
Model Disambiguation Technology in MWORKS.Sysplorer

Zhipeng Chen1 Zhichao Huang1 Chong Zhou1 Yinqi Chen1 Qi Liu1 Fanli Zhou1 Liping
Chen2

1Suzhou Tongyuan Software & Control Technology Co., Ltd., Suzhou, China , {chenzhipeng, huangzc,
zhouc, chenyq, liuq, zhoufl}@tongyuan.cc

2Huazhong University of Science and Technology, Wuhan, China , chenlp@hust.edu.cn

Abstract
Modelica models exhibit excellent cross-platform com-
patibility (they can be compiled and simulated on any
platform supporting Modelica). However, experiments
have revealed that simulation results of the same Modelica
model may vary across different platforms (under identi-
cal simulation algorithm configurations). The root cause
of such discrepancies lies in model translation uncertainty
introduced by improper modeling practices, such as insuf-
ficient initial constraints or ambiguous state variables se-
lection. Different Modelica tools may have different trans-
lation strategies. Therefore, model disambiguation should
be performed to ensure consistent simulation results. It
can be addressed by three parties: through language im-
provements, such as the proposal of relevant annotations,
by vendor tools; and by the modelers through manual in-
tervention. This paper presents a model disambiguation
technology in MWORKS.Sysplorer that enables modelers
to automatically correct model text based on translation
information, eliminating uncertainties and ensuring model
portability across Modelica platforms.
Keywords: Model Disambiguation, Cross-platform, Mod-
elica, MWORKS.Sysplorer

1 Introduction
Modelica’s declarative and object-oriented modeling ap-
proach lowers the barrier to modeling complex sys-
tems. Specialized model library vendors, research teams,
and open-source communities provide foundational model
components, which users then leverage to build their own
research objects. These foundational components often
come with default configurations, such as default start
values and state variables selection (Mattsson and Söder-
lind 1993). Modelers must adjust these settings according
to their specific application scenarios, including design-
ing necessary initial constraint equations to ensure their
Modelica model satisfies well-defined mathematical con-
straints.

Although Modelica platforms can still translate and
simulate models based on default configurations, such
models may yield different simulation results across dif-
ferent platforms. These discrepancies can arise from plat-
forms selecting different state variables or applying non-
equivalent initial constraint conditions. Additionally, most

modern Modelica platforms support nonlinear equation
tearing techniques, but implementation differences may
lead to the selection of distinct nonlinear iteration vari-
ables. When nonlinear equations have multiple solutions,
variations in the chosen iteration variables and their initial
estimates can further affect simulation outcomes.

To ensure Modelica model portability across platforms,
potential translation ambiguities must be resolved during
the modeling phase. However, most modelers have limited
knowledge of Modelica’s translation and solving theory,
making it difficult to construct ideal models. Moreover,
for complex models (e.g., those with hundreds or thou-
sands of state variables), relying on modelers to eliminate
uncertainties is neither reliable nor cost-effective.

The paper is organized as follows. Section 2 uses a se-
ries of extremely simple examples to systematically dis-
sect the sources of model translation uncertainty. Section
3 presents MWORKS.Sysplorer’s model disambiguation
technology and proposes standardized Translation annota-
tion semantics for Modelica specifications. Section 4 em-
pirically demonstrates the practical effects of model dis-
ambiguation through experimental validation.

2 Model Translation Uncertainty
Model translation uncertainty primarily stems from three
aspects: lack of initial equations, selection of state vari-
ables, and nonlinear tearing. We will provide a detailed
explanation using a series of extremely simple examples
(though lacking engineering significance) in separate sub-
sections, demonstrating how it leads to inconsistent simu-
lation results.

2.1 Lack of Initial Equations
An initial system in Modelica remains valid even with
missing but consistent equations (Pantelides 1988), as
tools automatically supplement them. Modelica speci-
fies that start values should be used to supplement initial
values. If no start value is available, default values are
applied (0 for Real and Integer types, false for Boolean
types). When selecting m equations from n candidates
with 0 < m < n, uncertainty arises. Different tools have
significant discretion in how they perform this completion,
and the underlying mechanisms they employ are generally
not the same. Vendors should report supplemental infor-
mation to alert modelers.

