation of empty unit expressions remains as intu-
itive as in current Modelica.

In subsection 6.2, the rules for implicit unit conversion
will be defined so that the problematic cases above can be
rejected.

6.2 Extensions to unit checking machinery

This section describes how the unit checking machinery
from section 3 is extended to support implicit unit con-
version. The unit semantics resulting from the extended
machinery is denoted the extended semantics.

It is observed that in almost all situations where a unit
constraint is introduced according to the current seman-
tics, at least one side of the constraint corresponds to an
expression which could be wrapped in inunit (...) to re-
solve a unit inconsistency. The two exceptions are unit-
attributes and connect-equations.

The unit-attribute exception is not a problem, since
there are good reasons anyway to constrain the unit in-
ference by giving these constraints priority over all other
constraints in the sense that a unit variable is always
solved from its unit-attribute constraint in case one ex-
ists. It follows that these constraints are never resolved
using implicit unit conversion. Besides ensuring that unit
-attributes are obeyed exactly for the variable they belong
to, this also provides an important mechanism for delim-
iting the potential issues associated with allowing implicit
unit conversion.

A connect-equation constraint is an exception since
neither operand of connect is allowed to be an inuUnit
(...) expression, and this exception will be dealt with to-
wards the end of this section.

The extended semantics for the non-exceptional cases
is that unit constraints are now introduced in the form
of directed equivalence compatibility of two unit meta-
expressions. When x is required to be equivalence com-
patible to y, the direction from x to y shall indicate that x
corresponds to an expression that can be unit converted if
needed. When a unit constraint free of unit variables is
obtained during inference, it is first checked whether it is
equivalence compatible. If it is, there is no need of unit
conversion and the constraint can safely be dropped. Oth-

erwise, if it is not convertibility compatible, there is a unit
inconsistency that implicit conversion cannot resolve. In
the remaining case, implicit unit conversion is tentatively
injected on the source side of the constraint in order to
establish equivalence compatibility. After completed unit
inference, the tentatively introduced conversions are ana-
lyzed to ensure that they do not introduce ambiguous val-
ues of quantity. This analysis is denoted robustness anal-
ysis and will be described below.

Computations where all rReal expressions have units,
and the units are used consistently, have uniquely defined
values of quantity as outcome — the alternative would have
been a serious flaw of the current semantics. Similarly,
computations where all rReal expressions have empty
unit, are interpreted as operations on real numbers, and
since no units are present, there is no risk of ambiguity
due to automatic unit conversions. The risk of ambiguity
arises where the two kinds of computation meet, due to the
Modelica convention of treating an empty unit expression
as if it had a unit which fulfills a unit constraint with a
concrete unit on the other side.

In the extended semantics, units determined by the unit
inference machinery are only uniquely determined up to
convertibility. For example, a variable could end up get-
ting the unit "J" or the unit "kN.m" depending on how
the unit constraints are processed, but the ambiguity in the
unit of a variable isn’t by itself causing ambiguous val-
ues of quantity. The ambiguous values of quantity arise
when an ambiguous unit is used to interpret an empty unit
expression as a value of quantity.

Ambiguous units originate where a tentative unit con-
version is introduced, since it is generally not uniquely
defined where the conversion must be introduced. Such
a unit constraint is denoted an origin of ambiguity. The
ambiguity of the constraint gets propagated to any unit
variable solved from the constraint. If a unit variable is
found to be ambiguous, the ambiguity gets propagated to
all unit constraints where the unit variable is present. If
the variable x has a unit-attribute, then x,, does not prop-
agate ambiguity and is said to be robust by definition. If
the propagation of ambiguity back and forth between con-
straints and unit variables reaches a constraint where the
empty unit is on one side of the constraint, then an am-
biguous value of quantity has been detected, a situation
which will be denoted a robustness conflict.

Thus, robustness analysis comes down to showing that
there are no robustness conflicts. This problem is naturally
studied on the bipartite incidence graph of unit constraints
and unit variables. A constraint where one side is empty
or undefined is said to be an origin of fragility. Existence
of a robustness conflict is equivalent to existence of a path
in the graph from an origin of ambiguity to an origin of
fragility, after excluding the variables which are robust by
definition. Such a path is denoted a robustness conflict
path.

