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Abstract

Tasks involving Modelica models often do not simply in-
vestigate the dynamic behavior of a system, but rather also
want to characterize possible optimal control strategies ac-
cording to suitable criteria. Unfortunately, since Model-
ica does not support out-of-the-box optimization features,
users are often forced to use other tools to code again the
system model for optimization studies. For this reason, the
authors present Modelica2Pyomo, an open-source tool to
translate Modelica models into Pyomo optimization pro-
grams, leveraging on their flat Base Modelica represen-
tation. This work illustrates the main features of Model-
ica2Pyomo, including automatic variables and constraints
normalization, expressions manipulation and initialization
via Modelica simulation results. To demonstrate the capa-
bilities of this framework, two examples are showcased,
including an industrial-grade open-loop optimal control
problem of a solid-oxide fuel cell.

Keywords: Modelica, Model Conversion, Base Modelica,
Pyomo, Dynamic Optimization

1 Introduction

Over the years, the Modelica language has established it-
self as one of the main tools for the formulation of system-
level models for dynamic simulation purposes. Even
though the size and the complexity of the systems that
can be simulated with this language has increased dramat-
ically since Modelica’s inception, its object-oriented and
equation-based nature, together with its drag&drop flow-
sheeting feature, significantly tames the challenges faced
in the formulation of such models. Moreover, the possi-
bility of highly customizing pre-existing and newly coded
models, makes Modelica a suitable choice for academy
and industrial R&D users that study bleeding edge tech-
nologies (see for example De Pascali and Casella (2024)).

Such studies often do not consist solely of dynamic sim-
ulations but they rather aim at characterizing both the sys-
tem behavior and apply optimization routines to formu-
late, for example, optimized control strategies according
to specific criteria. Since Modelica does not provide out-
of-the-box optimization features, this second task requires

a different framework. Often, users resort to different soft-
ware and need to create from scratch a copy of the Model-
ica model in another programming language. This process
requires modeling the same system twice and is prone to
manual translation errors.

For this reason, the Modelica community spent quite
some effort to build a bridge between the simulation and
the optimization worlds. The main contributions were ini-
tially brought by the open-source software JModelica.org
(Akesson et al. 2010) and OpenModelica (Fritzson et al.
2020), both through the implementation of the Optim-
ica framework (Akesson 2008). Optimica extends Mod-
elica with language constructs that enable the formula-
tion of optimization problems based on Modelica mod-
els. Optimica-enabled tools communicate with optimiza-
tion solvers such as IPOPT directly or through the CasADi
framework (see Wichter and Biegler (2006) and Anders-
son et al. (2019), respectively).

This approach has several advantages over the manual
translation approach. Most importantly, the system model
is written only once and in an equation-based object-
oriented framework: this avoids the possibility of intro-
ducing errors and makes it easier to model systems that
would be too complex to code in a flat equation-based
framework. Moreover, the resulting optimization problem
benefits from the pre-processing executed by the Modelica
compiler on the original Modelica model before its trans-
lation, e.g. alias elimination, index reduction, parameter
evaluation, etc., to further reduce the size and the com-
plexity of the problem that is fed to the underlying opti-
mization solver. Finally, Modelica GUIs can support the
formulation of complex models with the drag&drop flow-
sheeting feature mentioned above, easing the user task of
connecting different units and components to build the fi-
nal model to optimally control.

Unfortunately, the open-source JModelica.org develop-
ment was discontinued in 2019 in favor of the commercial
cloud-based software Modelon Impact, which includes the
Optimica Compiler Toolkit; the development and mainte-
nance of optimization features in OpenModelica mostly
stopped around 2016, so there is currently no available
industrial-strength open-source solution to solve dynamic
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optimization problems on Modelica models.

To fill this gap, the authors present Modelica2Pyomo,
an open-source tool developed in Python that allows to
automatically translate a Modelica model into an equiva-
lent Pyomo model, that can be used to formulate and solve
optimization tasks with state-of-the-art solvers.

The input of the tool is a Modelica model, possi-
bly using advanced object-oriented features such as in-
heritance, a-causal connections, hierarchically structured
models with parameter propagation, expandable connec-
tors, stream connectors, inner/outer objects, etc. The
model is first flattened by the open-source OpenModel-
ica tool into an equivalent Base Modelica (Kurzbach et
al. 2023) representation, that basically contains a set of
variable declarations and a corresponding set of (implicit)
differential-algebraic equations (DAEs). As a matter of
fact, the case of the Modelica2Pyomo tool is a nice appli-
cation of the main aim of Base Modelica, which is "to pro-
vide a much lower barrier of entry to the Modelica world,
since writing a Base Modelica compiler or interpreter is
a much easier task than writing a full-fledged Modelica
compiler” (OpenModelica Consortium 2025).

