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Abstract
The convergence failure of iterative Newton solvers dur-
ing the initialization of Modelica models is a serious
show-stopper, particularly for inexperienced users. This
paper presents the implementation in the OpenModelica
tool of methods presented by two of the authors in a pre-
vious paper, to help diagnosing and resolving these con-
vergence failure by providing ranked lists of potentially
critical start attributes that might need to be fixed in or-
der to successfully achieve convergence. The method
also provides library developers with useful information
about critical nonlinear equations, that could be replaced
by equivalent, less nonlinear ones, or approximated by ho-
motopy for more robust initialization.
Keywords: Initialization failure, Newton’s method, De-
bugging

1 Introduction
The Modelica language (Mattsson, Elmqvist, and Ot-
ter 1998; Modelica Association 2023) has firmly estab-
lished itself as a standard for system-level simulation
of cyber-physical systems. The combination of declar-
ative, equation-based modelling style and of modular,
object-oriented composition of structured system models
allows for flexible, convenient, and self-documented mod-
elling of complex systems. Engineers can easily assem-
ble system models using a drag-and-drop methaphor from
libraries of reusable components, whereas domain ex-
perts can conveniently develop new component models by
describing their behaviour through a-causal differential-
algebraic equations. The solution of the overall system
equation is entirely off-loaded from the modeller to the
simulation tools, which use sophisticated symbolic and
numerical methods to generate efficient and numerically
robust code to solve the system equations and produce
simulation results.

The price to pay for this flexibility and ease of use in
building system models is that resulting system models of-
ten require the solution of implicit equations, both during
initialization and during simulation. In some cases, im-

plicit equations can be automatically solved in closed form
using symbolic algorithms; however, in many cases, par-
ticularly for systems of non-trivial size, numerical meth-
ods must be employed.

The numerical solution of linear implicit equations
poses no particular challenges, as long as the model is
well-posed, so that the system is non-singular; automatic
scaling techniques, see, e.g., (Casella and Braun 2017) can
be used to improve the condition number of the A matrix
of systems that are nearly singular because of bad scaling.
Conversely, the numerical solution of nonlinear systems
of equations requires the use of iterative methods, usually
some kind of quasi-Newton algorithm, which can be prob-
lematic.

Iterative quasi-Newton methods require a suitable ini-
tial guess of the solution to get started; provided that the
system Jacobian is non-singular in the sought-after solu-
tion, they provide fast convergence to the solution if the
initial guess is close enough to it. Good quasi-Newton al-
gorithms implement additional strategies such as damped
steps, enforcing min-max limits on variables, etc., to en-
large the set of initial guesses that lead to successful con-
vergence and to cope with poorly chosen initial guess val-
ues. Unfortunately, it is a sad fact of life that these algo-
rithm sometimes fail to converge.

If convergence failures happen during simulation,
where the values obtained at the previous time step (or
some suitable extrapolation thereof) are used as initial
guess, an effective strategy to cope with the failure is sim-
ply to retry with a shorter time step; as long as the vari-
ables of the problem are changing continuously, it is pos-
sible to get an initial guess which is arbitrarily close to the
solution by picking a short enough time step, thus ensur-
ing convergence.

The most critical scenario from a practical standpoint is
the convergence failure during initialization, where start
attributes are used as initial guess, because there is no easy
backup strategy available in that case. If the initialization
problem fails to converge to a meaningful solution, the
model at hand is pretty useless.

The problem of convergence failure during initializa-
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tion is compounded by the fact that the feedback provided
to the modeller by Modelica tools is very low-level, com-
pared to the nice, high-level, modular modeling style of
the Modelica language. What one typically gets is an ugly
log message from the solver, showing the selected initial
guess values and some error message such as "The nonlin-
ear solver failed to converge during initialization, please
provide better start attributes". The question is: how is the
poor end user supposed to figure them out?