Note that the origins of ambiguity in a robustness analy-
sis graph depend on the order in which the unit constraints

32

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp21827

Session

: Modelica Tool Development in Track for General Modelica

are processed during unit inference, so other implemen-
tations are likely to produce different graphs. However,
if one implementation marks a constraint as an origin of
ambiguity, another implementation will also mark a con-
straint as origin of ambiguity within reach from the former
constraint. Hence, the existence of a robustness conflict
path will not depend on the order in which the constraints
are processed.

Returning to the exception of connect-equations, the
only difference in the handling compared to other equa-
tions is that the introduction of inUnit (...) to resolve
unit conflicts is delayed until the connection set equations
have been generated. For instance, the robustness anal-
ysis makes no difference between unit constraints com-
ing from connect-equations and unit constraints coming
from other equations; the need for implicit unit conversion
in the constraint of one connect-equation will be an ori-
gin of ambiguity, and as all the connectors in the connec-
tion set will be connected in the robustness analysis graph,
the ambiguity will reach the entire connection set. At the
time of elaborating the connection set equations, it must
be remembered that the established unit consistency of the
connect-equations is only for convertibility, not equiv-
alence. For each generated flow or potential equation a
common unit for the equation is selected among the ones
which are already present; this will ensure that no implicit
unit conversion in the connection set equation will take
place when all units are equivalent. Then all terms of the
flow or potential equation are conceptually converted to
the common unit using inUnit (...) (which will be a no-
op in case the term already has a unit which is equivalent
to the common unit).

6.3 Examples

Examples in this section will be illustrated using the fol-
lowing conventions for the display of a robustness analysis
graph:

* Constraint vertices are placed to the left, and variable
vertices to the right.

* An origin of ambiguity is colored in blue, and an ori-
gin of fragility is colored in orange. The remaining
constraint vertices have dark gray color.

* A variable which is robust by definition is colored in
light gray, while other variables have dark gray color.

 All edges incident to robust variables are colored in
light gray (they cannot be part of robustness conflict
paths). Edges reachable from an origin of ambiguity
are drawn with an arrow in the direction of increasing
distance to the origin of ambiguity. The remaining
edges are drawn with dashed line and without arrow.

With this representation, existence of a robustness con-
flict path corresponds to an orange vertex with an incom-
ing arrow. A robustness conflict path can then be recon-
structed by following the directed edges in reverse direc-
tion until a blue vertex is reached. Note that the robust-
ness analysis graphs presented below correspond to one
of many possible orders of processing the unit constraints,
but that while other implementations are likely to find
other origins of ambiguity, the existence of a robustness
conflict path does not depend on the order in which the
constraints are processed.

u3Aun‘l
. O x4
gy~ O . P
- yy
yu~r @O~ N P
e ¥Y
us ~ Uy .:: LN
IPEEEAN 37
Zy ™~ U3 .‘—/—"__j;\\
. “‘Du3

Figure 1. Robustness analysis graph without conflict path.

Consider the following simple model with explicit au-
tomatic unit conversion:
Real x(unit = "m") = 0.1;

Real y(min = 1.0'mm") = 10.0;
Real z = x + autoUnit (y);

The robustness analysis graph in Figure 1 contains ori-
gins of fragility, but no origins of ambiguity since all unit
constraints are fulfilled without implicit unit conversion.
Without any origins of ambiguity there cannot be any ro-
bustness conflict.
Now consider the same model again, but without

autoUnit:

Real x(unit = "m") = 0.1;

Real y(min = 1.0'mm") = 10.0;

Real z = x + y;

The robustness analysis graph in Figure 2 contains a ro-
bustness conflict path leading to the fragile constraint for
the binding of y.

uszu.

xy~ 3O O xy
YUNQO Yu
Uz ~yuy Zu
Zy ™~ Up uy

yu ~Y "mm"
Figure 2. Robustness analysis graph with conflict path.
By adding a uni t-attribute for y, the robustness conflict

path is cut by the removal of the node v,. Then, add the
literal 1.0 the sum:

