
Enhancing Collocation-Based Dynamic Optimization through
Adaptive Mesh Refinement

Linus Langenkamp 1 Bernhard Bachmann 1

1Institute for Data Science Solutions, Bielefeld University of Applied Sciences and Arts, Germany,
{first.last}@hsbi.de

Abstract
Direct collocation-based dynamic optimization plays an
important role in the optimization of equation-based mod-
els. With this approach, continuous problems are tran-
scribed into sparse nonlinear programs (NLPs) that can
be solved efficiently. The open-source Modelica envi-
ronment OpenModelica provides an implementation us-
ing Radau IIA collocation, but has major limitations,
such as the lack of parameter optimization, no adaptive
mesh refinement, and no support for higher-order inte-
gration schemes. This paper presents (1) a comprehen-
sive reimplementation that addresses these limitations and
(2) a novel ℎ-method mesh refinement algorithm. Imple-
mented in the custom Python / C++ optimization frame-
work GDOPT, the approach demonstrates significant per-
formance improvements, solving typical problems 2 to 3
times faster than OpenModelica under equivalent condi-
tions. Using the proposed mesh refinement algorithm, the
framework correctly identifies non-smooth regions and in-
creases resolution accordingly, requiring only a small in-
crease in computation time. The implementation lays the
foundation for a future integration into the OpenModelica
toolchain.
Keywords: Dynamic Optimization, Direct Collocation,
Adaptive Mesh Refinement, Nonlinear Programming

1 Introduction
Dynamic Optimization has application in many different
fields, including engineering, systems biology, economics,
aerospace engineering and other disciplines where physi-
cal models are described by differential-algebraic equa-
tions (DAEs). A widely adopted strategy for solving such
problems is direct collocation, a method that discretizes
the time horizon and replaces the states by polynomials
that satisfy the differential equations at discrete nodes.
This approach leads to a sparse nonlinear program (NLP)
that can be solved with state-of-the-art nonlinear opti-
mizers. The accuracy of the approach relies on a well-
designed discretization mesh. While smooth trajectories
can be approximated with fewer intervals or higher degree
polynomials, non-smooth behavior, e.g. rapid transitions,
switching points or nonlinearities, demands high resolu-
tion and fine meshes. Adaptive mesh refinement methods,
including ℎ- (interval length adjustment), 𝑝- (polynomial

degree adjustment), and ℎ𝑝-strategies (hybrid), are essen-
tial to efficiently obtain accurate solutions and are an ac-
tive area of research (Liu, Hager, and Rao 2015; M. A.
Patterson, Hager, and Rao 2015; Jain and Tsiotras 2008;
Y. Zhao and Tsiotras 2009; J. Zhao and Shang 2018).

Several free and commercial tools implement direct
collocation methods, including GPOPS-II (M. A. Pat-
terson and Rao 2014), PSOPT (Becerra 2010), SPAR-
TAN (Sagliano et al. 2018), JModelica (Magnusson and
Åkesson 2015), and OpenModelica (Ruge et al. 2014;
Fritzson, Pop, Abdelhak, et al. 2020). Among them,
OpenModelica offers a fully open-source environment
that combines expressive equation-based modeling in the
Modelica language with optimization capabilities in a sin-
gle tool. However, its current direct collocation imple-
mentation, using Radau IIA methods, has significant lim-
itations, as it lacks support for adaptive mesh refinement,
parameter optimization, higher-order collocation schemes
and does not use exact second-order derivatives.

To address these limitations, this work proposes a novel
ℎ-method mesh refinement algorithm, implemented in a
newly developed open-source framework called GDOPT,
which is designed for future integration into the Open-
Modelica toolchain. The primary objective of this paper
is to develop a general purpose mesh refinement algorithm
that can accelerate the convergence of direct collocation as
well as correctly identify non-smooth sections of control
trajectories and increase the resolution appropriately.

This paper is organized as follows: Section 2 provides
a general introduction and presents the mathematical for-
mulation of dynamic optimization using direct colloca-
tion. Based on these considerations, we propose our novel
mesh refinement algorithm L2-Boundary-Norm in Section
3, detailing its principal components and properties. Sec-
tion 4 discusses the direct collocation implementation, fo-
cusing on its most important features and workflows. To
demonstrate the capabilities of the algorithm and our im-
plementation, Section 5 presents numerical results for a
representative control problem, the fuel-optimal start-up
of a diesel-electric power train (Sivertsson and Eriksson
2012; Mengist, Ruge, Gebremedhin, et al. 2013; Bach-
mann et al. 2012), comparing these results with the cur-
rent OpenModelica implementation. Section 6 examines
the limitations of both the framework and mesh refinement
algorithm, while Section 7 summarizes the work and pro-

DOI Proceedings of the 16th International Modelica&FMI Conference 127
10.3384/ecp218127 September 8-10, 2025, Lucerne, Switzerland

RRR

https://orcid.org/0009-0009-7517-4842
https://orcid.org/0000-0002-4339-0438

vides an outlook for future work.

2 Dynamic Optimization
2.1 Problem Definition
Consider the dynamic optimization problem

min
𝒖 (𝑡) ,𝒑

𝑀 (𝒙(𝑡 𝑓),𝒖(𝑡 𝑓), 𝒑, 𝑡 𝑓)

+
∫ 𝑡 𝑓

𝑡0

𝐿 (𝒙(𝑡),𝒖(𝑡), 𝒑, 𝑡) d𝑡 (1a)

s.t.
¤𝒙(𝑡) = 𝒇 (𝒙(𝑡),𝒖(𝑡), 𝒑, 𝑡) ∀𝑡 ∈ 𝑇 (1b)

𝒙(𝑡0) = 𝒙0 (1c)

𝒈𝐿 ≤ 𝒈(𝒙(𝑡),𝒖(𝑡), 𝒑, 𝑡) ≤ 𝒈𝑈 ∀𝑡 ∈ 𝑇 (1d)

𝒓𝐿 ≤ 𝒓 (𝒙(𝑡 𝑓),𝒖(𝑡 𝑓), 𝒑, 𝑡 𝑓) ≤ 𝒓𝑈 (1e)

𝒂𝐿 ≤ 𝒂(𝒑) ≤ 𝒂𝑈 (1f)

over a fixed time horizon 𝑇 = [𝑡0, 𝑡 𝑓] with time 𝑡 ∈ 𝑇 , re-
ferred to as the General Dynamic Optimization Problem
(GDOP). The goal is to determine optimal control trajec-
tories 𝒖(𝑡) : 𝑇 → R𝑑𝒖 , time-invariant parameters 𝒑 ∈ R𝑑𝒑 ,
and states 𝒙(𝑡) : 𝑇 → R𝑑𝒙 minimizing the cost functional
(1a), subject to the constraints (1b) - (1f). The objective is
divided into the Mayer term 𝑀 (·), penalizing the final sys-
tem state, and the Lagrange term

∫ 𝑡 𝑓

𝑡0
𝐿 (·) d𝑡, accounting

for accumulated cost over time. The constraints include an
initial value problem with dynamic constraints (1b) and
an initial condition (1c), along with algebraic path con-
straints (1d), final constraints (1e), and parametric con-
straints (1f). All involved functions 𝑀, 𝐿 : R𝑑 ×𝑇 → R,
𝒇 : R𝑑 ×𝑇 → R𝑑𝒙 , 𝒈 : R𝑑 ×𝑇 → R𝑑𝒈 , 𝒓 : R𝑑 ×𝑇 → R𝑑𝒓 ,
and 𝒂 : R𝑑𝒑 → R𝑑𝒂 with 𝑑 := 𝑑𝒙 + 𝑑𝒖 + 𝑑𝒑, are assumed
to be twice continuously differentiable. The constraint
bounds are given by 𝒈𝐿 , 𝒈𝑈 ∈ R̄𝑑𝒈 , 𝒓𝐿 , 𝒓𝑈 ∈ R̄𝑑𝒓 , and
𝒂𝐿 , 𝒂𝑈 ∈ R̄𝑑𝒂 with R̄ := (R∪ {−∞,∞}). This formulation
extends the Nonlinear Optimal Control Problem (NOCP)
implemented in OpenModelica (Ruge et al. 2014) by in-
cluding static parameters, which may be present in all
model functions.

2.2 Direct Collocation
The continuous GDOP is reduced to an NLP by embed-
ding a collocation scheme based on flipped Legendre-
Gauss-Radau (fLGR) points. This discretization is equiv-
alent to a transcription using the Radau IIA Runge-Kutta
method, where the fLGR collocation nodes are scaled
from [−1,1] to [0,1]. For [0,1], the nodes 𝑐 𝑗 , 𝑗 = 1, . . . ,𝑚
are the 𝑚 roots of the polynomial (1 − 𝑡)𝑃 (1,0)

𝑚−1 (2𝑡 − 1),
where 𝑃

(1,0)
𝑚−1 is an (𝑚 − 1)-th Jacobi polynomial. The

Radau IIA method has excellent stability properties, since
it is A-, B-, and L-stable, and achieves order 2𝑚−1 for 𝑚
collocation nodes.