A naïve strategy in this case is to inspect the list of start
values that led to the failure, comparing them to one’s best
estimate of what their value at the solution should be; val-
ues which are obviously very far from the estimated so-
lution can be improved one by one. However, this is a
very frustrating and time-consuming strategy, particularly
in the case of problems with dozens or hundreds of un-
knowns. For reasons that will become clear in Section 2,
in some cases very large errors in the initial guess are not
a problem for convergence, whereas comparatively small
errors could be critical in other cases, so one may end up
wasting a large amount of time fixing start attributes
which are not critical at all. If the problem at hand has
100 unknowns, is it really necessary to fix all the 100 start
attributes, or maybe fixing only a few ones will suffice
to attain convergence? Answering to this question is the
main goal of the methods discussed in this paper.

More specifically, based on results previously published
by Casella and Bachmann (2021), this paper discusses
how a Modelica tool can rank the initial guess values of
failing nonlinear systems of equations, highlighting the
ones which are more likely to be responsible for the con-
vergence failure, thus helping the end user to succeed in
solving the initialization problem and getting the simula-
tion to run. It also shows how critical nonlinear equations
can be identified, so that they can be, e.g., approximated
by means of homotopy by the model developer. The pro-
posed methods were implemented in the OpenModelica
tool (Fritzson et al. 2020) and successfully tested against
the test cases discussed in that paper.

The paper is structured as follows: Section 2 reviews
the methods proposed by Casella and Bachmann (2021),
introducing the notation and the main results; Section 3
discusses the implementation in the OpenModelica tool,
while Section 4 shows some of the results obtained on
some of the test cases discussed in (Casella and Bachmann
2021). Section 5 concludes the paper with final remarks
and suggestions for future work.

2 Method
This section introduces the notation for the problem at
hand and recalls the main results of (Casella and Bach-
mann 2021) which are relevant for the discussion.

2.1 Notation
Consider the problem

f (x) = 0, (1)

where x ∈Rm and f : Rm →Rm is a vector function which
is continuously differentiable in an open neighbourhood
D of the solution x̄, f (x̄) = 0. In the context of this pa-
per, problem (1) corresponds to a strong component of the
initialization problem of a Modelica model, where x is a
subset of the set of unknowns of such problem, namely
state variables, their derivatives, algebraic variables, and
unknown parameters with fixed = false attribute. In
case homotopy-based initialization is used (Sielemann et
al. 2011), the considered problem is the one at λ = 0, for
which the intial guess is taken from the start attributes.

Denote the Jacobian matrix of function f (x) with re-
spect to x as fx(x). Assume the vector of the unknowns
x is suitably ordered, so that it can be split into two sub-
vectors w ∈ Rq and z ∈ Rm−q

x =
[

w
z

]
, (2)

w being the smallest possible sub-set of x such that

fx(x) = J(w), (3)

i.e., the Jacobian matrix of f (x) depends only on w and
not on z. Thus, w are defined as the nonlinear variables of
the problem, while z are defined as the linear variables of
the problem.

Assume the equations in (1) are ordered so that f (x) can
be split into two vector functions n(x) and l(x), n : Rm →
Rp, l : Rm → Rm−p

f (x) =
[

n(x)
l(x)

]
, (4)

where n(x) contains the non-linear equation residuals and
l(x) contains the linear equation residuals. System (1) is
thus split into nonlinear equations n(x) = 0 and linear
equations l(x) = 0. The system (1) can then be rewritten
as

f

([
w
z

])
= g(w)+ fzz. (5)

where g(w) contains all the nonlinear terms of the system
equations, while fzz denotes the linear part of the system
equations.

The solution x̄ can be computed iteratively by Newton-
Raphson’s method, which requires to solve the following
linear equation at each iteration j

fx(x j−1)(x j − x j−1) =− f (x j−1), j = 1,2, · · · (6)

starting from a given initial guess x0, which is obtained
from the start attributes of the unknowns x.

One very important remark is due when tearing is used
to solve the implicit nonlinear system. In this case, the set
of unknowns x is the set of tearing (or iteration) variables,
whereas the set of equations (1) refers to the set of residual
equations. In this case, determining which are the nonlin-
ear variables and equations of the torn system requires to
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consider the dependencies between each tearing variable
and each residual equation introduced by the torn equa-
tions, which may themselves be linear or nonlinear. For
example, the system

sin(a)+b = 1 (7)
a+b+ cos(c) = 2 (8)
a+b+ c = 0 (9)

can be solved by selecting a and c as tearing variables:

b := 1− sin(a) (10)
a+b+ cos(c)−2 = 0 (11)
a+b+ c = 0; (12)

where the unknown vector of the torn system is x =
[a c]′. Although the last of the two residual equation
looks linear at first glance, it actually depends non-linearly
on a through the nonlinear torn equation. Therefore, both
unknowns and both residual equations of the torn system
are actually non-linear in this case.