. . Real x(unit = "m") = 0.1;
e In a constraint, empty is presented as &, and Real y(unit = "mm") = 10.0;
undefined as ?. Real z = x + 1.0 + y;
DOI Proceedings of the 16 International Modelica&FMI Conference 33

10.3384/ecp21827

September 8-10, 2025, Lucerne, Switzerland

Implicit Unit Conversion in Modelica

The robustness analysis graph in Figure 3 contains a ro-
bustness conflict path also this time.

usz ~ up

ur, ~ & O, O xy
xy~ 2O O vy
yuNQO .zu
uz ~y, @ U2
Zy ™~ U3 us
Uz ~ xy

Figure 3. Robustness analysis graph with conflict path.

Now change units so that unit conversion is not needed:

Real x(unit = "m") = 0.1;
Real y(unit = "m") = 0.01;
Real z = x + 1.0 + vy;

This is robustness analysis applied to existing Modelica
models in a nutshell; there are plenty of origins of fragility,
but no origins of ambiguity. As expected, the robustness
analysis graph in Figure 4 has no robustness conflict path.

uz ~uy @

Uy ~ I Q\\\\\\\\\ O xy
2y~ 2O \:\\\\;\\ O vy
yu~ 2O \?\::\E\’. Zy
Uz ~yy .\\;/\/’//\\:' 1753
zy ~ U3 o-- *;/*\:: =@ u3
Uy ~ xy o

Figure 4. Robustness analysis graph without conflict path.

Robustness analysis doesn’t require that all unit vari-
ables have been determined:

Real x = 2.0; // Undetermined unit
Real y = 3.0; // Undetermined unit
Real z = 1'm'" + 100'cm';

Real u = x +y * z;

As expected, the robustness analysis graph in Figure 5 has
a robustness conflict path.

Uz ~ xy
uz ~ "m" o [uy
xy~ 2O Xy
yu~ 9 @ Yu
Uz ~ yyzu Zy
Uy ~ Up up
Zy ~ U3 us
uz ~ "cm"

Figure 5. Robustness analysis graph with conflict path.

A consequence of the desire to avoid the “wildcard ef-
fect” of empty literals in current Modelica is that mul-
tiplication does not distribute over addition when empty
literals are present:

Real x(unit = "m") = 2.0;

Real y(unit = "m") = 3.0;

Real u = x x (1.0 + vy); // 6.0'm2'
Real v = x » 1.0 + x = y; // Inconsistent

Since there is a constraint which cannot be resolved us-
ing implicit unit conversion, robustness analysis is neither
needed nor applicable.

The following equation is considered consistent in units
according to current Modelica, and is therefore also con-
sidered valid with the extended semantics:

Real x(unit = "m");
equation
2.0;

X =

Note how the literal 2.0 gets its unit from the other side
of the equation. The robustness analysis graph in Figure 6
has no robustness conflict path.

xy~ 3O O %y

Figure 6. Robustness analysis graph without conflict path.

Now try to adding the same value of quantity to both
sides of the equation:

Real x(unit = "m");
equation

x + 300.0'mm"'" = 2.0 + 300.0"'mm";

Looking at the right-hand side alone, the addition of
300 millimeters has changed it from 2000 millimeters to
302 millimeters, a quite unpleasant surprise. It is reassur-
ing to see that the robustness analysis graph in Figure 7
has a robustness conflict path.

Uy ~ "mm"
uz ~ I O O xy
uz ~ "mm" up
Uz ~ U3 us
Up ~ xy

Figure 7. Robustness analysis graph with conflict path.

Consider subtracting the same literal without unit from
both sides of an equation:

n

Real x1 (unit = "m");

Real x2 (unit = "m");
equation

xl + 1 =1.0"mm";

x2 = 1.0'mm" - 1;

The solutions to the two equations are not the same, that
is, the solutions for x1 and x2 are poorly defined values of
quantity. Again, it is reassuring to see that the robustness
analysis graph in Figure 8 has two independent robustness
conflict paths.

