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Abstract

This paper presents the use of data reconciliation to im-
prove the characterization of the operating state of exper-
imental installations in an industrial context. It focuses
on the development of a data reconciliation approach us-
ing the OpenModelica prototype to study: the detection
of the defects in an experimental hydraulic test loop; and
to validate measurement data of an HVAC testing facil-
ity. Data reconciliation is shown to be effective for the
most pronounced defects intentionally introduced in the
system. Regarding the characterization of HVAC mea-
surements, data reconciliation identified two initially un-
noticed invalid experiments.
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1 Introduction

Control of measurement equipment and associated acqui-
sition chains is a key element for monitoring and diagno-
sis of industrial installations, in particular in the domain of
electricity production, where constraints related to safety
and resilience for securing the supply of energy networks
require a sound and accurate knowledge of the true operat-
ing state of the system. To that aim, several experimental
installations exist in premises of EDF Lab to improve the
characterization of uncertainties associated with the ex-
amination of the main circuits of interests by testing new
methods, using either direct measurements (via new sen-
sor technologies) or indirect measurements (via the com-
plementary use of knowledge models).

This article falls into this second category showing how
a physical simulation model combined with statistical as-
sessments can be used to:

* detect deviations from nominal operation and alert
operators of the occurrence of possible faults

e validate measurement campaigns.

In practice, the work focuses on the use of a technique
known as Data Reconciliation (DR). The aim is to obtain
an estimate of the most likely state of the system by cor-
recting the measured values on the actual installation so
that the reconciled values are consistent with the equations
governing the behaviour of the system.

While data reconciliation exists for several decades and
its application to energy systems is ruled by a German
standard (VDI 2048 2017), it is finding a renewed interest
in the nuclear field for Measurement Uncertainty Recap-
ture (MUR) and potential associated power uprates (EPRI
2020).

Dedicated tools (VALI, PROCESSPLUS, Thermal Sys-
tem Monitoring Enterprise, BILCO ...) exist to perform
data reconciliation, but they require the physical models to
be specifically developed for that purpose. They use their
own proprietary language and are sometimes restricted to
a specific domain (e.g. material processing industry). This
makes data reconciliation costly and difficult to use. A
possible answer to that problem is to apply data reconcil-
iation on existing Modelica general purpose models, de-
veloped and validated for system operation.

This is why DR has been implemented in OpenModel-
ica enabling the reuse of simulation models by automat-
ically extracting the equations that should be considered
for binding the measured variables together.

The principle and use on a simple example has been
documented in (Bouskela et al. 2021). This paper presents
first Data Reconciliation algorithm (Section 2) and then
shows its applicability on two industrial experiments: one
to control liquid flow rate measurements (Section 3) and a
second to measure air flows (Section 4).

2 Data Reconciliation Theory

Industrial processes are usually monitored with a number
of measurement equipments which can be more or less
isolated on different sections of the circuit and of differ-
ent technologies leading to differences in terms of rep-
resentativeness, accuracy and reliability. The problem is
to determine whether all these measurements, which are
necessarily subject to error, are physically and statistically
consistent with each other and whether they are a reliable
mirror of the installation.

Data reconciliation is an optimization process that al-
lows numerical correction of measurement values so that
they satisfy the physical equations of the system (the
model). If the corrections are too significant, the measure-
ments are invalidated: in that case reconciliation alerts to a
possible instrumentation defect (e.g., poor calibration or a
faulty sensor), a process defect (e.g., an unmodeled leak)
or a poor knowledge of sources of measurements uncer-
tainties (e.g., lack of correlation effects). If the measure-
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ments are validated, the reconciliation exploits the redun-
dancy of information to reduce uncertainties and obtain an
estimate as close as possible to the true state of the system.

2.1 Mathematical Foundations

Data reconciliation aims at improving the accuracy of
measurements by reducing the effect of random errors in
the data. The main difference between data reconcilia-
tion and others techniques for propagating uncertainties
such as Quadratic Combination or Monte Carlo simula-
tion (Baudin et al. 2017; EPRI 2020) is that data recon-
ciliation uses a model to express the physical constraints
on the variables of interest. The measured values of these
variables are then adjusted such that the estimates satisfy
the constraints: the variables are thus reconciled.

