Combining static and dynamic optimization approaches
for path planning, with collision avoidance

Dr. Clément Coic!

Marco Masannek !+

ISiemens Healthineers AG, Germany, {clement.coic, marco.masannek}@siemens-healthineers.com
ZLab for mobile Robotics, Nuremberg Institute of Technology, Germany, {marco.masannek}@th-nuernberg.de

Abstract

In response to staff shortages in hospitals, healthcare
providers aim at increasingly automating their systems.
Defining automated system paths — with collisions avoid-
ance — is a critical step towards automation. In this pa-
per, three different approaches for path planning are in-
vestigated: a static, a dynamic and a hybrid approach.
The hybrid approach, that sequentially combines part
of the static and dynamic approaches, results in im-
proved accuracy against the static approach and im-
proved performance against the dynamic approach.
Keywords: Path planning, C-space, Dynamic Optimiza-
tion, Hybrid approach

1 Introduction

The staff shortage in the healthcare industry is a bottleneck
when it comes to patient touchpoints. Healthcare system
automation can partially solve this issue. Should auto-
mated systems reduce the workload of qualified health-
care professionals, these would be available for interven-
tions - where they can add value, save life, care for the
patients or plan procedures, to name but a few. There are
different tasks currently performed by qualified by health-
care professionals that could be taken over by automation.
First, existing systems could perform in a more automated
manner. For the sake of simplicity, this paper focuses
on robotic systems evolving freely on the hospital floor
- though the entire discussion could be extended to any
type of system, e.g. ceiling systems. A typical example
could be to provide qualified voice command to, for exam-
ple, a CIARTIC Move (Siemens Healthineers AG 2025) -
such as “Take a 3D scan of the patient right foot.” - and
the Ciartic Move would autonomously evolve in the room
until the foot is at the isocenter of the scan, would ask
for permission to scan and proceed. In a second step, new
robotic systems could be developed to perform actions that
are not part of today’s offering. For example, the research
project Autonomous Robotic Operation Room Assistance
(AURORA) (MITI Research Group 2024) aims to assist
in operations by performing tasks required by circulators,
which focus on actions in the periphery of the operating
table, e.g. equipment preparation (see Figure 1).

In both above examples, one key capability the system
shall have is determining the path it shall take to safely

Figure 1. Project AURORA: Target operation room environ-
ment (left) and real robot (right)

evolve in its environment. Additionally, the system shall
sense its moving environment and adapt the path based on
the potential new or moving obstacles along its path. This
paper focuses on solving that path planning problem with
fixed obstacles. This can be justified by the fact that the
authors already mitigated part of the risk associated with
moving obstacles by presenting a novel approach relying
on a semantic understanding of the environment, and path
adaptation can be done with reinitiating the path planning
under the new constraints. The remaining of the paper
will present three different approaches for solving the path
planning problem. In Section 2, a static approach is dis-
cussed. This method relies on discretizing the environ-
ment and determining the C-space of the robotic system
to define the feasible paths. Section 3 tackles the problem
from the perspective of the dynamic motion of the robotic
system: what is the optimum path under the constraints of
the robotic system kinematic. Section 4 discusses a hy-
brid approach consisting of sequentially applying part of
the static and dynamic approaches. Finally, the paper is
concluded and perspective to the work are presented.

2 Static Path Planning

In most mobile robotic applications, the problem of find-
ing a collision-free path is approached by first creating a
map of the environment using sensors and Simultaneous
Localization and Mapping (SLAM) algorithms (Placed et
al. 2022). In a second step, the map is then converted into
a discretized occupancy grid map, also commonly referred
to as cost map, which assigns specific cost values for each

DOI
10.3384/ecp21873

Proceedings of the 16" International Modelica&FMI Conference 73
September 8-10, 2025, Lucerne, Switzerland

Combining static and dynamic optimization approaches for path planning, with collision ...

cell depending on the proximity of obstacles. By utiliz-
ing these cost values as a basis for node evaluation dur-
ing graph search algorithms such as A* or RRT, current
robotic systems achieve computation times of often less
than 100ms even for longer paths.