The time horizon [𝑡0, 𝑡 𝑓] is divided into 𝑛 + 1 intervals
[𝑡𝑖 , 𝑡𝑖+1], 𝑖 = 0, . . . , 𝑛 with lengths Δ𝑡𝑖 := 𝑡𝑖+1 − 𝑡𝑖 . On each

interval [𝑡𝑖 , 𝑡𝑖+1], collocation nodes 𝑡𝑖 𝑗 := 𝑡𝑖 + 𝑐 𝑗Δ𝑡𝑖 , 𝑗 =

1, . . . ,𝑚𝑖 , along with the first grid point 𝑡𝑖0 := 𝑡𝑖 + 𝑐0Δ𝑡𝑖 ,
where 𝑐0 = 0, are introduced. Since 𝑐𝑚𝑖

= 1 is always in-
cluded in the Radau IIA scheme, the last grid point of in-
terval 𝑖−1 matches the first of interval 𝑖, i.e. 𝑡𝑖−1,𝑚𝑖−1 = 𝑡𝑖0.

States and controls are approximated as 𝒙(𝑡𝑖 𝑗) ≈ 𝒙𝑖 𝑗 and
𝒖(𝑡𝑖 𝑗) ≈ 𝒖𝑖 𝑗 , with the initial state fixed as 𝒙00 := 𝒙0. In
interval 𝑖, the state 𝒙(𝑡) is replaced by a Lagrange inter-
polating polynomial 𝒙𝑖 (𝑡) =

∑𝑚𝑖

𝑗=0 𝒙𝑖 𝑗 𝑙 𝑗 (𝑡) of degree 𝑚𝑖 ,
where

𝑙 𝑗 (𝑡) :=
𝑚𝑖∏
𝑘=0
𝑘≠ 𝑗

𝑡 − 𝑡𝑖𝑘
𝑡𝑖 𝑗 − 𝑡𝑖𝑘

∀ 𝑗 = 0, . . . ,𝑚𝑖 . (2)

This polynomial must satisfy the differential equation (1b)
at the collocation nodes 𝑡𝑖 𝑗 for 𝑗 = 1, . . . ,𝑚𝑖 and match the
initial condition 𝒙𝑖0 from interval 𝑖 − 1. These conditions
yield

0 =


𝐷
(1)
10 𝐼 . . . 𝐷

(1)
1𝑚𝑖

𝐼

...
. . .

...

𝐷
(1)
𝑚𝑖0𝐼 . . . 𝐷

(1)
𝑚𝑖𝑚𝑖

𝐼



𝒙𝑖0
...

𝒙𝑖𝑚𝑖

 −Δ𝑡𝑖

𝒇𝑖1
...

𝒇𝑖𝑚𝑖

 , (3)

with identity matrix 𝐼 ∈ R𝑑𝒙×𝑑𝒙 , 𝒇𝑖 𝑗 := 𝒇 (𝒙𝑖 𝑗 ,𝒖𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗),
and the first differentiation matrix 𝐷

(1)
𝑗𝑘

:= d𝑙𝑘
d𝜏 (𝑐 𝑗), where

𝑙𝑘 (𝜏) :=
𝑚𝑖∏
𝑗=0
𝑗≠𝑘

𝜏− 𝑐 𝑗

𝑐𝑘 − 𝑐 𝑗

∀𝑘 = 0, . . . ,𝑚𝑖 . (4)

Using the formulas provided in (Schneider and Werner
1986), these matrices can be computed efficiently a pri-
ori.

The Lagrange term is approximated via the correspond-
ing Radau quadrature rule∫ 𝑡 𝑓

𝑡0

𝐿 (𝒙(𝑡),𝒖(𝑡), 𝒑, 𝑡) d𝑡 ≈
𝑛∑︁
𝑖=0

Δ𝑡𝑖

𝑚𝑖∑︁
𝑗=1

𝑏 𝑗𝐿𝑖 𝑗 , (5)

where 𝐿𝑖 𝑗 := 𝐿 (𝒙𝑖 𝑗 ,𝒖𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗) and the quadrature weights
are given by

𝑏 𝑗 =

∫ 1

0

𝑚𝑖∏
𝑘=1
𝑘≠ 𝑗

𝜏− 𝑐𝑘
𝑐 𝑗 − 𝑐𝑘

d𝜏 ∀ 𝑗 = 1, . . . ,𝑚𝑖 . (6)

2.3 Resulting NLP
Discretizing the remaining components of the GDOP is
straightforward. The path constraints are replaced by con-
straints, which are evaluated at all grid points 𝑡𝑖 𝑗 and the
Mayer term and final constraints are approximated by an
evaluation at the final grid point 𝑡𝑛𝑚𝑛

. The time-invariant
parameters and their parametric constraints need not be

Enhancing Collocation-Based Dynamic Optimization through Adaptive Mesh Refinement

128 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218127

discretized, since these are discrete. By flattening the col-
located dynamics (3), the discretized GDOP becomes

min
𝒙𝑖 𝑗 ,𝒖𝑖 𝑗 ,𝒑

𝑀 (𝒙𝑛𝑚𝑛
,𝒖𝑛𝑚𝑛

, 𝒑, 𝑡𝑛𝑚𝑛
)

+
𝑛∑︁
𝑖=0

Δ𝑡𝑖

𝑚𝑖∑︁
𝑗=1

𝑏 𝑗𝐿 (𝒙𝑖 𝑗 ,𝒖𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗) (7a)

s.t.

0 =

𝑚𝑖∑︁
𝑘=0

𝐷
(1)
𝑗𝑘
𝒙𝑖𝑘 −Δ𝑡𝑖 𝒇 (𝒙𝑖 𝑗 ,𝒖𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗) (7b)

𝒙00 = 𝒙0 (7c)

𝒈𝐿 ≤ 𝒈(𝒙𝑖 𝑗 ,𝒖𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗) ≤ 𝒈𝑈 (7d)

𝒓𝐿 ≤ 𝒓 (𝒙𝑛𝑚𝑛
,𝒖𝑛𝑚𝑛

, 𝒑, 𝑡𝑛𝑚𝑛
) ≤ 𝒓𝑈 (7e)

𝒂𝐿 ≤ 𝒂(𝒑) ≤ 𝒂𝑈 (7f)

where the dynamic constraints (7b) and path constraints
(7d) must be satisfied for all 𝑖 = 0, . . . , 𝑛 and 𝑗 = 1, . . . ,𝑚𝑖 .

This sparse, large-scale NLP can be implemented and
solved efficiently with state-of-the-art nonlinear optimiz-
ers such as Ipopt (Wächter and Biegler 2006) or SNOPT
(P. E. Gill et al. 2007; Philip E. Gill, Murray, and Saunders
2005), which require first and second order derivatives of
the objective and constraints. By properly sorting the con-
straint vector, the cyclic block structure in the Jacobian
and Hessian can be exploited. A detailed overview of the
resulting blocks is given in (Langenkamp 2024).

3 Adaptive Mesh Refinement
An important modeling decision is the choice of grid
points, i.e. the meshM = {𝑡0, 𝑡1, . . . , 𝑡𝑛}, and the number
of collocation nodes 𝑚𝑖 per interval. Without prior knowl-
edge of the problem, one might use an equidistant mesh
Δ𝑡𝑖 ≡ const and a fixed number of nodes 𝑚𝑖 ≡ const. How-
ever, this often leads to large errors and unrealistic results,
especially when the optimal solution exhibits discontinu-
ities, switches, or steep gradients. Furthermore, the opti-
mization often takes a significant amount of computation
time due to poor initial guesses.

To address this, direct collocation methods typically
employ adaptive mesh refinement algorithms, which bal-
ance accuracy and efficiency. In adaptive refinement, an
initial NLP is solved on a coarse mesh, then the mesh is
refined, and the NLP is solved again using updated initial
guesses. This process continues until a termination crite-
rion is met. The main classes of mesh refinement methods
are ℎ-, 𝑝-, and ℎ𝑝-methods.

ℎ-methods (J. Zhao and Shang 2018; Y. Zhao and
Tsiotras 2009; Jain and Tsiotras 2008; Betts and Huff-
man 1998) divide the time horizon into many intervals
and use low-degree polynomials on each, i.e. 𝑚𝑖 ≡ 𝑚.
Convergence is achieved by increasing the number of in-
tervals based on error criteria. These methods are ro-
bust and effective for non-smooth solutions but converge

only polynomially fast for smooth problems. Several ℎ-
methods have been described in the literature. For exam-
ple, in (J. Zhao and Shang 2018) a multiresolution tech-
nique is proposed that compares the current solution with
a smoothed trajectory using non-oscillatory (ENO) inter-
polation. It detects non-smooth regions and merges inter-
vals with constant control. Another method, presented in
(Y. Zhao and Tsiotras 2009), encodes the curvature of the
control trajectory into a density function that governs the
distribution of mesh points, effectively capturing irregu-
larities.