2.2 Theoretical Background
This section recalls the main theoretical results of Casella
and Bachmann (2021), putting them in the specific con-
text of a Modelica tool solving a strong component of the
initialization problem.

Theorem 1. (Superlinear convergence close to the solu-
tion). If the Jacobian fx(x̄) is non-singular in the solution
x̄ and Lipschitz-continuous in a neighbourhood of x̄, for
all x0 sufficiently close to x, the sequence {x j} of the solu-
tions of (6) converges not less than quadratically to x̄.

Theorem 2. (Convergence in the linear case). If Equa-
tion (1) is linear and fx is non-singular, then Netwon’s al-
gorithm converges in one step, irrespective of the chosen
initial guess x0.

Theorem 3. (Convergence in the mixed linear-nonlinear
case). If Newton’s algorithm is initialized with a first
guess

x0 =

[
w0
z0

]
, (13)

the values of the approximated solution x j at each step
j > 0 only depend on the guess values of the nonlinear
variables w0, regardless of the choice of guess values of
the linear variables z0.

Theorem 4. (Linear residuals after the first iteration).
The residuals of the linear equations in system (1) after the
first iteration of Newton’s algorithm are zero, i.e, l(x1) =
0, regardless of the initial guess values x0.

Theorems 1 and 2 are well-known, whereas Theorems
3 and 4 were first stated by Casella and Bachmann (2021)
and have two very important implications for the problem
at hand:

1. only nonlinear equations n(x) = 0 and only initial
guesses of nonlinear variables w0 matter for conver-
gence;

2. there is no reason to bother about start attributes of
linear variables

For the subsequent discussion, it is necessary to answer
the following question: how can we determine if the initial
guess x0 is close enough to the solution x̄, so we can ex-
pect that convergence will be achieved? One naïve answer
could be to consider this criterion:∥∥ f (x1)

∥∥≪∥∥ f (x0)
∥∥ , (14)

i.e., if the residual after the first iteration is much smaller
than the residual computed with the initial guess, then it’s
likely that the residual after the next iteration will be even
smaller and convergence will be achieved soon.

In fact, due to the consequences of Theorems 3 and 4,
this is not a sound criterion: Theorem 3 suggests to triv-
ially set z0 = 0, which may lead to large values of the lin-
ear residuals l(x0), while Theorem 4 states that after one
iteration, l(x1) = 0 no matter what. Hence, the norm of
the overall residual vector may dramatically decrease after
one iteration, just because large linear residuals becoming
zero in one shot; this is by no means an indication that the
nonlinear variables are close to convergence.

This observation leads to the need of defining a better
criterion for being close to convergence.

Definition 1. With reference to Newton’s iteration (6), de-
fine the nonlinear residual at iteration point xk−1 as

r(xk−1) = f (xk−1)+ fz(zk − zk−1). (15)

This definition basically removes all the linear compo-
nents that will vanish after one iteration from the residual
at step k− 1. Another possible interpretation, with refer-
ence to the decomposition shown in (5), is that it computes
the residual of the nonlinear part of the system equations
only, which is the only one that is relevant for possible
convergence issues.

We can then replace the right hand side of the naïve
criterion (14) with the nonlinear residual, thus leading to
this heuristic criterion for being close to convergence:∥∥ f (x1)

∥∥≪∥∥r(x0)
∥∥ . (16)

This criterion is heuristic in the sense that it is possible
to build on purpose counter-examples in which this condi-
tion holds, but yet Newton’s method does not converge to
a solution. However, in most practical cases, if the resid-
ual f (x1) after the first iteration is much smaller than the
nonlinear residual computed with the initial guess r(x0),
then the residual f (x2) after the second iteration will be
even smaller, and the method will converge to a solution
in a few iterations.
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The next step is to come up with the formulation of
some indicators that can be used to express relationship
(16) in an equivalent way. This requires to introduce the
following definitions.