However, this approach has two major limitations af-
fecting the quality of generated paths, which are the
missing consideration of vehicle dynamics and the often-
inaccurate representation of valid configurations for non-
circular robots, e.g. for rectangular shapes. To overcome
the latter, we introduce a method for fast and memory-
efficient computation of the collision-free configuration
space (C-space) for any shape robots.

2.1 C-Space for non-circular robots

To determine valid poses within a given environment,
most approaches start by creating a Euclidian Signed Dis-
tance Field (ESDF) which describes the distance to the
nearest obstacle for each x-y-cell in the cost map. For
circular robots, these values can already be utilized to per-
form complete collision evaluation by comparing the dis-
tance with their own radius. Cells below this threshold
are usually marked as colliding, while distances above the
threshold mark free and therefore traversable space. Since
the orientation (heading) of a circular robot has no effect
on its radius and therefore minimal distance threshold, the
classification holds true for all headings ¢.

However, rectangular or any shape robots need to con-
sider their actual occupied space for each discrete heading
@y, at a given position p(x,y) to reason about whether or
not the robot would collide at a specific pose P(x,y, Q).
The angular resolution ry that is required to ensure valid
collision checks in the discretized grid can be determined
using the cell resolution 7, and the circumscribing radius
of the footprint d,, (furthest point of the shape) and often
lies in a range from 1° to 10°. Since this creates a neces-
sity for a three-dimensional grid (third dimension being
the heading), generated c-spaces can grow very large for
big environments with high resolution requirements.

To overcome this challenge, (Lau, Sprunk, and Burgard
2013) introduced the concept of valid angle intervals (see
Figure 2), which describe a set vy of collision-free inter-
vals of heading for an arbitrary shaped robot. This method
allows for efficient computation of collision checks for
any pose P(x,y, @) by simply evaluating if the angle ¢ in-
tersects with any interval of vy. Cells with a single interval
spanning the full angular range can additionally be marked
as completely free to save further memory.

2.2 Example C-Space for a hospital floor

Figure 3 shows an exemplary hospital floor map with hall-
ways, patient rooms, treatment rooms and bathrooms. In
order to plan paths for a rectangular robot (e.g. a patient
bed or the CIARTIC Move) between any two positions,
the complete floor needs to be processed. Brute force cal-
culations of the C-space would result in over 180 million
cells when given a map of 1280x720 pixels and a required

Ostart,1
vi(x]y) =
y v [(60",1200)}
XX (240°,300°)

(pstart,Z Dena 2

Figure 2. Example angle intervals for a rectangular robot (blue)
for a close obstacle (red square)

angular resolution of 1.8° (equals 200 angles per rotation).
Utilizing the method described in section 2.1, we are able
to reduce the size of the c-space map by over 80% to
roughly 35 million cells.

Figure 3. C-Space for a hospital floor and rectangular robot.
Black cells mark physical obstacles such as walls, beds or other
objects. Green cells are completely free, red cells cause colli-
sions. Purple cells mark cells with valid angle intervals.

2.3 Collision graph from angle intervals

In order to plan a path through the occupancy grid includ-
ing its angle intervals, a customized graph structure needs
to be created that accounts for the presence of multiple
angle intervals on the same position p(x,y). We therefore
create an adapted neighborhood discovery step during ex-
pansion in our graph search (utilizing A*) which discov-
ers all valid intervals of a neighboring cell. Connections
are established only when intervals overlap to ensure that
a continuous path can be created in the end. Since com-
pletely free cells have overlaps with all intervals, connec-
tions between them can always be established (see Figure
4).