𝑝-methods usually use a single interval and high-degree
global polynomials. For smooth problems, they achieve
spectral, i.e. exponential, convergence, but for non-
smooth cases, errors grow significantly.

Modern ℎ𝑝- or 𝑝ℎ-adaptive methods (M. A. Patterson
and Rao 2014; M. A. Patterson, Hager, and Rao 2015;
Liu, Hager, and Rao 2015; Sagliano et al. 2018; Garg,
M. Patterson, Francolin, et al. 2011) combine both strate-
gies. They adapt both the number of intervals and poly-
nomial degrees. These hybrid methods also provide spec-
tral convergence and are implemented in state-of-the-art
tools such as GPOPS II (M. A. Patterson and Rao 2014).
However, they may still struggle to detect switches and
often generate large meshes with many collocation points
(J. Zhao and Shang 2018; M. A. Patterson, Hager, and Rao
2015).

3.1 L2-Boundary-Norm
In this paper, the novel ℎ-method L2-Boundary-Norm
(L2BN) is proposed, which uniformizes the control trajec-
tory in a similar way to density function-based approaches
(Y. Zhao and Tsiotras 2009). L2BN applies consecutive
bisection mesh refinement, following a workflow similar
to the multiresolution technique (J. Zhao and Shang 2018),
but without removing mesh points to maintain maximum
stability. The method is designed to detect discontinuities,
kinks, bends, and steep sections, while requiring limited
computation time. L2BN is divided into 2 distinct phases:

3.2 Phase I
Phase I is used to accelerate the optimization by perform-
ing a simple multigrid refinement. Here the possibly poor
initial guess of the control trajectory 𝒖𝑖𝑛𝑖𝑡 (𝑡), e.g. con-
stant or linear, is only used for an initial optimization on
an extremely coarse mesh. To ensure that the state trajec-
tory guess 𝒙𝑖𝑛𝑖𝑡 (𝑡) is feasible, i.e. satisfies the initial value
problem (1b) - (1c), the initial states are obtained by per-
forming a simulation using the provided guesses 𝒖𝑖𝑛𝑖𝑡 (𝑡)
and 𝒑𝑖𝑛𝑖𝑡 .

The initial optimization is exceptionally fast compared
to one using the poor guess on a fine mesh. The optimal
solution of the problem is then interpolated onto a mesh,
where every interval has been bisected. This interpolated
solution is then used as a new, more appropriate initial
guess and optimized again. Repeating this process sev-
eral times, yields a realistic, equidistant optimal solution

Session: Simulation and Optimization in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 129
10.3384/ecp218127 September 8-10, 2025, Lucerne, Switzerland

that solely suffers from steep sections, kinks or jump dis-
continuities. Overall, the first phase can be expressed as
Algorithm 3.1:

Algorithm 3.1: Phase I: Multigrid Refinement
Input: GDOP, equidistant meshM0, number of

iterations 𝑘𝑚𝑎𝑥 , initial guess on the control
trajectory 𝒖𝑖𝑛𝑖𝑡 (𝑡) and parameters 𝒑𝑖𝑛𝑖𝑡

Output: Equidistant solutions 𝒙∗(𝑡), 𝒖∗(𝑡), 𝒑∗

1 𝒙𝑖𝑛𝑖𝑡 (𝑡) ← Solve the ODE ¤𝒙(𝑡) = 𝒇 (·), 𝒙(𝑡0) = 𝒙0
using the guesses 𝒖𝑖𝑛𝑖𝑡 (𝑡), 𝒑𝑖𝑛𝑖𝑡

2 for 𝑘 = 0, . . . , 𝑘𝑚𝑎𝑥 do
3 𝒙∗

𝑘
(𝑡), 𝒖∗

𝑘
(𝑡), 𝒑∗

𝑘
← Solve the NLP (7a) - (7f)

onM𝑘 using 𝒙𝑖𝑛𝑖𝑡 (𝑡), 𝒖𝑖𝑛𝑖𝑡 (𝑡), 𝒑𝑖𝑛𝑖𝑡 as initial
guesses

4 if 𝑘 = 𝑘𝑚𝑎𝑥 then
5 return 𝒙∗

𝑘
(𝑡), 𝒖∗

𝑘
(𝑡), 𝒑∗

𝑘

6 end
7 U𝑘 ←

{
𝑡𝑖+𝑡𝑖+1

2 | 𝑖 = 0, . . . , |M𝑘 | −1
}

8 M𝑘+1←M𝑘 ∪U𝑘

9 𝒑𝑖𝑛𝑖𝑡 ← 𝒑∗
𝑘

10 𝒙𝑖𝑛𝑖𝑡 (𝑡),𝒖𝑖𝑛𝑖𝑡 (𝑡) ← Interpolate 𝒙∗
𝑘
(𝑡), 𝒖∗

𝑘
(𝑡)

ontoM𝑘+1
11 end

3.2.1 Illustration of Phase I
To further illustrate phase I, we consider the Oil Shale Py-
rolysis1, studied in (Wen and Yen 1977) and (Langenkamp
2024), aiming to find an optimal temperature control. Us-
ing a poor, constant initial temperature guess two ap-
proaches are compared. The Default method involves op-
timization on a mesh with |M0 | = 80 intervals and 𝑚 = 3
collocation nodes. Alternatively, Algorithm 3.1 (Phase I)
starts with a much coarser initial mesh of 5 intervals and
performs 𝑘𝑚𝑎𝑥 = 4 refinement iterations. Both methods
ultimately yield the same optimal solution.

Method |M0 | 𝑚 𝑘𝑚𝑎𝑥 𝑡𝑜𝑝𝑡 Iter
Default 80 3 0 0.3492 161

Algorithm 3.1 5 3 4 0.1242 105

Table 1. Performance Evaluation of Phase I Refinement for an
Oil Shale Pyrolysis Optimization

As detailed in Table 1, the optimization using Ipopt and
MUMPS demonstrates that Algorithm 3.1 required fewer
NLP iterations (Iter) and approximately one-third of the
computation time 𝑡𝑜𝑝𝑡 in seconds compared to the default
implementation. This significant speedup is attributed to
the multigrid refinement strategy: instead of optimizing
with a poor initial guess on a large mesh, the guesses pro-
gressively improve through successive refinements. Fig-

1The GDOPT implementation can be found under https:
//github.com/linuslangenkamp/GDOPT/blob/master/
examples/oilShalePyrolysis.py.

ure 1 depicts this process, showing how the temperature
control trajectory evolves and approaches the final solu-
tion across refinement iterations.

0 1 2 3 4 5 6 7
Time in Seconds

700

710

720

730

740

750

Te
m
pe

ra
tu
re
 in

 K
el
vi
n

Initial Guess on 0
Optimum for Mesh 0
Optimum for Mesh 2
Optimum for Mesh 4
Final Optimum (L2BN)

Figure 1. Multigrid refinement applied to an Oil Shale Pyrolysis
(Wen and Yen 1977). The optimal solution after performing 3
additional phase II iterations is given as reference.

3.3 Phase II
Phase II addresses the problem of remaining steep sec-
tions, kinks or switches and iteratively refines the solution
of phase I by investigating certain 𝐿2-norms of the control
trajectory (on-interval condition) as well as error terms of
the trajectories on the boundary (boundary condition). It
identifies non-smooth behavior and splits intervals, which
violate the conditions, such that resolution is increased ap-
propriately and switching times are identified correctly.

3.4 On-Interval Condition
The idea behind the on-interval condition is to individu-
ally inspect the current solution of the control variables 𝒖𝑖 𝑗

within each mesh interval [𝑡𝑖 , 𝑡𝑖+1] of the mesh M𝑘 , and
to measure the slope and curvature of the control variables
over the full interval. If these measures exceed a certain
threshold, the interval is bisected, and the midpoint 𝑡𝑖+𝑡𝑖+1

2
is added to the next meshM𝑘+1.