DOI Proceedings of the 16th International Modelica&FMI Conference 39
10.3384/ecp21839 September 8-10, 2025, Lucerne, Switzerland

RRR

2.2 Start Value Recommended Priority
As “Start Value Recommended Priority”(see §8.6.2 (Mod-
elica Association 2023)) states, the start values from mod-
els closer to the top level are considered more reliable.
However, some vendor tools may not follow this recom-
mendation for various reasons. Subsequent tool upgrades
adopted this specification-recommended strategy for se-
lecting start values, resulting in incompatibility with older
versions.

Listing 1. An example of model translation uncertainty caused
by lack of initial equations with multiple start value

model Case1
model M
Real x(start = 1);

equation
der(x) = 1;

end M;
M m;
Real y(start = 2) = m.x;

end Case1;

In Listing 1, tools adopting Modelica’s recommended
start value selection strategy will set the initial value of
x to 2. However, older versions may initialize x with 1
instead. Considering that not all modeling tools support
this feature uniformly, MWORKS.Sysplorer’s will elevate
start values to initial conditions by adding “fixed=true” at-
tributes when performing model disambiguation.

2.2.1 Lack of initial equations for state variables

Listing 2. An example of model translation uncertainty caused
by lack of initial equations for state variables

model Case2_1
Real x;
Real y;

equation
x + y = 1;
der(x) - der(y) = 0.5;

end Case2_1;

Noted that not all differential variables will be identified
as state variables. In Listing 2, both x and y are differential
variables, and they are subject to the algebraic constraint
x + y = 1. As a result, the system has only one degree
of freedom, meaning only one of them can be selected as
a state variable. The system does not provide additional
information to determine which variable x or y is the better
choice as the state variable.

Listing 3. A mathematically equivalent example to Listing 2

model Case2_2
Real x;
Real y;

equation
y + x = 1;
der(x) - der(y) = 0.5;

end Case2_2;

Changing x+y = 1 to y+x = 1 in Listing 2 yields List-
ing 3, which are mathematically equivalent, but get dif-

ferent result in Dymola 2024x trivial version. This is be-
cause Dymola selects y as the state variable in Listing 2,
while choosing x as the state variable in Listing 3. As a
result, the initial value (x,y) = (1,0) in Listing 2, while
(x,y) = (0,1) in Listing 3. The root cause is that the orig-
inal model lacks an initial condition, and the selection of
state variables affects how default conditions are supple-
mented.

Listing 4. An alias example to Listing 2

model Case2_3
Real x;
Real u;

equation
x + u = 1;
der(x) - der(u) = 0.5;

end Case2_3;

Similarly, by renaming y to u in Listing 2, we obtain
Listing 4. When simulating with MWORKS.Sysplorer, y
is selected as the state variable in Listing 2, while x be-
comes the state variable in Listing 4. The default values
of the state variables are used as the initial conditions, re-
sulting in completely different outcomes.

To eliminate this uncertainty, modelers can: (1) Assign
a start value to either x or y in Listing 2 to explicitly de-
termine the state variables selection. However, if both are
given start values, they return to an equally weighted con-
dition, providing no additional information to prioritize
one over the other. (2) Use the StateSelect attribute (see
§4.8.7.1 (Modelica Association 2023)), such as StateSe-
lect.prefer, to explicitly specify the preferred state vari-
able. But if both variables are marked with this attribute,
the ambiguity persists.

Since the fixed mechanism alone cannot reliably re-
solve such conflicts (particularly when multiple variables
carry additional constraints), Sysplorer adopts the follow-
ing strategy when performing model disambiguation: (1)
Automatically applies “fixed=true” to elevate start val-
ues to initial conditions. (2) Uses “StateSelect.always”
to enforce unambiguous state variables selection. Addi-
tional note: In cases of dynamic state variables selec-
tion, MWORKS.Sysplorer will only automatically pro-
cess a subset of differential variables with “fixed=true”
when performing model disambiguation.

2.2.2 Lack of initial equations for discrete variables

Listing 5. An example of model translation uncertainty caused
by lack of initial equations for discrete variables

model Case3
Integer x;
Integer y;

equation
when sample(0, 0.1) then

x = pre(x) + 1;
y = pre(y) + x;

end when;
initial equation
y = x + 1;

end Case3;

Model Disambiguation Technology in MWORKS.Sysplorer

40 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp21839

In Listing 5, both x and y are discrete variables with
only one initial equation provided, requiring an additional
initial condition to be supplemented. The key issue lies in
whether to set x = 0 or y = 0 as the supplemental condi-
tion. Although mathematically equivalent, when the ini-
tial equation y = x+ 1 is reformulated as x = y− 1, both
MWORKS.Sysplorer and Dymola2024x exhibit changes
in their automatically supplemented conditions. This ulti-
mately leads to inconsistent simulation results.