Let {X],...,X}} be a vector of d physical quantities
constrained by a set C of r equations or auxiliary condi-
tions derived from physical laws. These quantities must
satisfy Equation 1 to ensure consistency.

C:RI SR "
0=C(Xx")
Measurements X of X’ inevitably have uncertainties,
which are commonly modeled by a random variable X
with a multivariate Gaussian distribution characterized by
its mean vector U and its variance-covariance matrix X.
n(X) = A (%) 2)
The contradiction vector U of a given state {Xo, ..., X;} is
given by:

U=C(X) 3)

The objective of data reconciliation is to define a condi-
tional probabilistic distribution of measurements, called
the reconciled distribution, such that Equation 1 is satis-
fied by the random variable X|C(X) = 0. This reconciled
distribution is a multivariate Gaussian characterized by a
mean vector (' and a variance-covariance matrix X'

7 (X|C(X) =0) = A (1, X)) @)
(Bouskela et al. 2021) present a detailed methodology for
solving this optimization problem using Lagrange multi-
pliers as stated in (VDI 2048 2017). The optimization
problem consists in minimizing the following objective
function in order to determine the set of reconciled val-
ues u':

Ty =y —p).2 ' —-p’ 5)

The variance-covariance matrix of reconcilied values de-
rive from the general formula of uncertainty propagation:
Y = ouu E.ouu'" (6)

Relevancy of the reconciled distribution can be as-

sessed using local and global test : x2, reflecting the rel-
evancy of the estimated reconciled distribution based on

prior measurements uncertainty knowledge. The global
test involves verifying the following statistical hypothesis,
where r denotes the number of degrees of freedom and
p represents the significance level associated with the 2
distribution:

W) <22 )
The improvement vector v is defined as:
v+p =y ®)

Local tests, measurement by measurement, can help to
identify measurements with a too large improvement
pushing the most probable reconciled value to be out of
its confidence range defined by the prior measurement
knowledge as presented in Equation 9.

i — il < X4, ©)
where g, is the i’ measurement, y! is the i’ reconciled
measurement which is also the mean of the i marginal of
the reconciled distribution and A, is the confidence inter-
val width, usually taken as 1.96 corresponding to 95% of
the possible values. XV is the variance-covariance matrix
of the improvement v defined as:

Y = JyvEdyv’ (10)

2.2 Measurement Uncertainty: GUM

The measurement of physical quantity inevitably has an
uncertainty which has to be estimated. Let X! the true
value of physical quantity to measure, X; the correspond-
ing measurement with an uncertainty &;

Xi=X+¢g (11)
& is a random variable with a null mathematical expecta-
tion which can by decomposed in elementary uncertainty
sources as follows:

Si:£?+...+8{l (12)

One can follow the guide (ISO/IEC GUIDE 98-3 2008) to
establish a model of the random variable &; by proposing a
multivariate statistical distribution 7(¢;). Typically, there
are five sources of uncertainty: sensor calibration, sensor
environment impact, sensor acquisition chain, measure-
ment methodology, and repeatability uncertainties. The
first four are epistemic uncertainties, which must be de-
termined a priori, usually based on sensor provider doc-
umentation or calibration reports. The last source, if it
exists, is a stochastic uncertainty that must be evaluated
by empirical samples collected during measurement.

When the uncertainty sources are assumed to be Gaus-
sian, it is necessary to specify the variance-covariance ma-
trix of the uncertainty sources, denoted as X. Estimat-
ing the correlation is a challenging aspect that can signif-
icantly impact uncertainty propagation. In practice, with-
out empirical samples, the correlation is often assumed to
be either null or total.
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Complex measurements of quantities ¥ can be based
on several measurements of elementary quantities that are
combined with a function g.

Y =g(X) (13)
Uncertainty propagation with methods such as first-order
Taylor series expansion or Monte Carlo simulation aims
to estimate the statistical distribution of Y. In the context
of data reconciliation, estimating the multivariate distri-
bution of Y, which is assumed to be a multivariate Gaus-
sian distribution, is a crucial step that must be performed
meticulously. This includes accurately estimating the cor-
relation between the uncertainties of different measure-
ments. The construction of this multivariate distribution
can be achieved using OpenTURNS (Baudin et al. 2017),
as illustrated in Figure 1.