Definition 2. Consider Newton’s iteration (6). Assume
that the function f (x) is three times continuously differen-
tiable in an open neighbourhood D containing the initial
guess x0 and the result of the first iteration x1. Denote the
i-th component of function f (x) as f i(x), its Jacobian ma-
trix with respect to x as f i

x(x), and its Hessian matrix as
f i
xx(x). One can write the following Taylor expansion

f i(x1) = f i(x0)+ f i
x(x0)(x1 − x0)+

+
1
2
(x1 − x0)

′ f i
xx(x0)(x1 − x0)+hi(x1,x0) (17)

which implicitly defines the higher-order residual func-
tions hi(·, ·).

Definition 3. Define the coefficients αi > 0, i = 1, · · · ,m,
such that

|hi(x1,x0)|= αi
∥∥r(x0)

∥∥
∞
, (18)

i.e.,

αi =

∣∣∣ f i(x1)− 1
2(w1 −w0)

′ f i
ww(w0)(w1 −w0)

∣∣∣∥∥r(x0)
∥∥

∞

(19)

and let
α = max(αi). (20)

Remark 1. It may happen that when computing f (x1)
some of the residuals cannot be computed because x1 is
out of their range of definition, e.g. because of logarithms
or square roots getting a negative argument. In this case,
it is necessary to perform a damped Newton iteration:

fx(x j−1)(x∗j −x j−1) =−λ f (x j−1), j = 1,2, · · · (21)

By taking a small enough positive value of λ , it is possi-
ble to get x1 arbitrarily close to x0, thus avoiding validity
range issues. The Taylor expansion can be used to define
hi(x∗1,x0) leading to the following modified definition of αi

|hi(x∗1,x0)|= αiλ
3∥∥r(x0)

∥∥
∞
, (22)

motivated by the fact that hi(x∗1,x0) is a third-order term in
the Taylor expansion, so it is expected to shrink as λ 3, thus
making the definition asymptotically invariant as λ → 0.
Hence, αi can be computed as

αi =

∣∣∣ f i(x∗1)− (1−λ ) f (x0)− 1
2 (w

∗
1 −w0)

′ f i
ww(w0)(w∗

1 −w0)
∣∣∣

λ 3
∥∥r(w0)

∥∥
∞

(23)

Definition 4. Define the curvature factor Γi jk of the i-th
nonlinear equation with respect to variables w j,wk after
the first iteration as

Γi jk =

∣∣∣∣∣12 ∂ 2gi(w0)

∂w j∂wk

(w1,k −w0,k)(w1, j −w0, j)∥∥r(x0)
∥∥

∞

∣∣∣∣∣ (24)

i = 1, . . . , p,
j = 1, . . . ,q,
k = 1, . . . ,q.

Equipped with these definitions, we can now state the
following Theorem:

Theorem 5. Given a constant β > 0,

∑
jk

Γi jk ≤ β ∀i = 1, · · · , p. (25)

implies that ∥∥ f (x1)
∥∥

∞
≤ (α +β )

∥∥r(x0)
∥∥

∞
(26)

The main consequence of Theorem 5 is that if αi ≪ 1
and Γi jk ≪ 1 ∀i, j,k, then α ≪ 1 and it will be possible to
pick a value of β ≪ 1 that satisifes (25); hence, α+β ≪ 1
and therefore, thanks to (26), the heuristic convergence
condition (16) will be satisfied. In short, if all the α j and
Γi jk coefficients are small, Newton’s method is very likely
to converge in a few steps. This condition is sufficient but
by no means necessary to achieve convergence, in partic-
ular if more robust quasi-Newton methods are used to ac-
tually solve (1). However, one can put forth the following
heuristic argument:

If the (quasi-)Newton solver fails to converge,
and if some of the αi and Γi jk coefficients are
much larger than one, they are likely to be
pointing out the initial guesses and nonlinear
equations that are responsible for the conver-
gence failure.

Specifically, large αi values will indicate that the i-th
equation is involved, whereas large values of Γi jk will in-
dicate that the i-th equation and the initial guesses of w j
and wk are involved.

Note, from definition (24), that the Γi jk indicators ex-
ploit second-order information provided by the system
Hessian, by weighting the magnitude of the change of the
solution estimate (w1, j −w0, j) after the first Newton step
with the curvature of the residual function.