Pyomo (see Bynum et al. (2021)) is an established
open-source software package for formulating and solv-
ing large-scale optimization problems in Python, with a
clear to read semantics. Pyomo’s modeling constructs can
be used to express a wide range of optimization problems,
including nonlinear and mixed-integer programs. In par-
ticular, the package Pyomo.DAE by B. Nicholson et al.
(2018) allows to formulate the differential-algebraic con-
straint equations of optimal control problems in a declar-
ative way, which is very close to flat Base Modelica code.
The optimal control problem is then automatically trans-
formed by Pyomo into a form suitable for optimization
solvers by means of direct collocation or finite difference
discretization methods, including the automatic genera-
tion of sparse Jacobians and Hessians.

The output of the tool is a configurable Python script
containing the generated Pyomo model with the same
variables and equations as the original Modelica model.
The formulation of the actual optimization model, i.e.,
the objective function, additional degrees of freedom, and
constraints of the optimization problem can be subse-
quently added manually to perform a wide range of tasks
and analyses.

The main advantage of the Pyomo framework com-
pared to other solutions (e.g., CasADi and Optimica
Compiler Toolbox) lies in the wide range of supported
optimization solvers, both open-source and commercial,
which allows to pick the best-suited one for the specific
case at hand. The approach proposed in this work thus
offers more flexibility compared to the available alterna-
tives. In some cases, commercial optimization solvers
may be required to tackle particularly challenging prob-
lems; on the other hand, the remaining part of the required
toolchain is entirely open-source.

A limitation of the current implementation of Model-

ica2Pyomo is that it does not yet benefit from the symbolic
manipulations such as alias elimination and index reduc-
tion, since the Base Modelica code can currently only be
generated by the OpenModelica front-end, whereas these
operations are carried out by the back-end. Nonetheless,
the complex examples presented in this work can be suc-
cessfully run without such manipulations. Recents re-
sults on the impact of symbolic manipulation of the model
equations on the efficiency and convergence robustness of
optimization solvers could also be considered, see e.g.,
(Naik et al. 2025) and (Parker et al. 2022). Such manipu-
lations could be performed on the Pyomo side, but some
of them could also be carried out on the Modelica tool
side, if they are already implemented for the optimization
of simulation code.

This paper is organized as follows: Section 2 describes
the Modelica2Pyomo tool in terms of both usage and im-
plementation. Section 3 describes two test cases, showcas-
ing the flexibility of the tool and demonstrating the level
of complexity of the Modelica models that can be success-
fully handled. Section 4 draws the conclusion of this work
and outline possible future developments.

The code of Modelica2Pyomo, together with the code
of the examples showed in this paper, is available in (De
Pascali and Casella 2025).

2 The Modelica2Pyomo tool

The Modelica2Pyomo tool is a Python script that trans-
lates a Modelica model into an equivalent Pyomo model.
In its current form, the tool accepts as input the flattened
Base Modelica representation of a square Modelica sim-
ulation model with as many equations as unknown vari-
ables, with all the input variables bound to some expres-
sions that only depend on time. The corresponding gen-
erated Pyomo model is a degenerate dynamic optimiza-
tion model with a trivial objective function, no free inputs,
and no inequality constraints, whose solution corresponds
to the simulation of the original Modelica model. The
comparison between the simulation results of the Mod-
elica model and the solution of this degenerate dynamic
optimization problem allows to verify that the DAEs have
been correctly transcribed by the whole toolchain.

One can then formulate actual dynamic optimization
problems by manually editing the generated Pyomo code:

* replacing the objective function with the desired one;

* removing the equations that determine the time-
dependent system inputs, thus freeing the inputs that
should be determined as a result of the optimization
problem;

* optionally adding inequality constraints to the sys-
tem variables.

2.1 Tool inputs

To generate the equivalent Pyomo model, Model-
ica2Pyomo requires as input the flattened Base Modelica
code of the Modelica model and optionally the result file
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of a Modelica simulation of the model to provide an ini-
tial guess to the solver. Employing Base Modelica code as
input allows to process a flat representation of the Model-
ica model which only contains lists of variables, functions
and record declarations, equations and initial equations,
without bothering about object-oriented features such as
modularity, connectors, inheritance, etc. This greatly sim-
plifies the writing of the Modelica2Pyomo tool.