2.3 Data Reconciliation in OpenModelica

The main added-value of performing DR in OpenModel-
ica lies in the reuse of models initially developed for other
purposes than data validation or diagnosis.

In particular the equational nature of the Modelica lan-
guage is used to automatically extract from a complete
simulation model (i.e. a square system of equations with
the same numbers of equations than unknowns) a minimal
subset of auxiliary equations that will bind the measured
variables together (i.e. here a non-square system of equa-
tions since the redundancy of measurements is exploited
for the reconciliation).

The extraction algorithm has already been fully de-
scribed in (Bouskela et al. 2021) and is now available in
the standard release of OpenModelica.

For the sake of clarity, Figure 1 summarizes the main
steps required to perform a complete data reconciliation
process in OpenModelica. For more details and illustra-
tion on the simple example of a splitter, the user is invited
to read the documentation accessible online (OpenModel-
ica Documentation: Data Reconciliation 2021).

On Figure 1 light blue refers to steps implemented in
OpenModelica while dark blue highlights steps performed
in a third-party tool dedicated to uncertainty quantification
(in this case OpenTURNS (Baudin et al. 2017) but other
tools can be chosen). Basically, the user :

1. states the reconciliation problem by specifying
which variables should be reconciled and which
equations should be voluntary not be considered as
an auxiliary condition (typically the boundary con-
ditions). This is done by decorating the Modelica
model with dedicated annotations;

2. defines the set of measurements and quantifies their
corresponding uncertainties (potentially with the
help of a dedicated tool). The numerical informa-
tion to be reconciled can be provided in the form of
a csv file;

3. launches the DR functionality which will extract
the auxiliary conditions and computes the reconciled
data. Based on the results, a report is generated in
the form of an html file with reconciled outputs and
statistical tests.

4. analyses the validity of reconciled data with respect
to the initial assumptions.

Correct Simulation
model error model

Improve
knowledge on ‘
measurement
uncertainties ‘
Extract
=

| openModelica Bulld A priori

multivariate
Auxiliary conditions
cx) =0

Distribution law
m(X) = N(u,X)

OpEenTURNS

Report

OpPEenTURNS

Identify the
source of errors

(Validated)
Reconciled values
n(X) =N,z

closer to the true state

Figure 1. Data reconciliation workflow in OpenModelica

3 Flowrate Measurement with EVER-
EST Facility

3.1 Description of the test loop

3.1.1 Global Description

EVEREST (Thibert et al. 2019) is a closed loop facility
with a liquid flow rate regulation (Table 1). The fluid is
clean demineralized water. EVEREST consists of three
parts: a flow metering reference section, an operation sec-
tion and a modular flow metering test section ( Figure 2).
Table 1 shows the EVEREST design specifications.

The test bench provides a steady water stream with
Reynolds numbers as low as 5.10% up to 2.10°. Flow cir-
culation is provided by a variable centrifugal pump (315
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Prime features Details

Calibration test type Closed regulated loop
Flow meter reference Master meters method
Test section pipe size From DN40 up to DN350

Stainless steel
Demineralised water
From 1 up to 10 bar
From 20°C up to 40°C
From 10°C up to 35°C
From 5 m®.h~! up to 1200
m3.h!

0.2% (volume and mass
flow rate)

Pipe compositions

Fluid

Pressure range

Fluid temperature range
Environment Temperature
Flow rate range

Flow metering uncertainty

Table 1. Overview of the design specification of EVEREST

Figure 2. EVEREST test facility layout design

kW). Depending on the geometrical configuration of the
test section, the flow can range from 25 m>.h~' up to 1100
m>.h~'. Thanks to regulation systems, a steady flow rate is
maintained in the reference and the test sections. The heat
produced by the pump is absorbed by the pumped liquid
flowing in the pipes. Due to the EVEREST loop configu-
ration, this phenomenon consequently increases the fluid
temperature. To compensate this phenomenon, the water
temperature is regulated thanks to a plate heat exchanger
(215 kW). The cooling system including the fan coils unit
is located at the outside of the experimental hall. The fluid
temperature can thus be maintained at a specific value ac-
cording to the desired test conditions, generally between
20°C and 40°C. The fluid pressure is regulated at a set-
point between 1 bar up to 10 bar thanks to a pressuriser.