Figure 4. Example edges between free and and orientation in-
terval nodes

74

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp21873

Session: Chemics, Pharmacology and Medicin in Track for General Modelica

2.4 Limitations of grid-based planning

Figure 5 shows a typical path planning problem in hospi-
tals, where a patient bed must dock to a magnetic reso-
nance imaging system in a narrow room.

While our static path planning is able to produce
collision-free paths for non-circular robots even through
the narrow sections (see Figure 5), the generated trajec-
tories are not smooth and also imply following using an
omni-directional movement model (e.g. shopping cart).

Figure 5. Planned path using our custom collision graph. The
arrows mark the start (green) and goal (yellow) pose for the
robot; the blue phantoms depict the footprint along the path.

3 Dynamic Optimization

The static approach to path planning proved to be very
efficient in finding a solution. However, it does not guar-
antee that a robotic system, with constrains on its kine-
matic motion, could actually achieve the found path. This
might not be an issue for some robotic systems - holo-
nomic, such as the CIARTIC Move, which drive system
allows for any type of motion on the 2D plan (i.e. rota-
tion on the spot, translation in all directions (even lateral)
and combination of both motions). However, many other
types of drive systems are non-holonomic - i.e. they have
constrained kinematics that should be accounted for when
planning for their path.

Dynamic optimization (Akesson 2008) is leveraged
here to solved for the optimum path of a behavioral model
of the robotic system, under its environment constraints.
Four steps have been followed to implement this solution.
First, a simplified behavioral model of the robotic system
is developed. Then, a simplified model of the environment
is introduced together with the collision assessment with
the robot. In a third step, the dynamic optimization func-
tion is implemented. Finally, the resulting path is run in a
forward simulation of a more detailed behavioral model.

These four steps are detailed below, after a quick discus-
sion on the need for these two fidelities of behavioral mod-
els.

3.1 Behavioral Model Purposes

Models are developed with a purpose in mind. Here, our
aim is to easily assess the behavior of different drivetrain
set ups for our robotic systems and their impact on the
trajectory they can achieve. We collected the two different
set of requirements associated with this purpose.

1. Path planning: the behavioral model shall represent
the system dynamics, while being as simple as pos-
sible, to allow for a fast optimization. As directional
derivatives are leveraged by the dynamic optimiza-
tion solver, it is of high importance that the behav-
ioral model is C2-continuous, i.e. continuous, deriv-
able and the derivative is continuous too.

2. Behavioral path following: the behavioral model
shall allow for modeling the different drivetrain in
more details to assess how they perform when fol-
lowing a specified path.

In order to meet both requirements, the choice was
made to have two separate models - one for each pur-
pose. The behavioral model dedicated to path planning is a
point-heading motion model, with potential constraints on
the trajectories it can follow. The behavioral model ded-
icated to studying the path following response is a multi-
body model with detailed kinematics of the drivetrain.

3.2 Point-heading Optimization Model

A point-heading motion model, as the names indicates,
consists in modeling the system as a point with a head-
ing, and some constraints on its motion. In addition, the
robot envelope around the point is also known so that we
can easily check for collision of the real system - and not
only the point. At this stage, two different cases are made
possible:

1. The robotic system is holonomic, i.e. it can evolve
freely in all directions and motion types (like the
CIARTIC Move).

2. The robotic system is non-holonomic, i.e. it can only
continuously change the path curvature with respect
to its reference frame.

The former case does not constrain the path with respect to
the robot heading. For example, a path forming a 90° an-
gle with the heading corresponds to a sideway translation.
The latter means that the rate of change (derivative) of the
path heading cannot be higher than the point steering ca-
pability. In other words, the path and point headings shall
align. These two cases can easily be modeled by adding a
constraint on the path to heading angle that should be 0 in
case of non-holonomic robots.

DOI
10.3384/ecp21873

Proceedings of the 16" International Modelica&FMI Conference 75
September 8-10, 2025, Lucerne, Switzerland

Combining static and dynamic optimization approaches for path planning, with collision ...