To eliminate this uncertainty, modelers can similarly as-
sign start values to either x or y in Listing 5, which ex-
plicitly uses the start value as the initial condition. How-
ever, when both variables have start values specified, the
system returns to an equally weighted condition where
no additional information exists to determine which start
value should take precedence as the initial condition. The
fixed attribute mechanism alone cannot reliably resolve
this conflict when both variables carry additional con-
straints. To address this, MWORKS.Sysplorer automat-
ically applies “fixed=true” to elevate the start values to
initial conditions.

2.3 Necessity of Start Values for Nonlinear
System

The uncertainty in model solving arises from the existence
of multiple solutions in nonlinear systems. Currently, the
specifications do not provide clear recommendations for
the selection of nonlinear iteration variables (i.e., nonlin-
ear tearing), which may lead to inconsistencies in nonlin-
ear tearing across different versions. Consequently, the
initial iteration values may vary, resulting in different so-
lutions or even cases where one version succeeds in find-
ing a solution while another fails.

Listing 6. An example of necessity of start values for nonlinear
system

model Case4_1
Real x;
Real y = x - 2;

equation
(x - 0.78) * (x - 1.57) * (x - 3.14) = 0;

end Case4_1;

In Listing 6, the direct simulation yields a result of 0.78.
However, when x’s start value is set near 1.5, the simula-
tion result becomes 1.57 and when x’s start value is set
near 3, the result changes to 3.14.

This demonstrates that the tool cannot autonomously
determine which solution the modeler intends to obtain,
and consequently performs iterations based on the pro-
vided start value. This observation underscores the critical
necessity of specifying start values as initial estimates for
nonlinear systems.

2.4 Nonlinear Tearing

Listing 7. An example of nonlinear iteration variables selection

model Case4_2
Real x;

Real y;
equation
x - y = 2;
(x - 0.78) * (x - 1.57) * (y - 1.14) = 0;

end Case4_2;

Listing 6 and Listing 7 are mathematically equiv-
alent, but yield different simulation results in
MWORKS.Sysplorer: x=0.78 in Listing 6 versus
x=1.57 in Listing 7. This discrepancy occurs because x is
explicitly determined as the nonlinear iteration variables
in Listing 6 while both x and y qualify as potential
nonlinear iteration variables, and MWORKS.Sysplorer
defaults to selecting y In Listing 7.

Providing a start value for x forces its selection as the
iteration variables. However, when both x and y have
start values, the system reverts to the original ambiguous
state. Nonlinear iteration variables has no StateSelect at-
tributes like state variables. So MWORKS.Sysplorer in-
novatively employs annotation markup to explicitly spec-
ify which variable should serve as the nonlinear itera-
tion variables. This annotation-based approach effectively
eliminates the ambiguity, and the entire process can be au-
tomatically handled by the model disambiguation technol-
ogy in MWORKS.Sysplorer.

2.5 More Words about Nonlinear Tearing
Note that, it is possible that some variables appear in both
the nonlinear system and the initial nonlinear system. For
instance, variable y in Listing 8 falls into this category

Listing 8. An example of nonlinear iteration variables selection

model Case5
Real x;
Real y;
Real z;

equation
der(x) = sin(time);
x^2 + y^2 = z^2;
z = x * sin(y) + y * cos(x);

initial equation
x + y + z = 1;

end Case5;

2.6 More Words about State Variables Selec-
tion

Even when the initial equations have sufficient initial con-
ditions, the selection of state variables can still introduce
uncertainty. In Listing 9, if y is chosen as the state vari-
able, then x and z form a nonlinear system. However,
if x is selected as the state variable, no nonlinearity ex-
ists. This discrepancy leads to non-negligible differences
in simulation results between platforms that choose x as
the state variable and those that select y.