Consider an arbitrary interval [𝑡𝑖 , 𝑡𝑖+1] from the mesh
M𝑘 and the current optimal solution of the 𝑙-th control
variable 𝑢 (𝑙) on this interval. This solution is defined by
𝑚 + 1 sample points 𝑢 (𝑙)

𝑖 𝑗
, 𝑗 = 0, . . . ,𝑚. The first step is to

construct an interpolating polynomial 𝑝 (𝑙)
𝑖
(𝑡) for the con-

trol variable 𝑢 (𝑙) on the normalized interval [0,1], such
that 𝑝

(𝑙)
𝑖
(𝑐 𝑗) = 𝑢

(𝑙)
𝑖 𝑗
, 𝑗 = 0, . . . ,𝑚, with 𝑝

(𝑙)
𝑖
∈ 𝑃𝑚. This

rescaling is performed because the condition should not be
influenced by the length of the interval Δ𝑡𝑖 and, moreover,
only the magnitude of the controls should be relevant. In
order to estimate the change on the interval, it is natural to
consider a function norm of ¤𝑝 (𝑙)

𝑖
and ¥𝑝 (𝑙)

𝑖
such as 𝐿1, 𝐿2

or 𝐿∞. The 𝐿2 norm

∥𝑝∥ :=

√︄∫ 1

0
𝑝(𝜏)2 d𝜏 (8)

is chosen, since it is a good middle ground and allows for

Enhancing Collocation-Based Dynamic Optimization through Adaptive Mesh Refinement

130 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218127

https://github.com/linuslangenkamp/GDOPT/blob/master/examples/oilShalePyrolysis.py
https://github.com/linuslangenkamp/GDOPT/blob/master/examples/oilShalePyrolysis.py
https://github.com/linuslangenkamp/GDOPT/blob/master/examples/oilShalePyrolysis.py

a fast computation of the condition. All in all, the on-
interval condition says:

Condition 3.1 (On-Interval Condition). If for a given in-
terval [𝑡𝑖 , 𝑡𝑖+1] there exists at least one control variable
𝑢 (𝑙) such that the interpolating polynomial 𝑝

(𝑙)
𝑖

on the
nominal interval [0,1] satisfies

 ¤𝑝 (𝑙)𝑖

 > 𝑇𝑂𝐿

(𝑙)
1 ∨

 ¥𝑝 (𝑙)𝑖

 > 𝑇𝑂𝐿
(𝑙)
2 ,

for specified tolerances 𝑇𝑂𝐿
(𝑙)
1 ,𝑇𝑂𝐿

(𝑙)
2 > 0, then the in-

terval is bisected.

3.4.1 Fast Computation
The following procedure enables an efficient and exact
evaluation of the on-interval condition for any number
of collocation nodes 𝑚. By construction, it holds that
deg

(
¤𝑝 (𝑙)
𝑖
(𝜏)

)
= 𝑚 − 1, deg

(
¥𝑝 (𝑙)
𝑖
(𝜏)

)
= 𝑚 − 2, which im-

plies deg
(
¤𝑝 (𝑙)
𝑖
(𝜏)2

)
= 2𝑚−2, deg

(
¥𝑝 (𝑙)
𝑖
(𝜏)2

)
= 2𝑚−4 for

all 𝑚 ≥ 2. In the special case of 𝑚 = 1, the second deriva-
tive of 𝑝

(𝑙)
𝑖

vanishes and the first derivative is constant.
Since Radau quadrature with 𝑚 collocation nodes inte-
grates all polynomials of degree up to 2𝑚−2 exactly, both
norms can be exactly evaluated using the quadrature rule.
For simplicity, the calculations are only shown for the first
derivative. These are analogous for the second derivative.
Hence

 ¤𝑝 (𝑙)𝑖

 = √︄∫ 1

0
¤𝑝 (𝑙)
𝑖
(𝜏)2 d𝜏 =

√√
𝑚∑︁
𝑘=1

𝑏𝑘 ¤𝑝 (𝑙)𝑖 (𝑐𝑘)2, (9)

where 𝑏𝑘 are the Radau quadrature weights (6). By writ-
ing 𝑝

(𝑙)
𝑖
(𝜏) = ∑𝑚

𝑗=0 𝑢
(𝑙)
𝑖 𝑗
𝑙 𝑗 (𝜏) as a Lagrange interpolating

polynomial, we get ¤𝑝 (𝑙)
𝑖
(𝑐𝑘) =

∑𝑚
𝑗=0 𝑢

(𝑙)
𝑖 𝑗

𝐷
(1)
𝑘 𝑗

using the
first differentiation matrix. Finally, it follows that

 ¤𝑝 (𝑙)𝑖

 =
√√√√√ 𝑚∑︁

𝑘=1
𝑏𝑘

©­«
𝑚∑︁
𝑗=0

𝑢
(𝑙)
𝑖 𝑗

𝐷
(1)
𝑘 𝑗

ª®¬
2

. (10)

Since applying the first differentiation matrix twice yields
the second derivatives at the collocation nodes, a similar
formula can be calculated for

 ¥𝑝 (𝑙)𝑖

. Therefore, we obtain
Algorithm 3.2 by utilizing matrix-vector notation.

Because the algorithm has to be applied for each mesh
interval and control variable, the overall runtime of the
condition becomes O(𝑑𝒖𝑛𝑚2), which is just 𝑚 times the
number of discretized controls 𝑑𝒖𝑛𝑚. This runtime is ne-
glectable, compared to the several expensive NLP itera-
tions that are performed for each mesh iteration.

3.4.2 Termination
An important idea of the Phase II iteration is that the fi-
nal solution should satisfy Condition 3.1 for all intervals

Algorithm 3.2: Fast On-Interval Computation

Input: Sample values 𝒖̂ =

(
𝑢
(𝑙)
𝑖0 , 𝑢

(𝑙)
𝑖1 , . . . , 𝑢

(𝑙)
𝑖𝑚

)𝑇
,

𝑚-step Radau quadrature weights 𝒃,
differentiation matrix 𝐷 (1)

Output:

 ¤𝑝 (𝑙)𝑖

,

 ¥𝑝 (𝑙)𝑖

1 𝒑′← 𝐷 (1) 𝒖̂

2 𝒒′←
(
(𝑝′1)

2, . . . , (𝑝′𝑚)2
)𝑇

3

 ¤𝑝 (𝑙)𝑖

← √︁
𝒃𝑇𝒒′

4 𝒑′′← 𝐷 (1) 𝒑′

5 𝒒′′←
(
(𝑝′′1)

2, . . . , (𝑝′′𝑚)2
)𝑇

6

 ¥𝑝 (𝑙)𝑖

← √︁
𝒃𝑇𝒒′′

7 return

 ¤𝑝 (𝑙)𝑖

,

 ¥𝑝 (𝑙)𝑖

and control variables. This condition ensures that the lo-
cal variability (slope and curvature) of the control trajecto-
ries remains below specific tolerances across all intervals.
When this is achieved, the mesh points become equidis-
tributed relative to this local variability. Since Condition
3.1 takes the same form as conditions used to define mesh
density functions (e.g. ensuring an integral of some mon-
itor function over each interval is below a tolerance), the
resulting mesh distribution is at least as strong as, and can
be characterized by, the density function implicitly defined
by the satisfied condition itself. The derivation of this im-
plicit density function is detailed in (Langenkamp 2024).
Because of this, it is useful to have a criterion for the ter-
mination of a sequence of on-interval iterations. A suffi-
cient condition for this termination can be deduced from
Lemma 1, where the 𝐿2 norm is again taken on [0,1]:

Lemma 1. Let 𝑝 ∈ 𝑃𝑚 be a polynomial and 𝑝𝜀 (𝑡) =
𝑝
(
𝑡
2
)
+ 𝜀(𝑡) be a variation of 𝑝

(
𝑡
2
)

by 𝜀 ∈ 𝑃𝑚, then for

a given 𝛿 ∈ R with
√

2
2 < 𝛿 < 1

∥ ¤𝑝𝜀 (𝑡)∥
∥ ¤𝑝(𝑡)∥ < 𝛿, if ∥ ¤𝜀(𝑡)∥ <

√
2𝛿−1

2

 ¤𝑝 (𝑡
2

)

.
A proof of Lemma 1 is given in the Appendix. Let 𝑝(𝑡)

be a polynomial that violates Condition 3.1. The corre-
sponding interval is bisected and both subintervals are ex-
amined in the next iteration. Without loss of generality,
we consider the first subinterval, while the second follows
analogously with 𝑝𝜀 (𝑡) = 𝑝

(
𝑡+1
2

)
+ 𝜀(𝑡). Rescaling the

old polynomial from [0, 1
2] to [0,1], as required by the

on-interval condition, yields 𝑝
(
𝑡
2
)
, so the new polynomial

becomes 𝑝𝜀 (𝑡) = 𝑝
(
𝑡
2
)
+ 𝜀(𝑡), with a perturbation 𝜀. By

Lemma 1, the new norm on the subinterval is smaller if

 ¤𝑝𝜀 (𝑡) − ¤𝑝
(𝑡
2

)

 = ∥ ¤𝜀(𝑡)∥ < √2𝛿−1
2

 ¤𝑝 (𝑡
2

)

. (11)

Session: Simulation and Optimization in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 131
10.3384/ecp218127 September 8-10, 2025, Lucerne, Switzerland

Thus, we get a decreasing sequence of 𝐿2-norms, provided
the difference of the new and old polynomial derivatives is
suitably bounded proportional to the derivative of the old
polynomial itself. Assuming the convergence of the col-
location method, the variations 𝜀, ¤𝜀, and ¥𝜀 should vanish
for smooth problems. Since it is easy to find an analogous
lemma for the second derivative with

∥ ¥𝑝𝜀 (𝑡)∥
∥ ¥𝑝(𝑡)∥ < 𝛿, if ∥ ¥𝜀(𝑡)∥ < 2

√
2𝛿−1
4

 ¥𝑝 (𝑡
2

)

 (12)

for 1
2
√

2
< 𝛿 < 1, the same holds for ¥𝑝 in both subinter-

vals. Hence, for smooth problems under suitable conver-
gence assumptions, the refinement procedure terminates
after finitely many iterations. However, for non-smooth
solutions, e.g. bang-bang optimal controls, the method
may never terminate, as the identical polynomial can be
obtained on one of the subintervals, i.e. 𝑝𝜀 (𝑡) − 𝑝 (𝑡) ≡ 0.