Listing 1. Point-heading Optimization Model

model PointHeading
// Cartesian coordinates
Modelica.Units.SI.Position x
position";
Modelica.Units.SI.Position y "Global vy
position";
Modelica.Units.SI.Angle phi (start=phistart,
fixed=true) "Global heading";
// Change to local coordinates
/] ...
parameter Boolean isHolonomic = true
, i1f heading should be fixed =0";
// Defining robot body
/!
equation
// motion
end PointHeading;

"Global x

"false

The resulting Modelica model shown in Listing 1 is
very simple and includes some additional variables for
changing the reference frame from global to local and for
defining the body of the robotic system around the point.
It remains C2-continuous and suitable for a fast dynamic
optimization application.

3.3 Simplified Environment Model

The environment where the robot evolves is a bounded
rectangle. Internally, it is composed of the floor set-up
- including walls, defining the rooms and corridors - and
all types of objects and persons that could be on the way -
e.g. an MRI or CT machine, a bed with patient, or even a
plant. From the perspective of the robot, these are all seen
as obstacles. Therefore, there is no need to differentiate
them in this approach, and it was decided rather to allow
for modeling a couple of shapes - specifically rectangles
and circles - as footprint on the floor. As discussed in sec-
tion 2, circles are efficient as there is no need to model
their orientation - the Euclidian distance is the same for
any angle. Rectangles require their orientation to be mod-
eled. For this purpose, specific classes have been devel-
oped - Circle, Rectangle -, that contain their dimensions
and take the position of the object in motion to check for
collision. As many obstacles as desired can be introduced
in the environment and a combination of them can repre-
sent more complex shapes. For example, a square room
with an open-door access can be represented with 4 rect-
angle obstacles. (Alternatively, should a scenario happen
exclusively within a rectangular room, it is possible and
more efficient to define the bounds of the room as con-
straints to the robot coordinates in the optimization prob-
lem.)

3.4 Optimization Problem

Now the point-heading model and its environment are de-
fined, the next step is to look at the path the robot shall
follow. Note again that the path and the trajectories of
the robot model (x,y, phi) are not necessarily the same:
specifically, for non-holonomic robots, the heading of the
robot and of the path may not be aligned. Therefore, a

heading variable for the path itself, phi,, is introduced.
Additionally, we define a velocity along the path, v, its
projections on the x and y axes, v, and vy, and its time
integral gives us the length of the path d,.

The cost function of our optimization model is a combi-
nation of the path length and the rate of change in path cur-
vature. The goal is to minimize the distance while avoid-
ing abrupt changes in curvature. Obviously, this cost func-
tion can easily be adapted based on the needs and would
lead to different optimum paths.

The inputs to optimize are the heading derivatives of the
path and of the bed. Note that because the velocity is a set,
these headings fully define the trajectories. (Alternatively,
the velocity could be considered an input.) However, the
headings derivatives are selected here as these are needed
for the cost function (no abrupt changes in heading) and
because the headings are easily obtained by further inte-
grations.

To fully define the optimization problem, the following
constraints are added:

¢ The robot remains within the bounds of the environ-
ment.

* Potential alignment of headings for non-holonomic
robots (see end of subsection 3.1).

* Checking that the distance to obstacle remains posi-
tive.

* Ensuring that the initial and final target positions are
met.

The optimization problem is written in the Optimica
language, allowing us to extend the existing Modelica
behavioral and environment models, similarly to (Coic,
Budinger, and Delbecq 2022).