Additionally, in order to minimize the tool development
work, the generated BaseModelica code needs to fulfill
some additional requirements, which are obtained by flat-
tening the model with OpenModelica and setting some
special flags in the compiler:

* —d=evaluateAllParameters replaces all param-
eter instances in the equations with their literal nu-
merical value; this allows to skip the parameter sec-
tion of the model entirely, as well as the handling
of dependencies among parameters enforced by non-
trivial parameter-binding expressions; it also pre-
vents conditional equations and expressions depend-
ing only on parameters to show up in the equation
that will be passed to Pyomo;

* ——frontendInline enables inlining of functions
(i.e., the body of a function is inserted in all places
where the function is called, swapping the formal in-
puts with the actual inputs), to make the resulting
model fully equation-based.

® —--baseModelicaOptions=moveBindings
moves all the binding equations of Real variables
into the equation section, so there is no need to
parse binding equations separately from regular
equations;

e — —baseModelicaOptions=scalarize rolls out
array variable declarations and array equations (in-
cluding for loops) into their scalar elements, so
that each variable declaration corresponds to a scalar
variable and each equation is a scalar equation in the
Base Modelica code; this also minimizes the tool de-
velopment effort, because there is no need to handle
arrays, slicing, iterators, etc., which are all handled
upstream by the OpenModelica tool.

2.2 Tool capabilities and limitations

Modelica2Pyomo can handle Modelica models of arbi-
trary complexity from an object-oriented point of view:
features such as models defined by instantiating compo-
nents, parameter passing, a-causal connectors, compos-
ite connectors, stream connectors, expandable connectors,
inner/outer components, inheritance, replaceable classes
and components, N-dimensional arrays of variables and
components, are all supported. The availablity of a Base
Modelica interface with a state-of-the-art compiler such as
OpenModelica makes it possible to off-load the process-
ing of all these features onto the Modelica tool, so that the
implementation of the Modelica2Pyomo tool can be kept
very lean, while remaining always be up-do-date with the

latest additions to the Modelica language, as long as an
updated version of the Modelica tool is used.

This approach can make Modelica2Pyomo a very at-
tractive tool for the Pyomo community. Pyomo indeed in-
cludes several features for the handling of modular, struc-
tured models, but they are by no means as powerful as
those made available by the Modelica language. In the au-
thors’ opinion, it would be a waste of time to re-invent yet
another full-fledged object-oriented modelling language
for Pyomo — a much more efficient approach is to re-use
Modelica as a modelling front-end (including drag-and-
drop graphical user interfaces such as OMEdit) and then
use OpenModelica for flattening and Pyomo as an opti-
mization back-end. Modelica2Pyomo is meant to be a first
step in this direction.

The main limitation on the models that Model-
ica2Pyomo can handle stems from the capabilities of the
Pyomo.DAE tool it is based upon. Pyomo.DAE can only
take as input purely equation-based index-1 DAEs, de-
scribed by scalar variables and equations. Hence, the up-
stream Modelica tool must be able to reduce the original
model to that form. This entails some restrictions in the
set of supported models.

First and foremost, the original Modelica model must
be purely continuous-time; hence, it should not con-
tain discrete or clocked variables. Additionally, Py-
omo.DAE expects the equations to be continuously twice-
differentiable; this also rules out conditional expression
and equations, which are potentially not differentiable,
and which in any case have no counterpart in Pyomo.DAE.

Conditional expression could be supported by Model-
ica2Pyomo by replacing expressions such as if a > b
then c else d with analytic expressions such as

% {d%—c—l—tanh <a£_b> (d—C)] ;

where € is a suitably small constant; with the same logic,
conditional equations such as

(M

if a > b then

X =Y
else

zZ = W
end if;

could be approximated with the following smoothed ap-
proximation to a complementary condition:

a—>b
Z+x—w—y-+tanh (£> (z+y—w—x)=0. (2)

This feature is not yet implemented at the moment, but it
could be easily added in the future.

Last, but not least, Pyomo can only handle index-
1 DAE models; at the time of this writing this im-
plies that the original Modelica model also has to be
index-1, because OpenModelica currently outputs the
flat Base Modelica code immediately after the flatten-
ing phase, prior to structural analysis and index reduc-
tion. It is possible to check that this condition holds by
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compiling the Modelica model for simulation with the
flags - -preOptModules—-=removeSimpleEquations
—-d=bltdump, which reports whether index reduction is
necessary to obtain an index-1 system. This restriction
may be lifted in the future if OpenModelica becomes ca-
pable of outputting index-reduced Base Modelica code.