The EVEREST loop is designed to minimise its envi-
ronmental impact by managing efficiently its water con-
sumption. Three water storage tanks are used to fill and
empty the circuits between two test campaigns requiring
different pipe configurations.

3.1.2 Reference Flow Rate

The reference flow rate is calculated from four different
master meters based on the Coriolis technology. Two
meters are used for low flow rate calibration tests, from
50m3.h~" up to 350m3.h~!. They are installed on a
DNI100 stainless steel pipe. The other two devices oper-
ate under high flow rate calibration tests conditions, from
150m3.h~" up to 1200m3.h~'. They are installed on a

DN250 stainless steel pipe. This configuration aims at de-
creasing uncertainty over the whole loop flow rate range-
ability, so each meter is used in its nominal operative flow
rate.

For each reference line, one Coriolis meter is used as
the reference flow rate while the other is used as a “drift
detection” meter. This choice allows monitoring and de-
tecting any reference sensor drift between two consecutive
calibrations.

The EVEREST reference flow rate can be calculated
either as a volume or as a mass flow rate. The EVER-
EST test loop has been ISO17025 accredited with a vol-
ume (resp. mass) flow rate uncertainty of 0.2% from 25
m3.h! (resp. t.h™1 up to 1100 m3.h! (resp. t.h™ 1.

3.1.3 Modular Test Section

The flow metering test section is located at the end of
EVEREST (see Figure 3) and resides completely inside
the building. Devices to be tested are mounted on stainless
steel pipes, they can be invasive as well as non-invasive ac-
cording to the sensor technology. This section constitutes
an available space with a length of 25 m, a width of 5 m
and with a high ceiling of 5 m.

Figure 3. EVEREST test facility test section

This test section is designed to perform calibration tests
not only under ideal thermo-hydraulic conditions (fully
developed and swirl-free velocity profile thanks to a long
straight pipes at the upstream of the tested meter) but also
calibration tests under non-ideal thermo-hydraulic condi-
tions due to the presence of various fittings located up-
stream or downstream of the tested meter.

Summerizing, the test section of the loop allows the re-
creation of numerous process pipe geometries or to install
a reduced scale mock-up of typical industrial components
for metrological purposes. This flexibility is a key feature
of the loop as it allows EDF R&D to investigate the impact
on the accuracy of flowmeters installed in real industrial
conditions.

3.2 Detection of Defects

As described in §3.1, the EVEREST test loop is a rep-
resentative and reliable experimental test facility. There-
fore, it is an interesting use case for Data Reconciliation
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in order to improve the reliability of the facility’s state es-
timation. Indeed, the test loop being modular, deliberately
machined defects can be introduced into the system to im-
pact its behaviour. The defects are introduced upstream
the mass flow rate measurement and are shown in Fig-
ure 4. They are representative of what could be found in
thermal hydraulic installations, such as weld bead defects
(trapezoidal or rectangular) or changes in diameter at the
junction of two pipes (referred to as step defects). Those
defects have more or less impact on the flow and are sorted
by order of impact in Figure 4, with the one having no de-
fect showing no impact, and the change in diameter having
the greatest impact on the flow. Thus, the goal is to deter-
mine whether data reconciliation will allow the detection
of these defects.

1
350 !
I »
mm
]
1

Figure 4. Diagram of the different defects introduced in the
EVEREST test loop: no defect, trapezoidal weld bead defect,
rectangular weld bead defect, change of diameter (also refered
as step defect) sorted by order of impact from the one having the
less impact (no defect added), to the one having the more impact
on the flow (step defect).