Listing 2. Pseudo Point-heading Optimization Model

optimization PointHeading
objective = d_p(finalTime)
) s
finalTime (
free=true,
min=1,
max=10,
start=5)

+ cost (finalTime

// Floor or Rooms bounds

parameter Modelica.Units.
=0;

parameter Modelica.Units.
=0;

parameter Modelica.Units.
=10;

parameter Modelica.Units.
=10;

SI.Position xMin

SI.Position yMin

SI.Position xMax

SI.Position yMax

extends PointHeading(
// modifiers to pass floor
max

bounds as min,

)i

76

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp21873

Session: Chemics, Pharmacology and Medicin in Track for General Modelica

parameter Integer n_rectangles=5;
Rectangle[n_rectangles] rectangles(
//modifers
)

// Start and end point positions—headings

/1

// Path variables
Modelica.Units.SI.Angle phi_p "Path heading

".
’

Modelica.Units.SI.Length d_p(start=0, fixed=
true) "Path length";

Modelica.Units.SI.Velocity v_p=1
along path";

parameter Modelica.Units.SI.Angle max_phi_p
=if isHolonomic then Modelica.Constants
.pi else 0;

"Velocity

// Inputs for trajectory optimization

input Modelica.Units.SI.AngularVelocity
der_phi "Point heading derivative";

input Modelica.Units.SI.AngularVelocity
der_phi_p "Path heading derivative";

equation

der (phi) = der_phi;

der (phi_p) = der_phi_p;
v_p = der(d_p);
cost = d_phi”2 + d_p"2;
/]
constraint

phi_p <= max_phi_p;
phi_p >= -max_phi_p;

/]

x (finalTime) = x_end;
y(finalTime) = y_end;
phi(finalTime) = phi_end;

end PointHeading;

Figure 6 is an example of a rectangular holonomic robot
(in grey) entering a challenging room. The blue rectan-
gles represent walls with small tolerances. The room di-
mensions are above the minimum recommendations, yet
the door is placed with an angle, which limits the robot
in its movements. This simulation proved that the non-
holonomic robot was not able to find a path in this chal-
lenging environment (only by few centimeters), yet the
holonomic could manage.

The path planning was implemented as web application
within Modelon Impact - as in (Coic, Andreasson, et al.
2020) - to easily generate scenarios. The resulting paths
are stored as csv artifact that can easily be imported into
the workspace. This results very handy as the next step is
to validate that our point-heading model simplification is
not too simplistic. This is verified by simulating a higher
fidelity (multibody) path following robotic system.

3.5 Multibody Drive Model

For the purpose of accurately modeling the kinematics of
the robotic system, it is enough to model its drive system,

8 =—o— bed

+— start

+— end
5 = = bounds

—————————————————————— =—e=—= rectangle 1
=—e— rectangle 2
=—e— rectangle 3
== rectangle 4
== rectangle 5
----- origin
reference

----- corner 1

----- corner 2

----- corner 3

----- corner 4

5}
R

Figure 6. Optimum path planning example

and the rest as point-mass located in the center of gravity
- as shown in Figure 7. Each wheel module - see Figure 8
- is a submodel that allows for representing different types
of wheels: steered, driven, free, with a caster trail, etc.
The tyre model is based on (Pacejka 2012). To each wheel
is connected a controller that computes their commands
in steering and driving - should these be activated. This
makes a very flexible model that allows for investigating a
variety of different robotic drive system.

heading

controlierd wheellfoduled

speed

> static

yaw_rate

controllert wheelModulet
TP
— @

Figure 7. Multibody Model of the Robotic System Drive

As an example of holonomic robot, the four lateral
wheels can be active with two caster wheels and two
wheels that are both steered and driven. A robot with a
fifth wheel in the middle that is locked in steering and
driven while one of the other four wheels would be steered
only would lead to a non-holonomic configuration - as the
robot could only turn in forward motion and around the
fifth wheel point of contact.

Resimulating the optimum path from Figure 6 - of the

DOI
10.3384/ecp21873

Proceedings of the 16" International Modelica&FMI Conference 77
September 8-10, 2025, Lucerne, Switzerland

Combining static and dynamic optimization approaches for path planning, with collision ...