Listing 9. An example of model translation uncertainty caused
by state variables selection

model Case6
Real x(start = 0);
Real y(start = 0.5);

Session: Modelica Tool Development in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 41
10.3384/ecp21839 September 8-10, 2025, Lucerne, Switzerland

Real z;
equation
der(x) + der(y) = 1;
z = sin(x)^2 + 1;
z = x + 2 * y + time;

initial equation
x = 0;

end Case6;

In Listing 9, if the “stateSelect=StateSelect.always” at-
tribute is added to x and y separately, and simulations are
performed for each case, the results are as shown in Fig-
ure 1.

Figure 1. An example of inconsistency caused by State Variable
Selection

2.7 A graphic example about State Variables
Selection

We provide a simplified circuit model (which may lack
physical significance) to demonstrate that even when us-
ing a drag-and-drop component assembly method, incon-
sistent selection of state variables can lead to divergent
simulation results.

Figure 2. A graphic example about State Variables Selection

The circuit model Figure 2 contains 9 inductors with
algebraic constraints, but only 4 of them can have their
currents (which must be linearly independent) selected as
state variables. MWORKS.Sysplorer selected L6.i, L7.i,
L8.i, and L9.i as state variables, while OpenModelica
chose L1.i, L4.i, L5.i, and L8.i. This difference in se-
lection leads to inconsistent initial conditions between the
two platforms, for instance, L1.i has an initial value of
20A in MWORKS.Sysplorer, but 0A in OpenModelica.

3 Model Disambiguation Technology
MWORKS.Sysplorer utilizes the results of the first simu-
lation to perform the following actions during model dis-
ambiguation in the second translation:

1. Add the “fixed=true” attribute to variables that were
supplemented with initial values in the report.

2. Add the “stateSelect=StateSelect.always” attribute to
state variables listed in the report.

3. Record vendor-customized annotations for nonlinear
iteration variables and initial nonlinear iteration vari-
ables, and assign them corresponding start values.

4. If the above modifications involve protected vari-
ables, vendor annotation could be used, otherwise,
they would conflict with Chapter 4.1 of (Modelica
Association 2023).

The following model Listing 10 represents the dis-
ambiguated version of all models mentioned in the
previous section. Specifically, Case2_1_protected,
Case4_2_protected, and Case5_protected correspond to
modified versions of Case2_1, Case4_2, and Case5 re-
spectively, where all model variables have been set as pro-
tected variables.

Listing 10. An example of disambiguated model

model DisambiguationModel
Case1 m1(m(x(stateSelect=StateSelect.

always,fixed=true)));
Case2_1 m2(y(stateSelect=StateSelect.

always,fixed=true));
Case2_1_protected m2_p;
Case3 m3(x(fixed=true));
Case4_1 m4(x(start=0.78));
Case4_2_protected m4_p;
Case5 m5(x(stateSelect=StateSelect.always

),y(start=0.349110989362788),z(start
=0.4190691332521359));

Case5_protected m5_p;
Case6 m6(y(stateSelect=StateSelect.always

),x(start=0));
Case7 m7(L7(i(stateSelect=StateSelect.

always,fixed=true)),L9(i(stateSelect=
StateSelect.always,fixed=true)),L6(i(
stateSelect=StateSelect.always,fixed=
true)),L8(i(stateSelect=StateSelect.
always,fixed=true)));

Model Disambiguation Technology in MWORKS.Sysplorer

42 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp21839

annotation(__MWORKS(Translation(m2_p(y(
stateSelect=StateSelect.always,fixed=
true)),m5_p(x(stateSelect=StateSelect
.always),y(start=0.349110989362788),z
(start=0.4190691332521359)),m4_p(y(
start=-0.43000000000000005)),
INonLinearVariables={m5.y, m5.z, m5_p
.y, m5_p.z},MNonLinearVariables={m4.x
, m4_p.y, m6.x, m5.y, m5_p.y})));

end DisambiguationModel;

The following are keynotes when doing model disam-
biguation:

1. If the original model is read-only, you can create a
new model that references it, then perform disam-
biguation in the new model.

2. If the model fails to solve in the first place, disam-
biguating its state becomes rather meaningless, and
the modelers need to modify the model themselves.

3. After Performing model disambiguation, modelers
can still manually fine-tune the model by editing the
text. Regardless of whether the original model is
modifiable, it is recommended to create a new model
for disambiguation to clearly track all modifications.

4. After Performing model disambiguation, providing
explicit start values will accelerate the solving of the
initial value system.