34 Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp21827

Session: Modelica Tool Development in Track for General Modelica

Uy ~ "mm"
u, ~ O O x1y
uz ~ O O %2,
X2y ~ U3 () us
uz ~ "mm" us
Uy ~ xly

Figure 8. Robustness analysis graph with two independent con-
flict paths.

Ambiguity can spread through multiplicative con-
straints:

Real x = 1'cm'" + 1'm"';

Real vy;

Real z =y + 1.0;
equation

1.0'J" = x * y;

The robustness analysis graph — omitted due to space con-
straints — contains a robustness conflict path via y,.
Variation of the previous example:

Real x = 1'cm' + 1'm"';
Real vy;

equation
1.0'J" = x x (y + 1.0);

The robustness analysis graph in Figure 9 has a robustness
conflict path. That giving y a unit-attribute does not help
is a sign of the conservativeness of the proposed seman-
tics.

Uy ~ "m"
uz ~ 2 Q Xy
Xy ~ U2 @ Yu
Uz ~yy up
"J" e~ xy U3 us
Uy ~ "cm"

Figure 9. Robustness analysis graph with conflict path.

The trivial resolution of the conflict is to attach the in-
tended unit to the literal:

1.0'J" = x x (y + 1L.0'kN");

When units are undefined, the possibility of implicit
unit conversion must not invalidate models that are valid
according to current conventions:

function £

input Real u;
output Real y = u;

end f;

Real x(unit = "m") = 2.0;
Real y(unit = "mm") = 300.0;
Real u = y + f(x);

Real v = u + 1.0;

Intuitively, however, f (x) should have had unit "m", and
there should be a need for unit conversion resulting in an

origin of ambiguity incident to u,, which in turn would
reach the origin of fragility from u + 1.0. What actu-
ally happens is that £ (x) has undefined unit, meaning that
there is no origin of ambiguity in the model and that the
model is accepted also according to the extended seman-
tics.

Now take a model which is inconsistent according to
current Modelica:
1.0'cm'
1.0'cm’

Real u =
Real v =

+ £(2.0'm");
+u + 1.0'mm"';

The function call’s undefined unit will lead to an origin of
fragility, and the need for implicit unit conversion means
that there will be at least one origin of ambiguity in the
robustness analysis graph. Without any robust variables
in the graph, it is easy to see that a robustness conflict
path exists. This is in agreement with what would hap-
penif £(2.0'm') was inlined, so that there would be no
undefined units in the model.

While robustness analysis of equation-based models is
essential for illustrating the principles, the final example
in this section is a component-based model where implicit
conversion is needed in a connection set. Unlike some of
the nontrivial examples above, it is representative of the
simple way in which implicit conversion matters most to
applications. That is, unit-attributes are present near the
place of implicit conversion on both sides, shielding any
origins of fragility in other parts of the model from being
reachable from the origin of ambiguity:

Sources.Constant a(k (unit = "m/h") = 1);
Math.Gain b (u(unit = "mm/s"), k = 1);
equation

connect (a.y, b.u);

7 Applications

In the following, let convert be the block version of
the inUnit operator, that is, a block for explicit conver-
sion to a given unit. Similarly, let value, Numericvalue
and AutoConvert be the block versions of the withUnit,
withoutUnit and autoUnit operators.

7.1 Eliminating conversion blocks

In current Modelica, a unit conversion block can be cre-
ated by careful parameterization of a gain block:

final Gain from_MW_to_W(

u(unit = "MWw"),
y(unit = "w"),
k (unit = "W/MW", displayUnit = "1") = leb6

)i

While the use of displayUnit = "1" helps entering
and verifying that the value of k is correct for the current
choice of source and target units (compare subsection 1.3),
the setup is still error-prone and users who are not familiar
with gain blocks used to perform unit conversion could
find the use confusing.