A data reconciliation approach using the OpenModel-
ica prototype is thus developed to study the detection of
these defects thanks to an experimental test campaign on
the loop. This workflow is inspired from (EPRI 2020).
First a Modelica model of the facility is developed using
manufacturer’s data of the different equipment and cali-
brated by inversion of n parameters based on n historical
measurements from the facility. Initial tests of data recon-
ciliation are run to make sure that the data reconciliation
problem is well-posed. Those first steps ensure a good
numerical representativity of the installation and that the

data reconciliation problem is well-posed. Once the initial
phase completed, test campaigns are conducted, both with
and without defects, to allow comparison with a control
test. The data reconciliation algorithm is run and chal-
lenges the prior uncertainties with the posterior results. If
the results are significantly different (in the sense of a x>
test as described in §2.1), it can be concluded that an in-
consistency has been detected: either the model is incor-
rect or the measurements are false.

A readily available ThermoSysPro (El Hefni and
Bouskela 2019) model of EVEREST test loop shown Fig-
ure 5 was adopted and calibrated. Test campaigns are then

,/ L -G =4

|

//

Figure 5. ThermoSysPro model of the EVEREST test loop
with the different measurements used (Pressure, Temperature
and MassFlowRate).

conducted, starting with a characterisation test, followed
by one defect at a time. For each test campaign (each
defect), different thermal hydraulic conditions are tested
(variation of mass flow rates) both with and without the
defect. A test campaign for one defect thus consists of
105 measurement sets (with and without the defect). Ef-
fectiveness of defect detection with data reconciliation can
be evaluated in many ways. For instance, the global and
local tests for data reconciliation can be used in order to
identify if a test is detected as faulty by comparing it to
a threshold A as described by Equation 9. If so, the con-
fusion matrix for such a case can be written as shown in
Table 2. For industrial use case defect detection, it is de-
sirable to have as few False Positive (FP) as possible.

Confusion Test with a defect Test with no defect
matrix
Detected True Positive (TP) False Positive (FP)
with a False alarm
defect
Detected False Negative (FN) | True Negative (TN)
with no No detection
defect

Table 2. Confusion matrix for defect detection

With numerous measurements to evaluate the effective-
ness of defect detection using data reconciliation, new in-
dicators can be computed. Sensitivity and Specificity are
defined. Sensitivity (or true positive rate) is the proba-
bility of detecting a defect for a test containing a defect
(Equation 14). Specificity (or true negative rate) is the
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probability of not detecting any defect for a test that does
not contain any (Equation 15). In a perfect scenario, Sen-
sitivity and Specificity should be equal to 1 as all defects
would be detected and no false alarms would appear.

TP

Sensitivity = ——— 14

ensitivity TPLFN (14)
TN

Specificity = ——— 15

pecificity TNLFP (15)

For each test campaign, the data reconciliation algo-
rithm is applied to each measurement set. As the result of
the Sensitivity and Specificity for each set depends on the
threshold A, it is plotted with respect to A. Starting with
the defect having the greatest impact on the flow, Figure 6
shows the Sensitivity and Specificity against the threshold
for the step defect. It can be seen that with the default
value of A = 1.96, this defect can be detected perfectly as

Sensitivity and Specificity are equal to 1.

Sensitivity and Specificity for
Step defect

1.0

0.8 1

0.6

Rate

0.4 4

0.2+

0.0 1

1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
i
2.

T T T T T T T
0.0 0.5 1.0 1.5 0 25 3.0

Threshold A

—— Sensitivity -==- A=1.96

Specificity

Figure 6. Sensitivity and Specificity against threshold A for the
Step defect. The defect can be detected perfectly with Age raui =
1.96 as Sensitivity and Specificity are equal to 1.

However, the default value of A does not always lead
to a perfect diagnosis. Indeed as shown on Figure 7, the
rectangular weld bead defect can be detected perfectly, but
not with A4, faulr = 1.96. Indeed with this default value,
the Sensitivity is equal to 0.35. A should be in the interval
[1.05;1.35] so that the diagnosis is perfect. This difference
has an impact on the diagnosis as more False Negatives
would have been found.

Finally, for the trapezoidal weld bead defect, which has
the smallest impact on the flow, it is seen on Figure 8 that
the defect can not be perfectly detected as no range of
threshold A gives a Sensitivity and Specificity equal to 1.
However the threshold could be reduced so that the Speci-
ficity is still high, but that some True Positives have been
found.