5. MWORKS.Sysplorer uses vendor-specific annota-
tions to explicitly define the selection of nonlinear
variables.

6. A variable may appear in both the nonlinear system
and the initial nonlinear system, so MNonLinear-
Variables and INonLinearVariables are used to con-
trol them separately. MNonLinearVariables means
nonlinear iteration variables during model simula-
tion, while INonLinearVariables means nonlinear it-
eration variables during Initialization.

7. Unlike Modelon (Kari 2022), which considers both
iteration variables and residual equations to resolve
ambiguity caused by nonlinear tearing, we focus
solely on iteration variables for the following rea-
sons: configuring annotation is difficult when equa-
tions aren’t at the simulation model’s top level; dif-
ferent tools process iteration and residual equations
maybe inconsistently; and our practical experience
demonstrates that restricting iteration variables alone
sufficiently eliminates model ambiguity.

8. If the modeler modifies the model after model dis-
ambiguation, causing variables in the annotations to
become invalid, a warning message must be issued.
There are two typical handling methods: directly ig-
noring the annotations or striving to satisfy the an-
notations. The tool may offer an option to let the
modeler choose the preferred approach.

9. While other platforms don’t recognize
MWORKS.Sysplorer’s vendor annotations, the
model disambiguation provides deterministic initial
values and relatively accurate compatible initial
guesses for nonlinear iterations - making it highly
probable to maintain result consistency across other
platforms.

3.1 Annotation of Translation
Since the minimal tearing problem is NP-hard (Karp
2009) (Elmqvist and Otter 1994), most simulation
platforms prioritize translation efficiency by employing
greedy or heuristic algorithms to approximate minimal
tearing. Even if vendors develop improved heuristic
strategies, concerns over version compatibility often dis-
courage modifications, hindering tool advancement.

Generally, better heuristics should facilitate nonlinear
system solving. A typical scenario where models solv-
able in the original tool fail in new tools occurs because
when initial modeling in the original tool, users would
supplement appropriate start values as nonlinear itera-
tion initial guesses if missing values caused solving fail-
ures, after switching to new tools with different tearing
strategies, some models may lack required start values
due to altered variable selection, necessitating manual re-
supplementation.

Therefore, we propose that the Modelica specification
incorporate Translation Annotations to govern nonlinear/-
linear tearing and initial-value system tearing, thereby
eliminating strategy-induced inconsistencies for model-
ers. For tool vendors, the implementation priority should
be:

1. First satisfy the tearing requirements specified in the
annotations.

2. Then prioritize variables based on start value hierar-
chy (top-level variables take precedence).

3. Finally pursue minimal tearing under equal condi-
tions.

This strategy ensures tearing consistency across all
compliant platforms when users provide comprehensive
annotation specifications. The benefits are threefold:

1. Better interoperability between different vendors’
tools.

2. Enhanced control for modelers over system solving.

3. Optimal utilization of each tool’s translation and
solving capabilities.

Ultimately, this advancement moves Modelica closer to
the ideal of "Write once, run on any Modelica tool" - sig-
nificantly improving model portability and reducing main-
tenance overhead. However, even with identical model

Session: Modelica Tool Development in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 43
10.3384/ecp21839 September 8-10, 2025, Lucerne, Switzerland

descriptions and unified nonlinear/linear tearing through
translation annotations, achieving simulation results that
differ only by rounding errors across platforms under
identical settings remains a significant challenge. Key per-
sistent discrepancies include:

1. Inconsistent precision tolerance interpretations
across platforms

2. Divergent implementations of nonlinear/linear
solvers

3. Algorithmic variations in implicit integration meth-
ods

4. Discrepancies in variable-step size adjustment strate-
gies

5. Interpolation method variations

6. Event handling policy differences

7. Integrator restart strategy implementations

While writing this paper, we observed that both Open-
Modelica (Fritzson et al. 2022) and Modelon (Kari 2022)
employ vendor-specific annotations for tearing, which ex-
hibit subtle differences not only between themselves but
also when compared with MWORKS.Sysplorer. This phe-
nomenon demonstrates that such requirements are rela-
tively common. Therefore, we hope the Modelica Associ-
ation could provide an official annotation standard to elim-
inate inconsistencies across different implementations.