3.5 Boundary Condition
The described method could be implemented using only
the on-interval condition. However, this approach has a
critical weakness in detecting non-smooth behavior on the
boundary of two adjacent intervals.

0.9400 0.9425 0.9450 0.9475 0.9500 0.9525 0.9550 0.9575 0.9600
Time

4.4

4.5

4.6

4.7

4.8

4.9

5.0

Co
nt
ro
l V
al
ue

Old Polynomial in Interval [0.94, 0.96]
New Polynomial in Subinterval [0.94, 0.95]
New Polynomial in Subinterval [0.95, 0.96]
Discrete Value on the Boundary t=0.95

Figure 2. Poor corner detection

Consider Figure 2, where the interval [0.94,0.96] is
split into [0.94,0.95] and [0.95,0.96] using the on-
interval condition. The interpolating polynomials based
on the 3-step Radau collocation method are shown. The
first subinterval exhibits a steep slope throughout and will
likely be bisected again. In contrast, the second subin-
terval appears nearly constant and will not trigger fur-
ther refinement. However, this is problematic, as their
shared boundary represents a sharp corner. To determine
the switching time more accurately, the algorithm should
further refine the mesh around this corner.

To resolve this, we introduce the boundary condition.
It compares the first and second derivatives of adjacent
polynomials at their shared boundary point. Rather than
using purely relative or absolute error, we adopt the plus-
1 error with 𝐸 (𝑥, 𝑦) := |𝑥−𝑦 |

1+min |𝑥 | , |𝑦 | , which combines both
measures. Overall, the boundary condition says:

Condition 3.2 (Boundary Condition). If for two adja-
cent intervals 𝑖 and 𝑖 + 1 there exists at least one con-

trol variable 𝑢 (𝑙) , such that the interpolating polynomials
𝑝
(𝑙)
𝑖
, 𝑝
(𝑙)
𝑖+1 on the nominal interval [0,1] satisfy

𝐸 (¤𝑝 (𝑙)
𝑖
(𝑡𝑖+1), ¤𝑝 (𝑙)𝑖+1(𝑡𝑖+1)) ≥ 𝐶𝑇𝑂𝐿

(𝑙)
1 ∨

𝐸 (¥𝑝 (𝑙)
𝑖
(𝑡𝑖+1), ¥𝑝 (𝑙)𝑖+1(𝑡𝑖+1)) ≥ 𝐶𝑇𝑂𝐿

(𝑙)
2

for the common boundary point 𝑡𝑖+1 and specified corner
tolerances 𝐶𝑇𝑂𝐿

(𝑙)
1 ,𝐶𝑇𝑂𝐿

(𝑙)
2 > 0, then both intervals are

bisected.

Evaluating the condition is inexpensive, since the val-
ues are side products of Algorithm 3.2.

3.6 Algorithm
Based on the previous considerations the full mesh refine-
ment algorithm L2-Boundary-Norm (L2BN) can be for-
mulated. By default, the constant corner tolerances are
given as 𝐶𝑇𝑂𝐿

(𝑙)
1 = 𝐶𝑇𝑂𝐿

(𝑙)
2 = 0.1, but can be adjusted

for a specific problem. The default tolerances for Condi-
tion 3.1 are given by

𝑇𝑂𝐿
(𝑙)
1 =

range(𝑢 (𝑙))
|M0 |

10−Λ (13a)

𝑇𝑂𝐿
(𝑙)
2 =

range(𝑢 (𝑙))
2|M0 |

10−Λ, (13b)

where range(𝑢 (𝑙)) := max𝑡∈𝑇 𝑢 (𝑙) (𝑡) −min𝑡∈𝑇 𝑢 (𝑙) (𝑡) and
Λ ∈ R is the level of refinement with default value Λ = 0.

Altogether we get Algorithm 3.3, which, for the 𝑏-th
mesh refinement, requires O(𝑑𝒖𝑚2 |M𝑏 |) operations. In
this version of L2BN, Condition 3.1 enforces a bisection
of the interval itself and both neighbors to prevent bisec-
tions in future iterations and enhance stability.

4 Implementation
The novel mesh refinement algorithm L2BN is integrated
into a newly developed, open source dynamic optimiza-
tion framework called GDOPT (General Dynamic Op-
timizer), which is publicly available on GitHub2. The
framework is split into a Python modeling environment
gdopt, which allows for expressive and accessible sym-
bolic modeling of dynamic optimization problems and a
C++ library libgdopt that performs the computationally
intensive task of solving the large-scale NLPs with Ipopt
(Wächter and Biegler 2006).

The framework offers a range of noteworthy features,
of which the most relevant are presented in this paper.
A comprehensive description of the GDOPT implemen-
tation can be found in (Langenkamp 2024) and an intro-
duction to modeling with the framework is provided in the
GDOPT User’s Guide3. The principle workflows are il-
lustrated in Figure 3. First, users can define their opti-
mization problems in Python using purely symbolic ex-

2https://github.com/linuslangenkamp/GDOPT
3https://github.com/linuslangenkamp/GDOPT/

blob/master/usersguide/usersguide.pdf

Enhancing Collocation-Based Dynamic Optimization through Adaptive Mesh Refinement

132 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218127

https://github.com/linuslangenkamp/GDOPT
https://github.com/linuslangenkamp/GDOPT/blob/master/usersguide/usersguide.pdf
https://github.com/linuslangenkamp/GDOPT/blob/master/usersguide/usersguide.pdf

Algorithm 3.3: L2-Boundary-Norm (L2BN)
Input: GDOP, phase I iteration count 𝑘𝑚𝑎𝑥 ,

guesses 𝒖𝑖𝑛𝑖𝑡 (𝑡), 𝒑𝑖𝑛𝑖𝑡 , meshM0, Radau
IIA scheme with 𝑚 nodes, phase II iteration
count 𝑏𝑚𝑎𝑥 , tolerances 𝑇𝑂𝐿

(𝑙)
1 , 𝑇𝑂𝐿

(𝑙)
2 ,

𝐶𝑇𝑂𝐿
(𝑙)
1 , 𝐶𝑇𝑂𝐿

(𝑙)
2

Output: 𝒙∗(𝑡),𝒖∗(𝑡), 𝒑∗
1 𝒙∗0(𝑡),𝒖

∗
0(𝑡), 𝒑

∗
0← Perform 𝑘𝑚𝑎𝑥 iterations of

Algorithm 3.1 onM0 with 𝑚 collocation nodes
and guesses 𝒖𝑖𝑛𝑖𝑡 (𝑡), 𝒑𝑖𝑛𝑖𝑡

2 for 𝑏 = 0, . . . , 𝑏𝑚𝑎𝑥 −1 do
3 U← {}
4 for 𝑖 = 0, . . . , |M𝑏 | −1 do
5 for 𝑙 = 1, . . . , 𝑑𝒖 do
6 if Condition 3.1 is violated then
7 U←U∪{max {0, 𝑖−1} , 𝑖,
8 min {|M𝑏 | −1, 𝑖 +1}}
9 break

10 end
11 if (𝑖 ≠ |M𝑏 | −1) ∧ Condition 3.2 is

violated then
12 U←U∪{𝑖, 𝑖 +1}
13 end
14 end
15 end
16 ifU = {} then
17 return 𝒙∗

𝑏
(𝑡),𝒖∗

𝑏
(𝑡), 𝒑∗

𝑏

18 end
19 U𝑏← Bisect the intervals inU
20 M𝑏+1←M𝑏 ∪U𝑏

21 𝒑𝑖𝑛𝑖𝑡 ← 𝒑∗
𝑏

22 𝒙𝑖𝑛𝑖𝑡 (𝑡),𝒖𝑖𝑛𝑖𝑡 (𝑡) ← Interpolate 𝒙∗
𝑏
(𝑡),𝒖∗

𝑏
(𝑡)

ontoM𝑏+1
23 𝒙∗

𝑏+1(𝑡),𝒖
∗
𝑏+1(𝑡), 𝒑

∗
𝑏+1← Solve the NLP (7a) -

(7f) onM𝑏+1 using 𝒙𝑖𝑛𝑖𝑡 (𝑡), 𝒖𝑖𝑛𝑖𝑡 (𝑡), 𝒑𝑖𝑛𝑖𝑡 as
initial guesses

24 end
25 return 𝒙∗

𝑏𝑚𝑎𝑥
(𝑡),𝒖∗

𝑏𝑚𝑎𝑥
(𝑡), 𝒑∗

𝑏𝑚𝑎𝑥

pressions for differential equations, constraints and objec-
tives. The Python package SymEngine4 is used to effi-
ciently calculate the symbolic first and second derivatives
and their common subexpressions to remove redundant
calculations. These symbolic expressions are translated
into efficient C++ code with exact sparsity patterns. Af-
ter that, the code is compiled and linked with libgdopt,
which implements the full collocation-based dynamic op-
timization pipeline, including discretization, solver inter-
face, L2BN mesh refinement algorithm, and precomputed
Radau IIA schemes for 𝑚 = 1, . . . ,70 accurate to machine
precision.