Thus, data reconciliation can detect defects that were
intentionally introduced in the system. On the most pro-
nounced defects as the step defect, the impact is such that
global and local tests fail with the default threshold value

Sensitivity and Specificity for
Rectangular weld bead defect

1.0

0.8 1

0.6 4

Rate

0.4 4

0.2

0.0 1

1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
J
1
1
1
1
1
]
1
i
2.

T T T T T T T
0.0 0.5 1.0 15 0 25 3.0

Threshold A
—— Sensitivity -

A =196
Specificity

Figure 7. Sensitivity and Specificity against threshold A for the
Rectangular Weld Bead defect. The defect can be detected per-
fectly, but not with A4, 4 = 1.96, but with 4 € [1.05;1.35].

Sensitivity and Specificity for
Trapezoidal weld bead defect

1.0

0.8 1

0.6 1

0.4 4

0.2 4

0.0 1

Rate

N b e

T T T T T T
0.0 0.5 1.0 15 .0 2.5 3.0

Threshold A
—— Sensitivity -==- A=1.96
Specificity —=—- Al|Specificity ~ 1

Figure 8. Sensitivity and Specificity against threshold A for the
Trapezoidal Weld Bead defect. The defect can not be detected
perfectly.

of Agefaurr = 1.96. However with less serious defects,
ldefau,, is not always appropriate. The optimal threshold
lgp,,-mal, depends on the defect that is studied and should
be fixed to a value minimising the number of false alarms.

4 ZEPHYR Facility for Testing HVAC
Cooling Coil with Latent Exchanges

4.1 In search for good measurement data

The modular test facility ZEPHYR provides air at a pre-
cise flow and temperature. On hot days, the air is cooled
by a heat exchanger and under humid conditions, conden-
sation can occur. To predict the performance of this heat
exchanger at very high temperature and humidity, a vali-
dated simulation model is needed. While several theoret-
ical models are available, all of them need "good" input
data to calibrate their parameters. Therefore, an experi-
mental test campaign on the cooling coil of the main Air
Handling Unit of ZEPHYR and illustrated on Figure 9,
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—
B ]

.1
instrumented

Droplet Cooling coil

separator

Figure 9. Instrumented cooling coil of Air Handling Unit of
ZEPHYR laboratory

was developped to create a set of validated measurement
data.

4.2 Experimental campaign

Sensors were installed on the (cool) water side and the
(hot) air side of the heat exchanger. On the water side,
input and output temperatures as well as the flow are mea-
sured. Air measurements at the inlet include temperature
and humidity, and at the outlet, temperature and flow. For
latent heat, the quantity of condensate is measured. Addi-
tionally, the uncertainty of each calibrated sensor has been
determined, primarily from data sheets and measured data
points. The uncertainty distribution of each sensor can be
considered Gaussian. The outlet temperature at one point
can be considered representative, because the uniformity
of the outlet air temperature was confirmed using an opti-
cal fiber installation with approximately 60 measurement
points evenly distributed across the entire cross-section.

Over fifteen steady-state experiments were conducted
over two days, with varying flows and inlet temperatures
(coolant and air). One of these experimental data points is
shown in Table 3.

Label Description Value| o Units
Ow Coolant flow 791 | 0.09 | kg/s
AT, Coolant temperature 1.62 | 0.03 °C
difference
Q. Air flow 5.82 | 0.09 | kg/s
T.i Inlet air temperature 29.0 | 0.30 °C
T Outlet air temperature 20.0 | 0.47 °C
RH,; | Inlet air relative humidity | 42.9 1.5 %
QOc Condensate flow 1.62 | 0.03 | kg/h

Table 3. Example of sensor data : values and uncertainty (k=1)

It can be observed that the uncertainty on the air side

is higher than on the coolant side. One reason for this
is that the inlet air was taken from outside the building,
causing the temperature and humidity to change gradually
throughout the day.

While the amount of condensate at the exit can be mea-
sured precisely, the phenomena related to condensation on
the plates inside the heat exchanger are complex. Discrep-
ancies, such as the transport time and the thickness of the
condensate layer, may lead to invalid experimental data.
The idea was to apply data reconciliation to eliminate
these invalid experiments and simultaneously improve the
accuracy of the measurement set. Since this set contained
some level of redundancy, data reconciliation based on ba-
sic conservation laws was possible.