With inUnit or autoUnit, defining a reusable unit
conversion block is straight-forward, but unnecessary

DOI
10.3384/ecp21827

Proceedings of the 16" International Modelica&FMI Conference 35
September 8-10, 2025, Lucerne, Switzerland

Implicit Unit Conversion in Modelica

when implicit unit conversion is allowed. Instead of us-
ing a unit conversion block between a source with unit
"vw" and a sink with unit "w", the source and sink may
be connected directly. While this may appear strange with
the unit equivalence mindset, it is the natural way of con-
necting the blocks with the value of quantity mindset.
Sometimes, the shift of mindset alone may be enough
to eliminate a conversion block. Here, if the sink would
have been an integrator for computing total amount of
work based on input power, the value of quantity mind-
set makes it less important whether the unit of the total
work is "w.s" or "Mw. s". For instance, a user might pre-
fer to use a display unit such as "J" or "kw.h", and then
the underlying unit will not matter for the presentation.

7.2 Working with table data

When table data is expressed in different units than what
is used in the rest of a model, there are several interesting
options based on the proposed extended semantics. As
before, the starting point is to ensure that the table compo-
nent for accessing the data has connectors with correctly
specified uni t-attributes.

By putting a convert block after a table output, it is
possible to read table data in an explicit choice of unit. In
a model made without declared units, a Numericvalue
block can be used instead of the convert block to ac-
cess the table data in the undeclared units assumed by
the model. In a model with declared units, a Convert
block will generally be redundant in view of implicit unit
conversion, but if there is a preference of unit conver-
sion to happen as close as possible to the table block, an
AutoConvert block can be used to pinpoint the transition
between the table’s units and the units used in the rest of
the model.

Similar options exist handling the need for unit conver-
sion of table inputs.

7.3 FMI import

Although the creation of an FMU wrapper model for each
imported FMU opens up the possibility of adding unit con-
version blocks in the wrapper model, the recommended
approach is to use FMU’s units in the interface of the
wrapper model. With this approach, working with FMUs
is even easier than working with table data, since the
FMI standard makes it a responsibility of the FMU import
mechanism to set up correct units in the wrapper model
interface.

7.4 Connecting with external processes

The typical way of connecting a Modelica model to an
external process is to use a library providing blocks for
reading and writing data over some process communica-
tion protocol. Again, the important part of the setup is
to ensure that the block instances for reading and writing
data have correctly configured unit-attributes. When sup-
ported by the communication protocol, the library should
verify that the units configured for the read blocks agree

with incoming data, and that the units configured for write
blocks are transmitted with the written data.

7.5 Combination with unitful literals

Consider setting a length parameter to 40 feet. In current
Modelica, it is not easy for a human looking at the source
code to see that the parameter has a simple value in the
displayUnit:

parameter Real p

(unit="m", displayUnit="ft") = 12.192;

By combining constructs proposed in this work, the in-
tent of the parameter setting can be made clear also to hu-
mans looking at the source code by writing 40" £t ' di-
rectly in the declaration equation. Further, if the preferred
unit for plotting the result is not feet, the displayUnit
can be changed independently of the unit used to set the
parameter value.

Itis observed that adding dedicated graphical user inter-
face support for this way of expressing declaration equa-
tions would provide a clean solution to the problem of
how many digits to present when display unit conversion
is lossy due to finite precision, such as in the common case
of having degrees as display unit for angles in radians.

7.6 Comparing a ratio to a threshold

Consider some variants of (attempting to) compare a ratio
to a threshold:

Real x m

1.0 ;
Real vy = 1.0'cm';
Boolean bl = x / y > 50;
Boolean b2 = inUnit(x / y, "1") > 50;
Boolean b3 = x / y > 50'1";

In the first case (b1) one gets the quite surprising result
that one meter is not more than 50 times longer than one
centimeter. The second variant is the most verbose, but
gives the desired result and does not rely on implicit con-
version. The third variant is the most compact thanks to
relying on implicit conversion.

8 Future work

It might come as a surprise that the proposed extended
semantics considers the following a robustness conflict:

Real x1 = 1.0'm" + (1.0'mm" + 1.0);

That is, not even parentheses can be used to remove am-
biguity. One idea for future work is therefore to make the
robustness analysis aware of the parentheses.