GDOPT separates code generation and optimization,
allowing parameters, solver settings, and initial guesses
to be modified after compilation. This enables rapid re-
peated solves without regenerating and recompiling the
model. At runtime, the executable reads all parameters,
initial values, and solver settings, and solves the resulting
NLP using Ipopt (Wächter and Biegler 2006) with a cho-
sen linear solver, e.g. MUMPS (Amestoy et al. 2001) or
one from the HSL suite (HSL 2013). Results are written to
an output file, which is automatically read by the Python
interface for post-processing and visualization using mat-
plotlib (Hunter 2007).

4.1 Acceleration of Refinement Iterations

An important note on the implementation is, that Ipopt is
an interior-point solver that uses logarithmic barriers. The
implementation of L2BN heavily benefits from this con-
cept, by setting the barrier parameter to a minimal value
(e.g. 𝜇0 = 10−15) for repeated solves. This strategy sig-
nificantly accelerates mesh refinement iterations even fur-
ther, since the new initial guess, i.e. the previous optimal
solution interpolated onto the new mesh, is known to be
almost optimal by construction. Thus, Ipopt solves an un-
perturbed problem, avoiding unnecessary calculations and
achieving rapid convergence.

4https://github.com/symengine/symengine

Model
model.cpp

Configuration
model.config

Python Package
gdopt.Model

Executable
C++ Library
libgdopt.so

Initial Guess
initialValues.csv

Results
modelOut.csv

Optimizer
Ipopt

Linear Solver
MUMPS, HSL

generate

write link

run

read

compile

read and analyze

depends

Figure 3. Principle workflows in GDOPT. For a detailed introduction to workflows in GDOPT, please refer to (Langenkamp 2024).

Session: Simulation and Optimization in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 133
10.3384/ecp218127 September 8-10, 2025, Lucerne, Switzerland

https://github.com/symengine/symengine

4.2 Optimization of DAEs
Currently, the framework does not support the direct han-
dling of differential-algebraic equations (DAEs). While
algebraic variables can be modeled as control inputs, this
approach artificially bloats the NLP, making it more nu-
merically unstable and computationally demanding. An
integration of libgdopt into a proper modeling environ-
ment would clearly be beneficial. Previous work on Open-
Modelica (Ruge et al. 2014) has already demonstrated
such an integration by performing a transformation to
semi-explicit ODE form and solving for algebraic vari-
ables in each optimization step.

5 Results and Performance
To evaluate the performance of the proposed mesh refine-
ment algorithm and the newly developed framework, a rel-
evant dynamic optimization problem from the open litera-
ture is considered. For additional benchmarks of GDOPT,
including demonstrations of the termination property for
smooth problems, we refer to (Langenkamp 2024). All
optimizations are performed on a laptop with a Intel Core
i7-12800H, 32 GB RAM, running Ubuntu 24.04.2 and us-
ing GCC v13.3.0 with flags -O3 -ffast-math for compila-
tion.

5.1 Diesel Electric Power Train
Consider the diesel-electric power train5 that has been
studied extensively in (Sivertsson and Eriksson 2012;
Mengist, Ruge, Gebremedhin, et al. 2013; Bachmann et
al. 2012). This optimization problem deals with the fuel
optimal start-up of a diesel engine from an idling condi-
tion to a certain power level. The model features 2 control
variables in relative units and 4 states, while each vari-
able is associated with a given box constraint to guarantee
physical validity. The diesel-electric power train has the
following principle structure:

min
𝑢1 (𝑡) ,𝑢2 (𝑡)

4∑︁
𝑖=1
(𝑥𝑖 (𝑡 𝑓) − 𝑐𝑖)2 (14a)

s.t. 
¤𝑥1
¤𝑥2
¤𝑥3
¤𝑥4

 =


𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑢1)
𝑓2(𝑥1, 𝑥2, 𝑥4)

𝑓3(𝑥1, 𝑥2, 𝑥3, 𝑢1, 𝑢2)
𝑓4(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑢1)

 ∀𝑡 ∈ [𝑡0, 𝑡 𝑓] (14b)

𝒙(𝑡0) = 𝒙0 (14c)

𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈∀𝑡 ∈ [𝑡0, 𝑡 𝑓] (14d)
0 ≤ 𝒖 ≤ 1 ∀𝑡 ∈ [𝑡0, 𝑡 𝑓] (14e)

𝑡0 = 0, 𝑡 𝑓 = 0.5, 𝒄 ∈ R4 are constants. (14f)

The optimization problem is solved with both GDOPT
and OpenModelica v1.24.0 using the same hardware and

5The GDOPT implementation can be found under https:
//github.com/linuslangenkamp/GDOPT/blob/master/
examples/dieselMotor.py

settings for various configurations. All runs use an Ipopt
tolerance of 10−14, the linear solver MUMPS, and iden-
tical constant initial guesses. All other solver parameters
are left at default and the times are averaged over 5 runs.

5.2 Code Generation and Compilation
The code generation and compilation timings for GDOPT
are given by: 0.0268s for the derivative calculations and
code generation, 1.1561s for compiling the generated
C++ code and 0.0335s for obtaining the initial guess by
simulating the dynamics. However, the OpenModelica
compiler requires just 0.2011 seconds for the translation
and compilation. Note that this overhead is independent
of the specific configuration.

5.3 Results Without Mesh Refinement
For equidistant meshes with sizes |M0 | = 25, 100, 250,
the same optimization has been performed with both im-
plementations and the results are displayed in Table 2.

Alg. |M0 | m 𝜙∗ ·103 𝑡𝑜𝑝𝑡 Speedup
OM 25 3 1.11171326 0.3592 1.0000
GD 25 3 1.11171326 0.1877 1.9136
OM 100 3 1.11155875 0.6730 1.0000
GD 100 3 1.11155875 0.3214 2.0940
OM 250 3 1.11155972 1.8256 1.0000
GD 250 3 1.11155972 0.6086 2.9997

Table 2. Performances of GDOPT (GD) and OpenModel-
ica (OM) on equidistant meshes for the Diesel Electric Power
Train. The columns are the algorithm (Alg.), initial mesh size
(|M0 |), number of collocation nodes (𝑚), scaled final objective
(𝜙∗ · 103), total optimization time (𝑡𝑜𝑝𝑡), and speedup factor rel-
ative to OpenModelica.

It is noteworthy that GDOPT is 2 to 3 times faster than
OpenModelica without using any mesh refinement. More-
over, both implementations provide the exact same objec-
tives to all digits. This clearly shows that GDOPT effi-
ciently deploys the relevant model information and addi-
tionally, performs internal calculations very fast.

5.4 Phase I Refinement
By incorporating 𝑘 = 2 phase I refinements, the same op-
timal solution for an equidistant mesh size of |M| = 100
is obtained in 0.2291s as seen in Table 3, compared to
0.3214s with GDOPT without refinement and 0.6730s
with OpenModelica (Table 2). Therefore, the multigrid
refinement (Algorithm 3.1) accelerates the GDOPT pro-
cedure by roughly 40%.