O WheelModule
6 BedOnWheels.Wheels.WheelModule
INFORMATION
PROPERTIES
+
General Variables
enable_steering P »
lock _steering P »
enable_drive PO »
caster_trail s 0.0475
mount_position i 0 0 0 »
wheel _diameter : 015

Figure 8. Fully configurable wheel module

reference point, in orange - with a holonomic drive robot,
it is observed that the followed path is nearly identical
to the optimum one (see Figure 9). And the small di-
vergence could potentially be due to the path following
controller. For this case, it is possible to conclude that the
point-heading model is a reasonable simplification for the
optimization problem.

Multibody holonomic model following optimum path

- Result 2
fromOptimization

6 oy

5 ® frame_a.r_0[2] [m]

4

3

2 v

1

. 2 3

fromOptimization.x

Figure 9. Multibody drive model following optimum path

4 Hybrid Approach

The dynamic optimization solution, combined with multi-
body path following verification, yields good results. Nev-
ertheless, the static approach proved to be much faster -
thanks to the pre-computation of the C-Space. Naturally,
the next step in this research is thus to combine both ap-
proaches, to get an improved speed with respect to the
dynamic optimization solution while conserving its accu-

racy.

The benefit of defining the environment in a full fledge
programming language are multiple. Especially, the en-
vironment can be much more complex and programmat-
ically scripted from existing hospital plans. And the C-
Space can be easily precomputed with the desired dis-
cretization. However, such a discretization would intro-
duce discontinuities, which are not optimization-friendly.

Here, the decision was taken to include the C-Space as
part of the cost function (see Figure 10), instead of having
it as constraints (as previously in the dynamic optimiza-
tion implementation). The C-Space is imported into the
Optimica model as a table with the three coordinates as
inputs - (x, y, phi) - and output an associated cost. The cost
is extremely high if the input result in a collision, moder-
ately high if the collision is near and zero if the desired
margin is ensured. This cost decrease is made continuous
and the table is configured to have a smooth interpolation
- making the C-Space optimization friendly.

Figure 10. C-Space as a cost "heat map"

This solution also allows for an easy enhancement of
the C-Space - e.g. leverage semantic knowledge of the
environment to keep a larger distance from people than
from fixed objects.

Figure 11 shows two results of the same scenario, with
different C-Space costs. The yellow path ensures the de-
sired margin on the persons and finds an optimum that re-
duces the total length of the path. The green path includes
additional costs for the persons and thus leads to a longer
path as optimum, with increase safety for the personal. (It
is worth noting that a different cost has been applied to
the chair - represented in blue -, and thus the green path is
nearer to the chair than to the personal.)

As expected, dynamic optimization converges much
faster with a good initial trajectory (Delbecq et al. 2021).
In this case, it is trivial to provide the one found by run-
ning the static approach - which might not satisfy all mo-
tion constraints and yet ensure collision-avoidance.

While the initial development of this approach was not
trivial, the results are very satisfying in terms both of
speed and accuracy. The automation of the environment
import, via the C-Space cost table, allows for easy sce-
nario generation and thus increases the representativeness
of this solution.

78 Proceedings of the 16" International Modelica& FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp21873

Session: Chemics, Pharmacology and Medicin in Track for General Modelica

e Regular Path 1-5
i Regular Phantom
[= Semantic Path 1-5
=== Semantic Phantom
@ Start Position
@ Goal Position
® Ground Truth chair_1
Ground Truth person_1
® Ground Truth person_2
Ground Truth person_3
Detections chair_1
Detections person_1
Detections person_2
® Detections person_3
— \Vall

x xR

2 0 2 4 6 8 10
X

Figure 11. Semantic path planning / social path planning

5 Conclusion and Perspectives

Developing a fast and accurate path planning with col-
lision avoidance is mandatory for automation of robotic
systems. This paper presented three different approaches.

1. The static approach proved to be very fast, over a
full map of a hospital floor, and yet did not ensure
that path found could necessarily be achieved by a
non-holonomic robot.

2. The dynamic optimization solution showed achiev-
able trajectories, for simplified scenarios, while re-
quiring much higher convergence times.