As mentioned at the beginning of Section 2, the orig-
inally supplied Modelica model must have prescribed in-
put variables, which will then be freed and determined as
the result of the optimization problem. It is possible, and
in fact recommended, to also provide a reference simu-
lation result file, obtained with those prescribed input val-
ues, which will be employed to provide an initial guess for
the optimal solution, considerably improving the chances
of convergence of the optimization problem. If no result
file is supplied, the variables will be initialized to zero.

As a final remark, the Modelica2Pyomo tool was
mainly designed to solve dynamic optimization problems,
where the constraint equations are DAEs. However, as
a special case, it can also solve static optimization prob-
lems, where all the constraint equations are purely alge-
braic. This can be helpful in a number of application
fields; for example, in the case of thermal power gen-
eration systems, it can be first used to compute optimal
(i.e., maximum efficiency) steady-state off-design operat-
ing points, and later to compute optimal (i.e., fast) tran-
sients to move between them at maximum speed while
respecting operational constraints such as maximum tem-
perature gradients.

2.3 Notable Modelica2Pyomo features

A crucial feature offered by Modelica2Pyomo is the auto-
matic normalization of variables, constraints and objective
function.

One aspect of declarative equation-based modeling is
that the use of dimensionally consistent SI units for the
physical variables is preferable; however, in many appli-
cation areas this can lead to systems of equations which
are badly scaled from a numerical point of view. As ex-
plained by Casella and Braun (2017), even though this is
usually not declared explicitly in the literature and in the
documentation about optimization solvers, the implicit as-
sumption taken by their developers is that the unknowns of
the problem have an order of magnitude close to unity or
at least not too far from that, e.g. in the range 1073 — 10°.
The optimization of badly scaled models of significant
complexity are inevitably bound to fail, a fact further con-
firmed by the authors’ experience with convergence fail-
ures before scaling was included in Modelica2Pyomo.

For these reasons, the normalization procedures de-
scribed in Casella and Braun (2017) are implemented in
Modelica2Pyomo. For the variables, the normalization
value is chosen as the maximum value between the as-
signed nominal value and the initialization value assigned
to the variable in the first time instant.

Regarding the constraint residuals and the objective
function, again as suggested by Casella and Braun (2017),

they are scaled by the factor

3)

fnorm = mjax Ej-xj,norm
where x; are the unknown variables and x; o, are their
normalization values. The lines of code responsible for
the variable normalization are placed after each variable
declaration while the code for the constraints and objec-
tive function normalization is included in the Pyomo script
right before the solver declaration at the end of the file.
Modelica2Pyomo offers also an expression manipula-
tion feature that consists in the replacement of logarithm
expressions with a more suited equivalent formulation.
Since logarithms are not defined for arguments equal or
less than zero, the solvers will encounter issues if their
argument become negative during Newton-Raphson iter-
ations. An alternative and equivalent formulation can be
introduced to overcome this issue:

{ln(x) —u

exp(u)—x=0 @

The logarithm is replaced by an auxiliary variable u and
the second equation, which does not suffer from the same
domain limitations of the logarithmic function, is enforced
to replace the logarithm expression.

Concerning the initial guess values for the optimization
problem, Modelica2Pyomo offers three options:

1. no initial guesses are employed (all initial guesses
are zero);

2. each variable is initialized to a constant value ob-
tained from the results file of the Modelica simula-
tion at a specified time instant;

3. each variable is initialized with the time evolution of
the corresponding Modelica variable obtained from
the results file of a suitable reference simulation.

Finally, if a dynamic optimization problem is formu-
lated, two different options are provided to specify its ini-
tial conditions:

1. employ the initial equations of the Modelica model;

2. fix the initial values of the variables appearing in the
Modelica derivative operator according to the values
reported in the results file of the simulation.

The first option is in principle more flexible, since it covers
those cases where the initial condition is not fixed a priori
but is also part of the optimization problem; on the other
hand, difficult-to-solve initialization problem could lead
to convergence problems of the optimization solver.