4.3 Driving equations

The purpose of this paragraph is to model the thermal ex-
changes inside an HVAC exchanger that cools humid air
coming from outside, as illustrated in Figure 10. The air
temperature inside the exchanger can drop below the dew
point, caused by the relatively cold surface temperature
of the coils, and produce condensation. The main energy
balance equations are :

Pw = Qw(hwi - hwa)
Pa = Qaihai - Qchc - anhao
0=P,+P,
Qai = an + Qc

(16)

where h denotes the fluid enthalpy, QO the massflowrate
and P the thermal power exchanged between the two flu-
ids within the exchanger. The subscript , denotes air, ,,
denotes water, . denotes condensate, ; denotes inlet, and
o denotes outlet. Psychrometric charts of humid air are

Air Flow
> >
Tm' Tao
RH, ai RH, ao

Figure 10. Scheme of the studied HVAC cooling coil with latent
exchanges

typically used to visualize the thermodynamic processes
occurring within the HVAC cooling coil, as shown in Fig-
ure 11.

DOI
10.3384/ecp21845

Proceedings of the 16 International Modelica&FMI Conference 51
September 8-10, 2025, Lucerne, Switzerland



Data Reconciliation for Industrial Experiments

0030

0025

0020

0015

Humidity Ratio W (kg/kg)

0010

0005

0000

Dry bulb temperature T (* C)

Figure 11. Typical thermodynamic process within an HVAC
cooling coil

4.4 Data Reconciliation

Using the conservation equations Equation 16 and the ex-
perimental measurements listed in Table 3, it becomes ev-
ident that one measurement is redundant and can be de-
duced from the others. The enthalpy of the humid air and
water, assuming the total pressure is equal to atmospheric
pressure, is computed using 7 and RH for air, and T
for water, utilizing the media package of the Modelica
Standard Library as declared below:

Listing 1. HVAC Modelica media

replaceable package MediumAir = Modelica.
Media.Air.MoistAir;
replaceable package MediumWater = Modelica.

Media.Water.StandardWater;

Condensate rate is computed from the other measure-
ments, solving a non linear system to respect mass and
energy balances involving condensate rate. Measurements
are declared as presented in Listing 2

Listing 2. Declare measurment for data reconciliation

/*Measurementx/
Modelica.SIunits.MassFlowRate Qa_mes (
uncertain=Uncertainty.refine, start=1)
"Air flowrate [kg/s]";
Modelica.SIunits.MassFlowRate Qe_mes (
uncertain=Uncertainty.refine) "water
flowrate [kg/s]";
Modelica.SIunits.Temperature Tai_mes (
uncertain=Uncertainty.refine) "air
inlet temperature [K]";
Modelica.SIunits.Temperature Tao_mes (
uncertain=Uncertainty.refine) "air
outlet temperature [K]";
Modelica.SIunits.Temperature Twi_mes (
uncertain=Uncertainty.refine) "water
inlet temperature [K]";
Modelica.SIunits.TemperatureDifference
DeltaTw_mes (uncertain=Uncertainty.
refine) "water temperature rise [K]";
Real RH_ai_mes (uncertain=Uncertainty.refine
) "air inlet relative humidity [-]";

Modelica.SIunits.MassFlowRate Q_c (uncertain
=Uncertainty.refine) "condensate rate [
kg/sl";

In this case, the number of obtained auxiliary conditions
r is equal to one. The results of the data reconciliation
for two typical experiments are presented on Figure 12
produced by interfacing OpenModelica data reconcili-
ation with an OpenTURNS (Baudin et al. 2017) https:
//openturns.github.io/ module as illustrated in
Listing 3.