This is a crucial point: the fact that the initial guess
value of some variables are very far from the solution, so
that (x1,k −x0,k) is very large, is per se not a relevant indi-
cator of potential convergence issues; in fact, as Theorems
3 and 4 clearly imply, it is not relevant at all for linear vari-
ables z. It becomes more and more relevant as the residual
depends on the variable in a strongly nonlinear way, as
measured by the value of the second derivative.
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Regarding the αi indicators, it is clear from their defi-
nition in (17)-(18) that they instead account for the com-
bined effect of terms of order higher than two on the con-
vergence to the solution. Unfortunately, these indicators
only point to the involved nonlinear equations, but they
cannot discriminate which of the initial guess(es) of non-
linear variables w0,k showing up in those equations are to
blame for the convergence issues.

Additional indications about initial guess values poten-
tially being responsible for convergence failure can be ob-
tained by exploiting the following Theorem:

Theorem 6. The sensitivity of the solution x1 after the first
NR iteration, with respect to changes in the initial guess
x0, can be computed as:

∂x1

∂x0
= Σ, (27)

where

Hi = (w1 −w0)
′ f i

ww(w0) (28)

H =


H1
H2
· · ·
Hp

 (29)

Σ =−
[

fx(w0)
]−1

[
Hp×q 0p×(m−q)

0(m−p)×q 0(m−p)×(m−q)

]
. (30)

When computing the sensitivity Σ at the solution x0 = x̄,
since w1 = w0 = w̄, it follows that H = 0, so that Σ = 0.
This means that if an initial guess equal to the solution
plus an infinitesimally small perturbation x0 = x̄+ δx is
chosen, the solution x1 after the first NR iteration is not
affected at all. This is consistent with the fact that f (x)
can be approximated as a linear function in a small neigh-
bourhood of the solution x̄, so that Theorem 2 guarantees
that the first NR iteration converges to the solution x̄ in
just one iteration, irrespective of the initial guess.

If the initial guess x0 is close enough to the solution
x̄ that the function f (x) is still approximately linear in
a neighbourhood containing x0 and x̄, then the same be-
haviour is preserved, i.e., the result after the first iteration
will be insensitive to small changes of the initial guess, so
Σ ≈ 0.

As x0 is chosen farther away from the solution x̄, non-
linear effects kick in, accounted for by matrix Σ, which
can be then considered an indicator of how far the initial
guess is from the sweet spot of NR convergence. In par-
ticular,

∣∣σ j j
∣∣≪ 1 means that the effect on w1, j of applying

a certain perturbation to w0, j will be much less than the
perturbation itself, meaning that the nonlinear effects are
moderate, whereas if

∣∣σ j j
∣∣≫ 1 the effect of such pertur-

bation will be amplified after the first iteration, which is
not consistent with the behaviour close to convergence.
Hence, it is possible to put forth an argument similar to
the one concerning αi and Γi jk indicators:

If the Newton solver fails to converge, and if∣∣σ j j
∣∣ > 1 for some j, then the initial guesses

w0, j are likely to be responsible for the conver-
gence failure.

Similarly to the Γi jk indicators, the σ j j indicators rely on
second-order information provided by the system Hessian
to assess the effect of the nonlinearity of the system of
equations on the convergence of Newton’s method. Con-
trary to Γi jk, σ j j indicators only provide information about
potentially problematic initial guesses w0, j, while not pro-
viding any information about the involved nonlinear equa-
tions.

An interesting property of σ j j coefficients, when com-
puted from sets of equations containing quantities with
physical units, is that they are dimensionless, so they are
invariant with respect to the choice of units of the problem,
and in general to the scaling of the system of equations.
This makes them readily computable from the Modelica
equations in SI units, even if the equations and variables
are badly scaled from a numerical point of view.

The αi and Γi jk indicators are also invariant with respect
to the choice of the units of the unknowns x; however, they
are not invariant with respect to the choice of the units of
the residual equations f i(x). In fact, the definitions of
both indicators rely on the infinity norm of the residual∥∥r(x0)

∥∥
∞
=maxi

∣∣ri(x0)
∣∣, which is conceptually ill-defined

if the residuals ri(x0) have non-homogenous units: what
is the maximum between 70 kg/s and 108 W in a system
of equation with a steam flow rate equation and a power
balance equation?