The second option only works in the case of initial con-
ditions that are fixed for the optimization problem, with
the advantage that it can leverage on advanced features of
the Modelica tool (e.g., homotopy) to successfully solve
hard initialization problems. This is essential in cases such
as the steady-state initialization of thermal power genera-
tion systems.
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Modelica2Pyomo is organized in several functions, which
are all executed through the m2p() function. The argu-
ments that should be passed to this function, together with
the paths of the Modelica model and the optional results
file, are the following:

Modelica2Pyomo script overview

* a string with the name of the Python file that will
contain the Pyomo model;

* a string with the name of the solver to be employed;
* a string specifying whether the generated problem
will be Static or a Dynamic optimization program;

* in case of a dynamic optimization problem, a string
specifying whether the initial equation of the Model-
ica model should be translated or the initial values of
the states should be retrieved from the results file;

* in case of a dynamic optimization problem, the start
and finish time instants of the simulation;

* in case of a dynamic optimization problem, a dictio-
nary containing information about the discretization
method (e.g. finite differences or collocation) and the
respective settings (e.g., number of finite elements,
discretization scheme, etc.);

* a flag to enforce the min/max attributes in the im-
ported reference simulation file;

¢ a flag to enable expressions manipulation, e.g., loga-
rithms transformations;

* astring containing the Pyomo code to specify the ob-
jective function;

* optional strings containing additional constraints and
utility Python commands to be inserted before and
after the solver definition lines of the Pyomo model.

Once it is run, the tool performs the set of operations
that is briefly described below. Each step roughly cor-
responds to a Python function, which adapts to the user
requirements according to the input described above.

1. read the Base Modelica file and store each line in a
list;

2. store in a Python dictionary with the DyMat Python
package by Jorg (2011) the numerical results of a
Modelica simulation of the system;

3. remove from the Base Modelica code comments and
other characters which are not related to the model
description;

4. identify, if present, the lines related to TimeTables
and CombiTimeTubles declarations, store the tables
and instantiate a string containing their Pyomo code;

5. analyze the variable section of the Base Modelica
model and store name, min, max and nominal val-
ues of each variable;

6. employ the information of the previous step and the
DyMat results dictionary to build a string contain-
ing the necessary code to instantiate the variables of
the model, setting min/max bounds, initial values and
normalization value employing the Pyomo syntax;

7. analyze the equation section of the Base Modelica
model and instantiate a string containing the equa-
tions of the problem using the proper Pyomo syntax.
In addition, look for the following cases:

* if a variable is set equal to a number, use the
Pyomo fix variable attribute to model the equa-
tion instead of the original formulation;

* if a logarithm expression is present and the op-
tional flag is enabled, store the logarithm ar-
gument and replace the logarithm as shown in
Equation (4);

* if a time derivative operator is present, store the
associated variable to create a list of the states;

8. analyze the initial equation section and instantiate a
string with additional equations to define the Model-
ica parameter characterized by the fixed = true at-
tribute, which, otherwise, would be missing their
defining equation;

9. use the list of state variables created in the previous
step to instantiate the respective time derivatives with
the Pyomo DerivativeVar object;

10. analyze the initial equation section to instantiate a
string featuring the initial equations of the Pyomo
optimization problem;

11. write on a .py file the Pyomo code contained in the
string created in the previous steps together with the
objective function, constraints and objective function
normalization code, solver settings and other custom
lines included as arguments for the tool.

To execute many of the steps listed above, Model-
ica2Pyomo employs regular expressions through the
Python native re and regex (Matthew 2025) packages to
search for predefined patterns in the rows of the Base
Modelica file and stores information about variables and
constraints according to the specification of the Base Mod-
elica language. Moreover, the quoted identifiers used for
Base Modelica variables are adapted to remove the quotes,
the Modelica dot notation, square brackets and commas,
which are all replaced with underscores in the Pyomo
model in order to comply with Python syntax rules.

As an example, Appendix A reports a simple, first-order
model formulated in Modelica, its Base Modelica flat rep-
resentation, and the corresponding Pyomo script gener-
ated by the Modelica2Pyomo tool.

3 Test cases

In this Section, two examples of Modelica model transla-
tion are showcased; both models are converted into open-
loop dynamic optimal control problems, which are then
successfully solved by the Pyomo framework. The first
example is a simple, conceptual model that can be useful
to understand how the tool works. The second example,
instead, is a full-fledged industrial-grade system model,
aimed at demonstrating the capability of the tool to handle
real-life complexity models.
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Boiler

Cold flow source

Hot flow source Pressure sink

Figure 1. Modelica diagram of the s-CO; boiler and turbine
model.

The corresponding BaseModelica flat models, which
are the actual inputs of the tool, are available in the Exam-
ples directory of the Modelica2Pyomo package (De Pas-
cali and Casella 2025).