Depending on how the methods proposed here for lo-
cally taking control over the implicit unit conversions are
received, there could be reasons to explore other options as
well. This would include the FixedUnits approach taken
by Unitful.jl, but the Modelica setting also offers the pos-
sibility of specifying an annotation on the level of a class
or equation for disallowing implicit unit conversion.

The relation between evaluable variability and unit con-
version needs clarification. Here, more work is required

36

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp21827

Session

: Modelica Tool Development in Track for General Modelica

to analyze the tradeoff between complexity of interleav-
ing parameter evaluation and unit inference, and the limi-
tations that would come with more restrictive approaches
with less implementation effort.

There are currently several tool-specific mechanisms
for defining additional unit symbols beyond the ones re-
quired by the Modelica specification, but a standardization
effort is needed to make use of these units portable across
tools. Alternatively or as a complement, the need for cus-
tomization could easily be mitigated by adding many more
well established units to the Modelica specification, and
having well established units in the specification would
also reduce risk of conflicting custom definitions or mul-
tiple symbols being introduced for the same unit.

When understanding of unit checking for units without
offset in Modelica has matured, the time would be ripe for
a discussion about units with offset, that is, the topic of
quantity space checking. With quantity space checking,
it becomes possible to detect an inconsistency when com-
puting the difference between two absolute temperatures
in degree Celsius and kelvin. When combined with im-
plicit unit conversion, the inconsistency is automatically
resolved by converting one operand to the unit of the other
before carrying out the subtraction.

In the long run, it would be interesting to pursue a de-
velopment in another direction, namely to support moving
the Modelica ecosystem away from the legacy of allowing
expressions with empty unit to be interpreted as values
of quantity based on units taken from the context. This
would align unit handling in Modelica with unit handling
in other popular languages, and could eventually com-
pletely eliminate the need for the robustness analysis pre-
sented in this work. By only keeping the possibility of
interpreting empty unit expressions as values of quantity
with unit "1, the threshold comparison in subsection 7.6
could finally be correctly expressed simply as x / y >
50.

9 Summary and conclusions

It has been demonstrated how implicit unit conversion can
be safely allowed in Modelica. The crucial difference to
other languages and software for unit aware computation
is the Modelica legacy of allowing expressions without
unit to be interpreted as values of quantity based on units
taken from the context. When implicit unit conversion
is allowed, this creates a risk of interpreting such expres-
sions based on units which are not uniquely determined. A
simple and conservative condition for rejecting programs
in risk of ambiguously determined values of quantity has
been presented. The condition will allow implicit con-
version in typical situations where it is useful, as well as
never reject any Modelica program which is valid accord-
ing to current unit semantics. In addition to implicit unit
conversion, a set of basic operators for working with units
and values of quantity has been proposed. These operators
add value on their own, and can also be used to locally take

control over the implicit unit conversions.

The importance of understanding a model in terms of
related values of quantity rather than merely seeing units
attached to variables as decorative ornaments has been
stressed. Without this understanding, implicit unit con-
version in Modelica would make as little sense as it would
in any of the other languages and softwares that allow im-
plicit unit conversion today.

The usefulness of the proposed unit semantics has been
demonstrated in several real world examples of Modelica
use, and the safety of the approach has been illustrated
with numerous minimal test cases.

Acknowledgements
This work has been supported by Wolfram MathCore.

References

Aronsson, Peter and David Broman (2009-09). “Extendable
Physical Unit Checking with Understandable Error Report-
ing”. In: Proceedings of the 7th International Modelica Con-
ference, pp. 890-897. DOI: 10.3384/ecp09430027.

Hindley, J. Roger (1969). “The Principal Type-Scheme of an
Object in Combinatory Logic”. In: Transactions of the Amer-
ican Mathematical Society 146, pp. 29-60. DOI: 10.2307/
1995158.

Kennedy, Andrew J. (1997-01). “Relational Parametricity and
Units of Measure”. In: Proceedings of the 24th Annual ACM
Symposium on Principles of Programming Languages. ACM.