4 Experimental Results
When simulating the model “LoadTestExpRecovery”
from the model library OpenIPSL-3.0.1 (Vanfretti
et al. 2016), it was found that the results from
MWORKS.Sysplorer and OpenModelica were com-
pletely inconsistent, for example, the variable “pw-
Line2.P12”. After investigation, the inconsistency was
traced to differences in nonlinear tearing. Since it was
hard to control OpenModelica’s nonlinear selection at
the modeling level, we instead used custom annotation
in MWORKS.Sysplorer to control nonlinear tearing, as
shown in the Listing 11.

Listing 11. An example of control nonlinear tearing using
Translation annotation

model LoadTestExpRecovery_Disambiguated
extends LoadTestExpRecovery;
annotation (experiment(Interval=0.03,

StartTime=0,StopTime=15), __MWORKS(
Translation(INonLinearVariables={
order3_Inputs_Outputs1.e1q,
order3_Inputs_Outputs1.vd,
order3_Inputs_Outputs1.vq,pwLine2.n.
ii,pwLine2.n.ir,pwLine2.n.vi,pwLine2.
n.vr,pwLine2.p.ii,pwLine2.p.ir,
pwLine3.n.ii,pwLine3.n.ir,pwLine3.n.

vi,pwLine3.n.vr,pwLine3.p.ii,pwLine3.
p.ir,pwLine4.n.ii,pwLine4.n.ir,
pwLine4.p.ii,pwLine4.p.ir},
MNonLinearVariables={
order3_Inputs_Outputs1.vd,
order3_Inputs_Outputs1.vq,pwLine2.n.
ii,pwLine2.n.ir,pwLine2.n.vi,pwLine2.
n.vr,pwLine2.p.ii,pwLine2.p.ir,
pwLine3.n.ii,pwLine3.n.ir,pwLine3.n.
vi,pwLine3.n.vr,pwLine3.p.ii,pwLine3.
p.ir,pwLine4.n.ii,pwLine4.n.ir,
pwLine4.p.ii,pwLine4.p.ir})));

end LoadTestExpRecovery_Disambiguated;

The final simulation results of Listing 11 are consistent
with OpenModelica, see Figure 3 below.

Figure 3. An example of inconsistency caused by State Variable
Selection

References
Elmqvist, Hilding and Martin Otter (1994). “Methods for tearing

systems of equations in object-oriented modeling”. In: Pro-
ceedings ESM. Vol. 94, pp. 1–3.

Fritzson, Peter et al. (2022). “The OpenModelica integrated en-
vironment for modeling, simulation, and model-based devel-
opment”. In: Mic.

Kari, Oskar (2022). “Improving Tearing in a Modelica Com-
piler”. In: LU-CS-EX.

Karp, Richard M (2009). “Reducibility among combinatorial
problems”. In: 50 Years of Integer Programming 1958-
2008: from the Early Years to the State-of-the-Art. Springer,
pp. 219–241.

Mattsson, Sven Erik and Gustaf Söderlind (1993). “Index reduc-
tion in differential-algebraic equations using dummy deriva-
tives”. In: SIAM Journal on Scientific Computing 14.3,
pp. 677–692.

Modelica Association (2023-03). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.6. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.6/MLS.
html.

Pantelides, Constantinos C. (1988). “The Consistent Initializa-
tion of Differential-Algebraic Systems”. In: SIAM Journal on
Scientific and Statistical Computing 9.2, pp. 213–231. DOI:
10.1137/0909014.

Vanfretti, Luigi et al. (2016). “iTesla Power Systems Library
(iPSL): A Modelica library for phasor time-domain simula-
tions”. In: SoftwareX 5, pp. 84–88.

Model Disambiguation Technology in MWORKS.Sysplorer

44 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp21839

https://specification.modelica.org/maint/3.6/MLS.html
https://specification.modelica.org/maint/3.6/MLS.html
https://doi.org/10.1137/0909014

	Introduction
	Model Translation Uncertainty
	Lack of Initial Equations
	Start Value Recommended Priority
	Lack of initial equations for state variables
	Lack of initial equations for discrete variables

	Necessity of Start Values for Nonlinear System
	Nonlinear Tearing
	More Words about Nonlinear Tearing
	More Words about State Variables Selection
	A graphic example about State Variables Selection

	Model Disambiguation Technology
	Annotation of Translation

	Experimental Results