3.1 Conceptual s-CO; boiler-turbine system

The first test features a conceptual Modelica model of a
supercritical CO, boiler-turbine system. Figure 1 shows
the diagram of the model. A hot flue gas stream heats up
a cold stream of supercritical CO, which is expanded in a
turbine with a prescribed outlet pressure to produce elec-
trical power. The two streams are generated by ideal mass
flow rate sources and their flow rate and temperatures can
be changed arbitrarily. The medium model for supercrit-
ical CO; is the implicit Peng-Robinson equation of state,
written in the equation section of the model.

In the first test case, the flow rates are fixed to constant
values and are embedded in the optimization problem with
the Pyomo fix attribute. The selected simulation time is
500 s and direct collocation with 100 finite elements, each
with 3 collocation points, is the employed discretization
method. Since the Modelica model is a square system
having the same number of variables and equations, the
translated optimization problem does not feature degrees
of freedom, thus its optimal solution coincides with the
simulated Modelica trajectory.

The coincidence of the two solutions demonstrates that
the Modelica model was successfully translated into an
equivalent Pyomo model, having the same solution.

To formulate a meaningful optimization problem, first
two degrees of freedom are introduced, by unfixing the two
mass flow rate variables (wpo and weoiq), then a suitable
cost function is chosen to guide the plant along transient
conditions, as follows. The system is required to track
a time-varying power output Py setpoint while keeping
the turbine inlet temperature TIT constant. To this end,
the following objective function is employed, with over-
barred variables being the required setpoints, k indicating
the simulation time step and coefficients, A; being suitable
weights for the different components of the expression:

min ¥ (A1 - (Pur (k) — Pur (k) )
%

+A, - (TIT(k) — TIT(k))? (5)
+A3 - (Whot(k) — Whot (k — 1))?
+Ay- (Wcold (k) - Wcold<k - 1))2)
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Figure 2. Py, and TIT normalized profiles.
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Figure 3. wyo and weolg normalized profiles.

The third and fourth terms of the objective function
in (5) limit the rate of change of the optimization vari-
ables, moderating the control action.

Figure 2 shows that both Py and TIT follow accu-
rately their setpoints, while Figure 3 shows the optimiza-
tion variables wpo and wegg, that, as prescribed by the
objective function, do not show abrupt variations. This
first example shows that this class of simulation problems
can be effectively translated into a nonlinear optimization
problem, that features roughly 10000 variables and con-
straints. The most time consuming operation is the ob-
jective function normalization routine, while the Model-
ica to Pyomo compilation, the variables and constraints
instantiation, the constraints normalization and the solver
overhead is negligible. Table 1 summarizes these consid-
erations and also shows a comparison between the open-
source solver IPOPT and the commercial closed-source
solver CONOPT 4.
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Table 1. Performance results for the s-CO, boiler-turbine test

Time [s]
Modelica2Pyomo model
. 2.3
translation
Pyomo variables and 02
Constraints instantiation ’
Constraints normalization 0.01
Objective function 12
normalization
Solver: IPOPT 0.3
Solver: CONOPT 4 0.8
Interconnecting
plate — N
O —O
\V/ H B Cathode
hannel
. C.
Solid
membrane T u
Amom

O

Anode channel E =

©

Figure 4. Modelica diagram of the solid-oxide fuel cell model.

3.2 Solid-oxide fuel cell

While the Section above showcased a toy example with
relatively few equations, the goal of this Section is to
present a relevant industrial case study. To this end, the
1-D solid-oxide fuel cell (SOFC) model presented by De
Pascali, Donazzi, et al. (2023) and employed by De Pas-
cali and Casella (2024) to model a complex thermal power
generation system, is fed to Modelica2Pyomo to formu-
late an open-loop optimal control problem. The model
has about 9000 variables and equations. Note that the full
source code of the model is publicly available on GitHub.
The model of the SOFC (see the Modelica diagram in
Figure 4) is extremely nonlinear, due to the presence of
strongly coupled nonlinear thermal, chemical and electro-
chemical phenomena. These describe the conversion at
high temperatures of natural gas into hydrogen and its ox-
idation with oxygen ions to produce water, with the fi-
nal aim of generating electrical power without resorting to
fuel combustion.