5.5 Results Using L2-Boundary-Norm
Additional Phase II iterations enhance accuracy in regions
with non-smooth control behavior. Since the optimal con-
trol remains constant over large parts of the time horizon,
high resolution is not required everywhere. However, the
problem also features sharp switching behavior, where ac-
curately resolving the exact timing of the switches is crit-

Enhancing Collocation-Based Dynamic Optimization through Adaptive Mesh Refinement

134 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218127

https://github.com/linuslangenkamp/GDOPT/blob/master/examples/dieselMotor.py
https://github.com/linuslangenkamp/GDOPT/blob/master/examples/dieselMotor.py
https://github.com/linuslangenkamp/GDOPT/blob/master/examples/dieselMotor.py

ical. This is illustrated in Figure 4, which shows the opti-
mal control solution on the final refined mesh:

0.0

0.5

1.0

u_
f

0.0

0.5

1.0

u_
wg

0.25 0.30 0.35 0.40 0.45 0.50
Time in Seconds

0
1
2
3
4
5
6
7

Ite
ra

tio
n

Figure 4. Mesh refinement history of the Diesel Electric Power
Train for configuration: GDOPT, 𝑘 = 2, 𝑏 = 5, |M0 | = 25, 𝑚 = 3

To further investigate the impact of the refinement iter-
ations, control trajectories in different stages of the refine-
ment process are presented. In Figure 5 the controls are
displayed for the configuration 𝑘 = 2, 𝑏 = 5, |M0 | = 25,
𝑚 = 3.

0.00

0.25

0.50

0.75

1.00

u_
f

Optimum for Mesh 0
Optimum for Mesh 2
Optimum for Mesh 5
Optimum for Mesh 7

0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500
Time in Seconds

0.00

0.25

0.50

0.75

1.00

u_
wg

Optimum for Mesh 0
Optimum for Mesh 2
Optimum for Mesh 5
Optimum for Mesh 7

Figure 5. Refinement iterations for both control variables of the
Diesel Electric Power Train for configuration: GDOPT, 𝑘 = 2,
𝑏 = 5, |M0 | = 25, 𝑚 = 3

Note that in this case the mesh subscript denotes the
cumulative mesh iteration. By simply performing 2 multi-
grid iterations, the solution on M2 looks almost identi-
cal to the final solution using 5 additional phase II iter-
ations. Nevertheless, by increasing the size of the plot,
it becomes obvious that the switching times are not pre-
cisely located as seen for the second control variable in
Figure 6. For this control, the placements of the switches
are roughly 𝑡 ≈ 0.485s and 𝑡 ≈ 0.496s for M2, but the
resolution is too low to capture the exact position of the
switch. By performing additional iterations, the resolu-
tion of the switches increases drastically, such that the fi-
nal solution on M7, which was obtained in just 0.9522s
(Table 3), describes a perfect rectangular shape. This fi-
nal resolution is equivalent to that of an equidistant mesh
with 3200 intervals. Performing the optimization on this
grid without refinement takes 20.3825s using GDOPT and
84.6323s using OpenModelica. Furthermore, OpenMod-
elica did not find the optimal solution but terminated with
an oscillating solution.

Alg. 𝑘, 𝑏 |M0 | m |M∗ | 𝜙∗ ·103 𝑡𝑜𝑝𝑡
GD 2,0 25 3 100 1.11155875 0.2291
GD 2,3 25 3 167 1.11155842 0.4301
GD 2,3 25 5 170 1.11155852 0.6849
GD 2,3 25 7 171 1.11155856 1.1687
GD 2,5 25 3 240 1.11155853 0.9522
GD 2,5 25 5 243 1.11155853 1.5512
GD 2,5 25 7 249 1.11155853 4.4676
GD 2,8 25 3 266 1.11155853 1.3536

Table 3. Performance of GDOPT (GD) using Algorithm 3.3 for
the Diesel Electric Power Train. The columns are the algorithm
(Alg.), maximum number of Phase I and II iterations (𝑘, 𝑏), ini-
tial mesh size (|M0 |), number of collocation nodes (𝑚), final
mesh size (|M∗ |), scaled final objective (𝜙∗ · 103), and total op-
timization time (𝑡𝑜𝑝𝑡) in seconds.

0.484 0.486 0.488 0.490 0.492 0.494 0.496 0.498
Time in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

u_
wg

Optimum for Mesh 0
Optimum for Mesh 2
Optimum for Mesh 5
Optimum for Mesh 7

Figure 6. Refinement iterations for jump discontinuities of the
Diesel Electric Power Train for configuration: GDOPT, 𝑘 = 2,
𝑏 = 5, |M0 | = 25, 𝑚 = 3

5.6 Resolution Under Runtime Constraints

To benchmark resolution efficiency, GDOPT was run on
equidistant meshes under a fixed runtime limit of 1s. The
densest such mesh solved within this limit had 400 inter-
vals and required 1.0273s. In contrast, mesh refinement
using L2BN with 𝑘 = 2 Phase I and 𝑏 = 8 Phase II itera-
tions achieved an effective resolution equivalent to 25600
equidistant intervals in just 1.3536s. For comparison,
equidistant meshes with 550 and 600 intervals required
1.2349s and 2.0783s, respectively. These resolutions are
over 40 times coarser than the refined result. This demon-
strates that mesh refinement with L2BN significantly im-
proves resolution, as needed for problems with switching
controls, while maintaining low computational cost.

5.7 Discussion of Results

Overall, L2BN enables GDOPT to accelerate convergence
from poor initial guesses, efficiently detect non-smooth
regions, and adaptively increase resolution, far outper-
forming traditional equidistant mesh approaches. Com-
bined with its rapid execution under equivalent conditions,
GDOPT shows striking advantages over direct collocation
in OpenModelica in both speed and solution quality.

Session: Simulation and Optimization in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 135
10.3384/ecp218127 September 8-10, 2025, Lucerne, Switzerland

6 Limitations
While effective, L2BN and GDOPT have several lim-
itations that should be considered. First, L2BN does
not take advantage of the spectral convergence proper-
ties of flipped Legendre-Gauss-Radau (fLGR) collocation
points. Therefore, it is unable to achieve the convergence
rates of ℎ𝑝-adaptive methods and may require excessive
mesh iterations or intervals to reach high accuracy, poten-
tially leading to numerical instabilities.

The performance of L2BN also depends on the initial
mesh size and refinement parameters, such as the num-
ber of phase I and phase II iterations. Clearly, the initial
mesh must resemble the principle behavior of the subse-
quent iterations, otherwise the phase I iterations can have
negative effects. Poor choices for these settings can result
in unnecessary computational effort or failure to resolve
key features of the solution.

Another limitation is the absence of direct error esti-
mation in the algorithm. Since L2BN does not explicitly
compute or use error estimates, it may not always refine
the mesh optimally. For example, regions with smooth
but rapidly changing controls might be over-refined, be-
cause of the large change on the interval. This can lead to
a lot of unnecessary computations and considerably larger
meshes than sufficient.

The most significant limitation, however, is that
GDOPT is unable to handle DAEs directly and must
model algebraic variables as control inputs. An integra-
tion into an elaborate modeling environment like Open-
Modelica would allow solving for algebraic variables at
every step, thus reducing the solver space. Furthermore,
direct error estimates could be incorporated by leveraging
established simulation capabilities of OpenModelica.

7 Discussion and Future Work
This work presents two significant contributions to di-
rect collocation-based dynamic optimization: (1) a com-
prehensive re-implementation that addresses significant
limitations in optimizing with OpenModelica, and (2)
the novel L2BN mesh refinement algorithm. The re-
sults demonstrate that GDOPT achieves 2 to 3 times
speedups over OpenModelica under equivalent condi-
tions, while introducing additional, essential capabilities
such as adaptive mesh refinement, parameter optimiza-
tion, exact Hessians, and support for higher-order colloca-
tion schemes. Tested on a representative optimal control
problem, the proposed mesh refinement algorithm proves
to be highly efficient. It speeds up convergence from poor
initial guesses, correctly detects non-smooth regions, and
enhances solution accuracy with low computational ef-
fort. Additionally, it reaches a resolution at switching
points that would be unrealistic to achieve with equidis-
tant meshes in a reasonable amount of time.

Ongoing work focuses on integrating libgdopt into the
OpenModelica toolchain to replace its legacy optimiza-
tion runtime. This integration will bring several sub-

stantial improvements, including full parameter optimiza-
tion capabilities, adaptive mesh refinement as presented in
this work, variable polynomial degrees, and exact Hessian
computation for improved convergence. Moreover, native
DAE support, already available in OpenModelica, will
be preserved through algebraic system resolution at each
optimization step, expanding the capabilities of GDOPT,
which is currently limited to ODEs. The performance
gains demonstrated in this paper suggest that such an in-
tegration could significantly enhance the optimization ca-
pabilities of OpenModelica.

Acknowledgements
This work was conducted as part of the OpenSCALING
project (Grant No. 01IS23062E) at the University of Ap-
plied Sciences and Arts Bielefeld, in collaboration with
Linköping University. The authors would like to ex-
press their sincere appreciation to both the OpenSCAL-
ING project and the Open Source Modelica Consortium
(OSMC) for their support, collaboration, and shared com-
mitment to advancing open-source modeling and simula-
tion technologies.