Hence, a proper implementation of the computation of
αi and Γi jk requires to employ normalized function resid-
uals, which can be computed as explained in (Casella and
Braun 2017). Once the residuals are nomalized, the αi and
Γi jk indicators will be invariant to the choice of units of the
problem and to its scaling in general.

2.3 Diagnosing Newton Solver Failures
In case the quasi-Newton method of choice fails to solve
one of the nonlinear strong components of the initializa-
tion problem (in the case λ = 0 if homotopy is used), it
is possible to compute the αi, Γi jk and σ j j indicators as
explained in the previous subsection. They can then be
ranked in descending order and displayed.

The initial guesses w0, j and w0,k corresponding to the
largest values of Γi jk and

∣∣σ j j
∣∣, as well as the unknowns

showing up in the equations with the larger values of αi,
are the most likely to be responsible for the solver fail-
ures, so their start attribute should be checked and possibly
fixed first. If it is recognized that they have a different start
value than what was expected, e.g. 300 K for a flame tem-
perature instead of 1800 K, this can be easily pin-pointed
and corrected. Otherwise, they could be tentatively in-
creased or decreased based on the sign of (w1, j −w0,k).

This method will be particularly helpful in the case of
large systems with many unknowns and only a few critical
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start attributes, that will be spotted immediately at the top
of the list of ranked indicators.

This method can also help library developers to pin-
point equations that are heavily involved in the failure be-
cause of their strong nonlinearity, as indicated by large αi
and Γi jk values. Such equations could be replaced with
other equivalent ones that are less nonlinear, e.g. a = b∗ c
instead of a/b = c, or replaced by less nonlinear approxi-
mated equations by means of homotopy.

3 Implementation
The method illustrated in the previous Section was
implemented in the OpenModelica runtime, where
it can be activated by setting the simulation flag
-lv=LOG_NLS_NEWTON_DIAGNOSTICS. Jacobians are
obtained using the same functions that are employed to
get them for the quasi-Newton solvers used for simulation,
which can either use code obtained with symbolic differ-
entiation or resort to numerical finite differences when that
is not possible. Hessians are computed numerically from
Jacobians by means of finite differences.

Although it would be conceptually possible to use sym-
bolic differentiation also for the Hessian computation, de-
veloping the code to do so was not really worth the effort:
the second derivatives are used to generate heuristic indi-
cators, so a high precision is not really required, so that the
trivial task of computing them by numerical differentia-
tion was chosen instead. Computational times are also not
an issue, since all the required computations are only car-
ried out once and normally take much less than a second
also for systems with hundreds of unknowns, so simplic-
ity of implementation was favoured over efficiency. This
also lead to the choice of always using the LAPACK dense
solver DGESV to solve the linear equations of the Newton
step, also in case of systems with high sparsity ratio.

As mentioned in Section 2.1, the classification of lin-
ear and nonlinear equations and variables when tearing is
used must also consider the nonlinearities introduced by
the torn equation. This information could have been in-
ferred symbolically by extending the structural analysis
algorithm of the OpenModelica backend; however, this
would have taken a significant development effort. It was
therefore chosen to follow a simpler numerical approach
instead.

Linear equations l(x) = 0 are therefore identified by
checking if their residual after the first Newton step
f i(x1) ≈ 0, see Theorem 4. In case a damped Newton
step needs to be computed to avoid out-of-range residual
evaluations, the following condition is checked:

f i(x∗1)+(λ −1) f i(x0)≈ 0 (31)

Linear variables z are instead identified by checking if
the corresponding column of the Hessians is close to zero.

4 Test Results
At the time of this writing, the implementation of the
method in release 1.25.0 of OpenModelica is nearly com-
plete, except for two features:

• getting numerical Jacobians when symbolically dif-
ferentiated Jacobians are not available;

• scaling the residuals when computing the nonlinear
residual norm

∥∥r(x0)
∥∥

∞

This unfortunately still prevents from testing the imple-
mented method on the initialization problems of physi-
cal models using SI units. In particular, the steady-state
initialization of thermo-hydraulic problems is notoriously
prone to convergence failures, so it could benefit im-
mensely from this type of diagnostics, but unfortunately
it involves badly scaled variables such as pressures in Pa,
as well as medium models such as the IF97 water/steam
model, that cannot be symbolically differentiated.