The extensive use of object-oriented modeling tech-
niques, that are necessary to tame the complexity of the
formulation of such a challenging model, would make
an hypothetical manual translation into an optimization
framework such as Pyomo.DAE quite difficult, time con-
suming, and error-prone. This is exactly the reason
that motivated the work presented in this paper: Model-
ica2Pyomo is capable of automatically converting such a
complex Modelica model featuring 10000 equations and

160 states into a working Pyomo model.

As in the previous case, to formulate a dynamic opti-
mization problem, direct collocation is used to discretize
in time the simulation: for a 120 s simulation with 35 time
steps, each with 3 collocation points, a NLP with roughly
850000 equality constraints is formulated. The goal of this
test is to evaluate a trajectory for the SOFC extracted cur-
rent / to optimally follow an electrical power output Psorc
setpoint, while constraining the maximum allowed rate of
change of the temperatures T of the fragile ceramic solid
membrane of the SOFC. The following constraints is thus
added manually to the Pyomo model for all the tempera-
ture variables of the SOFC solid membrane:

dTmax

T(k)—T(k—1) < ‘At (6)

dTnax
dt

Tk)—T(k—1)> At @)
where dT,,./dt is the maximum temperature rate of
change prescribed by fuel cell manufacturers and At is the
length of the simulation time step. In this test, dT,q,/dt
is varied to show how the solver is forced to follow less
accurately the power setpoint Psorc when its variation is
too steep. The following objective function is chosen:

min Z (B1 - (Psorc (k) — Psorc(k))?
k

B, - (I1(k) —I(k— 1)) ®)

+B3- (T (k) =T (k—1))?)

Also in this case, the coefficients B; are employed to
weight the contributions of the different terms of the ob-
jective function and the last two components are employed
to moderate the control action.

Figure 5 shows the SOFC power output considering
two different values for d7,,./dt: in the stricter case,
dTyay/dt = 0.2 K /s, while in the milder case, this value is
three times higher. As expected, the control performance
are worse in the stricter case, and the power setpoint is
followed less accurately. Figure 6 shows the trends of the
temperature of the solid membrane at the near the outlet of
the SOFC, which respect the prescribed maximum rate of
variation. Figure 7 shows the current / extracted from the
fuel cell, which is the manipulated variable determined by
the optimization problem.

Also in this much more challenging test case, Model-
ica2Pyomo is able to formulate a meaningful and working
Pyomo model with no effort by the end user except for the
manual inclusion of additional constraints for the mem-
brane temperatures and the objective function. Compared
to the previous example, Table 2 shows comparable com-
pilation and instantiation times, while the time required
by the solvers is higher, given the increased size of the
optimization problem. Notice that the time employed to
normalize the objective function is lower, since this sim-
ulation features less time steps, compared to the previous
one. Moreover, IPOPT was not able to solve this model,
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Table 2. Performance results for the solid-oxide fuel cell test

Time [s]

Modelica2Pyomo model 37
compilation ’

Pyomo variables and 6.7
Constraints instantiation ’

Constraints normalization 1.3

Objective function 0.7
normalization ’

Solver: CONOPT 4 185

possibly indicating that a feasible path, active-set solver
like CONOPT might be more suited for this class of prob-
lems, compared to an interior point method like IPOPT.

4 Conclusion

In this paper, the Modelica2Pyomo tool was presented.
The aim of this tool is to create an open-source, flexi-
ble, and lightweight bridge between Modelica and the op-
timization world.

Modelica2Pyomo is a Python script that translates
Modelica models into Pyomo models, exploiting the
OpenModelica tool for flattening, the new Base Modelica
language for flat Modelica model representation, and the
Pyomo.DAE tool for writing DAE constraints for Pyomo
in a high-level fashion. The flat, scalarized Base Model-
ica representation obtained through OpenModelica uses a
very nimble set of language constructs, that can be effi-
ciently handled by regular expressions to find Base Mod-
elica language patterns that are converted into Pyomo ex-
pressions, without the need of embarking in the traditional
workflow of compiler development, with parsers, lexers,
abstract syntax trees, etc.

This approach allowed to drastically cut the required
development and maintenance effort from the tens of
person-years required for the development of a full-
fledged Modelica compiler down to a few person-months
effort, a nice demonstration of the potential that can be
unlocked by the forthcoming Base Modelica standard.

The Modelica2Pyomo tool produces the Pyomo code
corresponding to the set of DAE constraint equations, in-
cluding their proper scaling, the transformation of some
expression to more numerically robust equivalent ones,
and the capability of importing intial guesses for the NLP
solver from reference simulation results. The actual op-
timization problem (constraints and objective function) is
then directly formulated using the Pyomo tool, which al-
lows flexible access to a range of different solvers, both
open-source and commercial.