Lambert, Quentin and Henrik Tidefelt (2024). Applying
Hindley-Milner to unit-checking. Tech. rep. Wolfram
MathCore. URL: https : / / github . com / modelica /
ModelicaSpecification/pull/3491.

Maple — Tutorials Part 10: Units (2025). URL: https://www.
maplesoft . com / support / help / Maple / view . aspx ? path =
MaplePortal/Tutorial10 (visited on 2025-04-24).

Math.js — Units (2025). URL: https://mathjs.org/docs/datatypes/
units.html (visited on 2025-07-27).

Mattsson, Sven Erik and Hilding Elmqvist (2008-03). “Unit
Checking and Quantity Conservation”. In: Proceedings of
the 6th International Modelica Conference. Vol. 1, pp. 13—
20. URL: https : // modelica . org / events / conference2008 /
proceedings/volume_1.pdf.

Milner, Robin (1978). “A Theory of Type Polymorphism in Pro-
gramming”. In: Journal of Computer and System Sciences
17.3, pp. 348-374. port: 10.1016/0022-0000(78)90014-4.

Pint — Tutorial (2025). URL: https://pint.readthedocs.io/en/
stable/getting/tutorial.html (visited on 2025-04-24).

Simulink — Converting Units (2025). URL: https://se.mathworks.
com/help/simulink/ug/convert-units.html (visited on 2025-
04-24).

Unitful jl — Conversion/promotion (2025). URL: https : / /
painterqubits. github.io/Unitful..jl/stable/conversion/ (visited
on 2025-04-24).

Wolfram Language — Quantity (2025). URL: https://reference.
wolfram.com/language/ref/Quantity.html (visited on 2025-
04-24).

DOI
10.3384/ecp21827

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

37

https://doi.org/10.3384/ecp09430027
https://doi.org/10.2307/1995158
https://doi.org/10.2307/1995158
https://github.com/modelica/ModelicaSpecification/pull/3491
https://github.com/modelica/ModelicaSpecification/pull/3491
https://www.maplesoft.com/support/help/Maple/view.aspx?path=MaplePortal/Tutorial10
https://www.maplesoft.com/support/help/Maple/view.aspx?path=MaplePortal/Tutorial10
https://www.maplesoft.com/support/help/Maple/view.aspx?path=MaplePortal/Tutorial10
https://mathjs.org/docs/datatypes/units.html
https://mathjs.org/docs/datatypes/units.html
https://modelica.org/events/conference2008/proceedings/volume_1.pdf
https://modelica.org/events/conference2008/proceedings/volume_1.pdf
https://doi.org/10.1016/0022-0000(78)90014-4
https://pint.readthedocs.io/en/stable/getting/tutorial.html
https://pint.readthedocs.io/en/stable/getting/tutorial.html
https://se.mathworks.com/help/simulink/ug/convert-units.html
https://se.mathworks.com/help/simulink/ug/convert-units.html
https://painterqubits.github.io/Unitful.jl/stable/conversion/
https://painterqubits.github.io/Unitful.jl/stable/conversion/
https://reference.wolfram.com/language/ref/Quantity.html
https://reference.wolfram.com/language/ref/Quantity.html

	Introduction
	Why model with units?
	The use of unit conversion in Modelica
	Unit conversion in Modelica today
	State of the art
	Limitations

	Notation and preliminaries
	Notation
	Simple non-standard operators for unit handling
	Construction of value of quantity
	Fixed unit conversion
	Extraction of numeric value

	Unit checking machinery
	Shift of mindset
	The unit equivalence mindset
	The value of quantity mindset

	From error to automatic resolution
	Unit inconsistency is an error
	Explicit unit conversion
	Explicit automatic unit conversion
	Implicit unit conversion

	Well-defined values of quantity
	The potential source of ambiguity
	Extensions to unit checking machinery
	Examples

	Applications
	Eliminating conversion blocks
	Working with table data
	FMI import
	Connecting with external processes
	Combination with unitful literals
	Comparing a ratio to a threshold

	Future work
	Summary and conclusions