The implementation was therefore tested on the three
example cases shown in (Casella and Bachmann 2021),
namely a simple thermo-hydraulic system, a nonlinear DC
circuit, and an AC circuit. In all the three cases, the exact
analytic solution of the system is known, so it is possible
to set the start attribute of the unknowns at various dis-
tances from the solution, testing the ability of the proposed
method to highlight the ones that need to be fixed in order
to ensure the convergence of the Newton method. These
test problems use well-scaled units with all the unknowns
having order of magnitude of unity, so there is no need to
scale the elements of

∥∥r(x0)
∥∥

∞
to obtain good results.

The computed values of the αi, Γi jk, and
∣∣σ j j

∣∣ indicators
were very close to the ones that are reported in (Casella
and Bachmann 2021), which were computed by ad-hoc,
manually written Matlab code, thus validating the C-code
implementation in the OpenModelica runtime. In order
to obtain the same results, tearing had to be de-activated,
so that the raw nonlinear system written in Modelica was
passed directly to the diagnostic routine.

The results of one test case are shown here. The test
system is the model of an electrical DC circuit, where the
series connection of N resistors and one diode is connected
to an ideal voltage source, which provides a certain fixed
power P. The system is described by the following set of
implicit equations:

i− is
(

evd/vt −1
)
= 0 (32)

vi−P = 0 (33)

v−
N

∑
j=1

v j − vd = 0 (34)

v j −Ri = 0, j = 1 · · ·N (35)

where is, vt , P, R are known parameters, x =[
i vd v v1 v2 · · · vN

]′, w =
[
i vd v

]′, z =[
v1 v2 · · · vN

]′.
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Note that the system has N+1 linear equations and only
two nonlinear equations: the first is very strongly non-
linear, due to the exponential term in the diode equation,
while the second, containing the voltage-current product,
is only mildly nonlinear. The system has three nonlinear
variables, which are the only ones for which the initial
guess value matters, according to Theorem 3.

Taking is = 6.9144 ·10−13, vt = 25 ·10−3, P= 10.7, R=
1, N = 10, the system has an exact solution i= 1, vd = 0.7,
v = 10.7, v j = 1. If the start attributes of i, vd , and v are
reduced by 10% with respect to the known solution, the
quasi-Newton solvers of the OpenModelica runtime fail
to solve the system.

When activating the Newton Diagnostics runtime flag,
OpenModelica generates the diagnostic output shown in
Fig. 1.

The first table shows results by variable, ranked in de-
scending order of potential criticality; for each variable,
the largest value of Γi jk and

∣∣σ j j
∣∣ that involve it are re-

ported. The result unequivocally points out some very se-
rious problem with the start attribute of vd ; indeed, due
to the exponential term in the diode equation and to the
small value of the vt parameter, an error of 10% in the ini-
tial guess for vd is enough to cause convergence failure.
Conversely, the same 10% error in the start values of i
and v, which are involved in the mildly nonlinear equation
vi−P = 0, is not problematic at all. In fact, increasing the
start attribute of vd from 0.63 to 0.66 is enough to ensure
the convergence of the quasi-Newton algorithm used by
OpenModelica to solve the nonlinear system, without any
need to touch the start attributes of i and v.

The second table shows results by equation, ranked in
descending order of potential criticality. The "Eq no." in-
dex refers to the ordering of the residuals in the runtime
solver, in case one wanted to inspect it in detail, whereas
the "Eq idx" index refers to the index of the equations in
the equation-based debugger (Sjölund et al. 2014), which
displays the solved equations after structural analysis and
symbolic manipulation, see Fig. 2. The diode equation is
clearly indicated as the one creating trouble, while, the
power equation is not creating any significant problem
with the selected start attributes for its variables i and v.

For more details about the other test cases, the inter-
ested reader is referred to (Casella and Bachmann 2021).