The results obtained in two example test cases were re-
ported, showing the capabilities of the proposed frame-
work, which is able to successfully convert industrially-
relevant complex Modelica models into nonlinear opti-
mization programs with satisfying performance.
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The code of the tool is available as open source under
GPL v3 license. Contributions for its further improvement
and developments are welcome.

Future research directions will extend the range of
Modelica constructs that can be handled by the tool, e.g.,
by handling conditional expressions and equations by reg-
ularization, improve the numerical robustness of the trans-
lated Pyomo.DAE model, as well as test the framework
on even more challenging problems, e.g., optimizing tran-
sients of an innovative power plant that features the fuel
cell model studied in this work as one of its compo-
nents. One could also experiment with the use of opti-
mization techniques for solving hard steady-state initial-
ization problems, using Pyomo as a protoyping environ-
ment. It would also be interesting to explore the optimal
control of Modelica systems including time delays and
discrete variables, as well as optimization with embedded
DAE solvers (shooting methods).

Modelica2Pyomo clearly demonstrates how Base Mod-
elica can successfully enable the development of lean tools
that employ Modelica models for uses other than simula-
tion. The authors hope that this example further motivates
the standardization effort of the Base Modelica language,
as well as its improved support in Modelica tools.
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import idaes

from pyomo.environ import =x

from pyomo.core.expr import iden
from pyomo.dae import (Continuou
import numpy as np

import re

m = ConcreteModel ()
m.scaling_factor = Suffix(direct
m.time = ContinuousSet (initializ
dt = 25/(10+1)/3

# Woriting the code for variable

tify_variables, differentiate
sSet, DerivativeVar)

ion=Suffix.EXPORT)
e = np.linspace(0,25,10+1)

instantiation

m.u = Var(m.time, initialize = 2.0, within = Reals)
m.scaling_factor[m.u] = 1/max(1.0,2.0)

m.x = Var(m.time, initialize = 1.0, within = Reals)
m.scaling_factor[m.x] = 1/max(1.0,1.0)

m.yl = Var(m.time, initialize = 30.0, within = Reals)
m.scaling_factor[m.yl] = 1/max(50.0,30.0)

m.y2 = Var(m.time, initialize = 15.0, within = Reals)
m.scaling_factor[m.y2] = 1/max(30.0,15.0)

# Instantiating the variables for the time derivatives
m.DERx = DerivativeVar (m.x, initialize = 0.4)
m.scaling_factor[m.DERx] = m.scaling_factor[m.x]xdt

# Applying time discretization through direct collocation to the problem

discretizer = TransformationFact
discretizer.apply_to(m, nfe=10,
timeSteps = [h for h in m.time]

ory(’dae.collocation’)
ncp=3, scheme=’ LAGRANGE-RADAU’)

# Instantiating the problem constraints

def _constrl(m,t):
return m.y2[t] == 0.5 % m.yl[t]

m.constrl = Constraint (m.time, rule = _constrl)

m.u.fix(2.0)
def _constr2(m,t):

if t ==

return Constraint.Skip

return 5.0 * m.DERx[t] == m.u[t] - m.x[t] + (m.ul[t] - m.x[t]) xx 2.0
m.constr2 = Constraint (m.time, rule = _constr2)

def _constr3(m,t):

return m.yl[t] == 30.0 * m.x[t]

m.constr3 = Constraint (m.time, rule = _constr3)

m.obj = Objective (expr = 1, sense = minimize)

# Code for the initial condition
def _init (m):

yield m.x[0] == 1.0
yield ConstraintList.End
m.init_conditions = ConstraintLi

# Constraint normalization
for constr in m.component_object

varList = list (identify_variables (constr[list (constr.keys()) [0]].body))

listF = []

for var in varList:

varName = re.sub(r’\[.*\]", "',
varName = "m." + varName

listF.append(abs (differentiate (constr[list (constr.keys()) [0]].body,

varName) ]))

s of the dynamic optimization problem

st (rule=_init)

s (Constraint, active=True) :

str (var))

m.scaling_factor[constr] = 1/max(listF)
# Solver settings and problem solution

scaled_model = TransformationFactory (’core.scale_model’) .create_using(m)

solver = SolverFactory ("ipopt")

results = solver.solve(scaled_model, tee=True)

TransformationFactory (' core.scale_model’) .propagate_solution (scaled_model,

wrt=var) /m.scaling_factor[eval (
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