Listing 3. Perform data reconciliation with OpenTURNS and

OpenModelica

I covarianceMatrix =
.getCovariance ()

priorMeasurements =
priorDistribution.getMean ()

dataR = otDataR.DataReconciliationOM
(modelName, VarNames,
priorMeasurements,
covarianceMatrix,
simuMatPath)

v dataR.reconcileData()

s reconciledDistribution = dataR.

getPosteriorDistribution ()

priorDistribution

S}

casePath,

For the first experiment, the data is considered consis-
tent, the result of the local being positive, which is qual-
itatively in agreement with the prior and posterior Gaus-
sian distribution of the measurements. For the second ex-
periment depicted on Figure 12, the prior and posterior
distribution are clearly inconsistent. One can notice that
the results of the data reconciliation process indicate that
the air temperature measurement may be potentially in-
correct, while the condensate rate measurement shows lit-
tle variation between the prior and posterior distributions.
This result is strongly driven by the specified prior distri-
bution. The condensate rate measurement, relying on the
mass of the condensate collected over a period, is speci-
fied as a measurement with a very low prior uncertainty
while some uncertainty sources can have been misidenti-
fied due to the complex condensation phenomena occur-
ring within the exchanger. It underlines that output of data
reconciliation process has to be carefully analysed to iden-
tify correctly defectuous sensors in case of measurements
set declared as non consistent.

Measurement with uncertainty before and after recon-
ciliation are illustrated in Figure 13 and Figure 14. It can
be observed that experiment number 8 leads to inconsis-
tent measurement after data reconciliation, as the cooling
coil outlet state is above the saturation curve. Therefore,
this experiment has been discarded.

5 Conclusions and future work

The implementation of data reconciliation with Open-
Modelica has been successfully tested on two industrial
experimental installations. For the EVEREST test loop
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(b) False local test for some measurements

Figure 12. Example of reconciled data leading to: improve out-
let air temperature measurement (a) - inconsistent measurements

(b).
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Figure 13. Measurements with uncertainty before and after data
reconciliation for experiment number 8

aiming at controlling measurements of liquid flow rates,
some defects were intentionally introduced and data rec-
onciliation detected efficiently the most pronounced de-
fects. The detection threshold A should however be care-
fully chosen as it has a great impact on the detection
results: for less serious defects such as the trapezoidal
weld bead defect, the detection is not perfect and False
alarms/No detection signals will be returned. Further
work could be to integrate data reconciliation as a mon-
itoring tool to study sensor drift of the facility in addition
to other defect detection methods like comparing a mea-
surement set to a validated reference characterisation test
campaign to observe the relative difference through time.

Data reconciliation on the HVAC application for mea-
suring air flows not only improved the accuracy and un-
certainty of the measurements but it also identified two
initially unnoticed invalid experiments. This high confi-
dence reconciled data set, contains thus "good" measure-
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Figure 14. Measurements with uncertainty before and after data
reconciliation for experiment number 2

ments that can be used as inputs for parameter calibration
of simulation models.

Data reconciliation tools exist and have already proven
their worth in the industrial sector. However, they are lim-
ited to a restricted modelling domain and often use a dedi-
cated, proprietary modelling environment. In practice, this
restricts the scope of reconciliation: apart from use cases
where reconciliation is used as a real-time monitoring tool
to gain operating margins, few use cases can afford this
costly environment. Other applications can nevertheless
be imagined: support for experimental installations as pre-
sented in this article, support for the design of systems to
assist in the positioning and selection of sensors and pro-
vision of rigorous proofs to justify the control of uncer-
tainties of sensitive quantities, etc. The integration of data
reconciliation into OpenModelica opens up new possibil-
ities: users no longer need to create a dedicated reconcil-
iation model in a dedicated environment; they can derive
it from pre-existing models, such as those used for clas-
sical simulation studies. The Modelica language is used
there as a sole and standardized format for modelling the
physical phenomena of the system hence bridging the gap
between design tools and operation tools.

From the software standpoint, although the current im-
plementation of data reconciliation in OpenModelica is
still in the prototype stage, the article demonstrates its
ability to handle industrially realistic models. The pro-
totype documentation will be updated based on the appli-
cation cases described here, particularly with regard to the
methodology to be followed when using third-party tools
to calculate uncertainties for pre- and post-processing of
data reconciliation. Further improvements to the proto-
type are also expected to enable a better scaling for larger
or more complex models. This will include improvements
to the user interface for providing inputs to be reconciled -
especially for linking model variables to uncertainty data-
and for optimising the visualisation of reconciled outputs.
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It will also include adjustments of the extraction algorithm
to handle models embedding algebraic parts which cannot
be easily inlined and symbolically processed (e.g. if-then-
else clauses, function with external codes...).
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