5 Conclusions
The convergence failure of Newton’s method during the
solution of nonlinear systems of equations for the initial-
ization of Modelica model is a possible critical outcome of
the attempt of simulating Modelica models with implicit
nonlinear equations, particularly when initializing models
in steady state. Such an occurrence is a serious issue for
Modelica tool users and can be a show-stopper for inex-
perienced users that have no idea how to fix the problem.

This paper presents the implementation in the Open-
Modelica tool of methods originally devised by Casella

and Bachmann (2021) to diagnose such failures and help
resolving them in a user-friendly manner. The presented
implementation outputs lists of potentially problematic
start attributes and nonlinear equations, ranked in de-
scending criticality order.

In the authors’ opinion, the presented methods provide
much needed support in the debugging of failing Mod-
elica models, particularly if coupled with user-friendly
equation-based debuggers such as the one presented in
(Sjölund et al. 2014).

The implementation was successfully tested in some
illustrative test cases taken from Casella and Bachmann
(2021). Unfortunately, at the time of this writing it was
not yet possible to compute the normalized function resid-
uals, as explained at the end of Section 2.2, because
that requires a substantial refactoring of the OpenModel-
ica runtime code. This prevented testing the method on
more complex and realistic Modelica models using SI unit
variables, whose residuals are usually quite badly scaled.
Such a refactoring is currently on-going and planned to be
finalized for the next 1.26.0 release of the software.

Future work will also involve a tighter integration of
these run-time methods with the equation-based debugger
of OpenModelica, which currently only provides static in-
formation elaborated at compile time.

References
Casella, Francesco and Bernhard Bachmann (2021). “On the

choice of initial guesses for the Newton-Raphson algorithm”.
In: Applied Mathematics and Computation 398.125991,
pp. 1–18. DOI: 10.1016/j.amc.2021.125991.

Fritzson, Peter et al. (2020). “The OpenModelica integrated en-
vironment for modeling, simulation, and model-based de-
velopment”. In: Modelling, Identification, and Control 4,
pp. 241–285. DOI: 10.4173/mic.2020.4.1.

Casella, Francesco and Willi Braun (2017-12). “On the impor-
tance of scaling in equation-based modelling”. In: 8th In-
ternational Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, EOOLT 2017. Wessling,
Germany, pp. 3–7. DOI: 10.1145/3158191.3158192.

Sielemann, Michael et al. (2011-03). “Robust Initialization of
Differential-Algebraic Equations Using Homotopy”. In: Pro-
ceedings 8th International Modelica Conference. Ed. by C.
Clauss. Modelica Association. Dresden, Germany, pp. 75–85.
ISBN: 978-91-7393-096-3. DOI: 10.3384/ecp1106375. URL:
http://www.ep.liu.se/ecp/063/010/ecp11063010.pdf.

Sjölund, Martin et al. (2014-03). “Integrated Debugging of
Equation-Based Models”. In: Proceedings 10th International
Modelica Conference. The Modelica Association. Lund,
Sweden, pp. 195–204. ISBN: 978-91-7519-380-9. DOI: 10 .
3384/ECP14096195.

Mattsson, S. E., H. Elmqvist, and M. Otter (1998). “Physical
system modeling with Modelica”. In: Control Engineering
Practice 6.4, pp. 501–510.

Modelica Association (2023-02). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.6. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.6/MLS.
html.

Session: Simulation and Optimization in Track for General Modelica 

DOI Proceedings of the 16th International Modelica&FMI Conference  115 
10.3384/ecp218109 September 8-10, 2025, Lucerne, Switzerland   

https://doi.org/10.1016/j.amc.2021.125991
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.1145/3158191.3158192
https://doi.org/10.3384/ecp1106375
http://www.ep.liu.se/ecp/063/010/ecp11063010.pdf
https://doi.org/10.3384/ECP14096195
https://doi.org/10.3384/ECP14096195
https://specification.modelica.org/maint/3.6/MLS.html
https://specification.modelica.org/maint/3.6/MLS.html


Figure 1. OpenModelica diagnostic output on the DC circuit example: initial guess values and equations most critical for conver-
gence are shown, ranked in descending order of criticality (rightmost column).

Figure 2. OpenModelica declarative debugger output on the DC circuit, each equation index (Eq idx) is shown in the first column.
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