3. The hybrid approach showed the best trade-off be-
tween accuracy, speed, and flexibility.

As of now, only the static approach has been validated
on a real robotic system. Implementing the hybrid solu-
tion - relying on dynamic optimization - on the embed-
ded hardware is a next step to this work. This might not
be trivial, and a first proof of concept might rely on IoT
communication protocols (such as MQTT or OPC UA) to
communicate with Modelon Impact cloud software.

Acknowledgements

The first version of the dynamic optimization and multi-
body models, as well as the associated web application,
presented in Section 3 were developed in the scope of a
paid project with Modelon AB. The authors would like to
thank especially Peter Sundstrom for his great contribu-
tions to this project.

References

Akesson, Johan (2008). “Optimica—An Extension of Model-
ica Supporting Dynamic Optimization”. In: 6th International
Modelica Conference, Bielefeld.

Coic, Clément, Johan Andreasson, et al. (2020-10). “Collabora-
tive Development and Simulation of an Aircraft Hydraulic
Actuator Model”. In: Proceedings of the Asian Modelica
Conference, Tokyo. DOI: 10.3384/ecp202017467.

Coic, Clément, Marc Budinger, and Scott Delbecq (2022-10).
“Multirotor drone sizing and trajectory optimization within
Modelon Impact”. In: Proceedings of the American Modelica
Conference, Dallas. DOI: 10.3384/ECP2118656.

Delbecq, Scott et al. (2021-01). “Trajectory and design opti-
mization of multirotor drones with system simulation”. In:
Proceedings of the American Institute of Aeronautics and As-
tronautics, SciTech. DOT: 10.2514/6.2021-0211.

Lau, Boris, Christoph Sprunk, and Wolfram Burgard (2013).
“Efficient grid-based spatial representations for robot naviga-
tion in dynamic environments”. In: Robotics and Autonomous
Systems. DOI: 10.1016/j.robot.2012.08.010.

MITI Research Group, Technical University of Munich (2024).
AURORA: Autonomous Robotic OR Assistance. https://www.
pm.mh.tum.de/en/miti/research/projects/aurora/.

Pacejka, Hans B. (2012). Tyre and Vehicle Dynamics.
Butterworth-Heinemann. ISBN: 978-0-08-097016-5.

Placed, Julio A. et al. (2022). “A Survey on Active Simultaneous
Localization and Mapping: State of the Art and New Fron-
tiers”. In: DOI: 10.48550/arXiv.2207.00254.

Siemens Healthineers AG (2025). CIARTIC Move: Robotic C-
Arm. https ://www . siemens - healthineers . com/surgical - ¢ -
arms-and-navigation/mobile-c-arms/ciartic-move.

DOI
10.3384/ecp21873

Proceedings of the 16" International Modelica&FMI Conference 79
September 8-10, 2025, Lucerne, Switzerland

https://doi.org/10.3384/ecp202017467
https://doi.org/10.3384/ECP2118656
https://doi.org/10.2514/6.2021-0211
https://doi.org/10.1016/j.robot.2012.08.010
https://www.pm.mh.tum.de/en/miti/research/projects/aurora/
https://www.pm.mh.tum.de/en/miti/research/projects/aurora/
https://doi.org/10.48550/arXiv.2207.00254
https://www.siemens-healthineers.com/surgical-c-arms-and-navigation/mobile-c-arms/ciartic-move
https://www.siemens-healthineers.com/surgical-c-arms-and-navigation/mobile-c-arms/ciartic-move

	Introduction
	Static Path Planning
	C-Space for non-circular robots
	Example C-Space for a hospital floor
	Collision graph from angle intervals
	Limitations of grid-based planning

	Dynamic Optimization
	Behavioral Model Purposes
	Point-heading Optimization Model
	Simplified Environment Model
	Optimization Problem
	Multibody Drive Model

	Hybrid Approach
	Conclusion and Perspectives