References
Amestoy, Patrick R. et al. (2001). “A Fully Asynchronous Mul-

tifrontal Solver Using Distributed Dynamic Scheduling”. In:
SIAM Journal on Matrix Analysis and Applications 23.1,
pp. 15–41.

Bachmann, Bernhard et al. (2012-09). “Parallel Multiple-
Shooting and Collocation Optimization with OpenModelica”.
In: DOI: 10.3384/ecp12076659.

Becerra, V. M. (2010). “Solving complex optimal control prob-
lems at no cost with PSOPT”. In: 2010 IEEE Interna-
tional Symposium on Computer-Aided Control System De-
sign, pp. 1391–1396. DOI: 10.1109/CACSD.2010.5612676.

Betts, John T. and William P. Huffman (1998). “Mesh refine-
ment in direct transcription methods for optimal control”. In:
Optimal Control Applications and Methods 19.1, pp. 1–21.

Fritzson, Peter, Adrian Pop, Karim Abdelhak, et al. (2020-10).
“The OpenModelica Integrated Environment for Modeling,
Simulation, and Model-Based Development”. In: Modeling,
Identification and Control: A Norwegian Research Bulletin
41, pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Garg, Divya, Michael Patterson, Camila Francolin, et al. (2011-
06). “Direct Trajectory Optimization and Costate Estimation
of General Optimal Control Problems Using a Radau Pseu-
dospectral Method”. In: Computational Optimization and Ap-
plications 49, pp. 335–358. DOI: 10.1007/s10589-009-9291-
0.

Gill, P. E. et al. (2007). SNOPT 7.7 User’s Manual. Tech. rep.
CCoM Technical Report 18-1. San Diego, CA: Center for
Computational Mathematics, University of California, San
Diego.

Gill, Philip E., Walter Murray, and Michael A. Saunders (2005-
01). “SNOPT: An SQP Algorithm for Large-Scale Con-
strained Optimization”. In: SIAM Rev. 47.1, pp. 99–131.
ISSN: 0036-1445. DOI: 10.1137/S0036144504446096. URL:
https://doi.org/10.1137/S0036144504446096.

Enhancing Collocation-Based Dynamic Optimization through Adaptive Mesh Refinement

136 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218127

https://doi.org/10.3384/ecp12076659
https://doi.org/10.1109/CACSD.2010.5612676
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.1007/s10589-009-9291-0
https://doi.org/10.1007/s10589-009-9291-0
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096

HSL (2013). HSL: A collection of Fortran codes for large-scale
scientific computation. Available at http://www.hsl.rl.ac.uk.
Accessed: 15-04-2025.

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment”.
In: Computing in Science & Engineering 9.3, pp. 90–95. DOI:
10.1109/MCSE.2007.55.

Jain, Sachin and Panagiotis Tsiotras (2008-09). “Trajectory Op-
timization Using Multiresolution Techniques”. In: Journal of
Guidance Control and Dynamics - J GUID CONTROL DY-
NAM 31. DOI: 10.2514/1.32220.

Langenkamp, Linus (2024-12). “Adaptively Refined Mesh for
Collocation-Based Dynamic Optimization”. MA thesis. DOI:
10.13140/RG.2.2.18499.72484.

Liu, Fengjin, William W. Hager, and Anil V. Rao (2015). “Adap-
tive mesh refinement method for optimal control using non-
smoothness detection and mesh size reduction”. In: Journal
of the Franklin Institute 352.10, pp. 4081–4106. ISSN: 0016-
0032. DOI: https://doi.org/10.1016/j.jfranklin.2015.05.028.
URL: https : / / www. sciencedirect . com / science / article / pii /
S0016003215002045.

Magnusson, Fredrik and Johan Åkesson (2015). “Dynamic Op-
timization in JModelica.org”. In: Processes 3.2, pp. 471–496.
ISSN: 2227-9717. DOI: 10 . 3390 / pr3020471. URL: https : / /
www.mdpi.com/2227-9717/3/2/471.

Mengist, Alachew, Vitalij Ruge, Mahder Gebremedhin, et al.
(2013-09). “Model-Based Dynamic Optimization with Open-
Modelica and CasADi”. In.

Patterson, Michael A., William W. Hager, and Anil V. Rao
(2015). “A ph mesh refinement method for optimal control”.
In: Optimal Control Applications and Methods 36.4, pp. 398–
421. DOI: https:/ /doi.org/10.1002/oca.2114. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/oca.2114. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2114.

Patterson, Michael A. and Anil V. Rao (2014-10). “GPOPS-II:
A MATLAB Software for Solving Multiple-Phase Optimal
Control Problems Using hp-Adaptive Gaussian Quadrature
Collocation Methods and Sparse Nonlinear Programming”.
In: ACM Trans. Math. Softw. 41.1. ISSN: 0098-3500. DOI:
10.1145/2558904. URL: https://doi.org/10.1145/2558904.

Ruge, Vitalij et al. (2014-03). “Efficient Implementation of Col-
location Methods for Optimization using OpenModelica and
ADOL-C”. In: pp. 1017–1025. ISBN: 978-91-7519-380-9.
DOI: 10.3384/ecp140961017.

Sagliano, Marco et al. (2018-01). “SPARTAN: A Novel Pseu-
dospectral Algorithm for Entry, Descent, and Landing Anal-
ysis”. In: pp. 669–688. ISBN: 978-3-319-65282-5. DOI: 10 .
1007/978-3-319-65283-2_36.

Schneider, Claus and Wilhelm Werner (1986-07). “Some new
aspects of rational interpolation”. In: Math. Comput. 47.175,
pp. 285–299. ISSN: 0025-5718. DOI: 10.2307/2008095. URL:
https://doi.org/10.2307/2008095.

Sivertsson, Martin and Lars Eriksson (2012). “Time and Fuel
Optimal Power Response of a Diesel-Electric Powertrain”.
In: IFAC Proceedings Volumes 45.30. 3rd IFAC Workshop
on Engine and Powertrain Control, Simulation and Model-
ing, pp. 262–269. ISSN: 1474-6670. DOI: https : / / doi . org /
10.3182/20121023-3-FR-4025.00036. URL: https://www.
sciencedirect.com/science/article/pii/S1474667015351673.

Wächter, Andreas and Lorenz T. Biegler (2006-03). “On the
implementation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming”. In: Mathemat-
ical Programming 106.1, pp. 25–57. ISSN: 1436-4646. DOI:

10.1007/s10107-004-0559-y. URL: https://doi.org/10.1007/
s10107-004-0559-y.

Wen, C.S. and T.F. Yen (1977). “Optimization of oil shale py-
rolysis”. In: Chemical Engineering Science 32.3, pp. 346–
349. ISSN: 0009-2509. DOI: https://doi.org/10.1016/0009-
2509(77) 80221 - 2. URL: https : / / www. sciencedirect . com /
science/article/pii/0009250977802212.

Zhao, Jisong and Teng Shang (2018). “Dynamic Optimization
Using Local Collocation Methods and Improved Multiresolu-
tion Technique”. In: Applied Sciences 8.9. ISSN: 2076-3417.
DOI: 10.3390/app8091680. URL: https: / /www.mdpi .com/
2076-3417/8/9/1680.

Zhao, Yiming and Panagiotis Tsiotras (2009-04). “Mesh Refine-
ment Using Density Function for Solving Optimal Control
Problems”. In: AIAA Infotech at Aerospace Conference and
Exhibit and AIAA Unmanned...Unlimited Conference. DOI:
10.2514/6.2009-2019.

Session: Simulation and Optimization in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 137
10.3384/ecp218127 September 8-10, 2025, Lucerne, Switzerland

http://www.hsl.rl.ac.uk
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.2514/1.32220
https://doi.org/10.13140/RG.2.2.18499.72484
https://doi.org/https://doi.org/10.1016/j.jfranklin.2015.05.028
https://www.sciencedirect.com/science/article/pii/S0016003215002045
https://www.sciencedirect.com/science/article/pii/S0016003215002045
https://doi.org/10.3390/pr3020471
https://www.mdpi.com/2227-9717/3/2/471
https://www.mdpi.com/2227-9717/3/2/471
https://doi.org/https://doi.org/10.1002/oca.2114
https://onlinelibrary.wiley.com/doi/pdf/10.1002/oca.2114
https://onlinelibrary.wiley.com/doi/pdf/10.1002/oca.2114
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2114
https://doi.org/10.1145/2558904
https://doi.org/10.1145/2558904
https://doi.org/10.3384/ecp140961017
https://doi.org/10.1007/978-3-319-65283-2_36
https://doi.org/10.1007/978-3-319-65283-2_36
https://doi.org/10.2307/2008095
https://doi.org/10.2307/2008095
https://doi.org/https://doi.org/10.3182/20121023-3-FR-4025.00036
https://doi.org/https://doi.org/10.3182/20121023-3-FR-4025.00036
https://www.sciencedirect.com/science/article/pii/S1474667015351673
https://www.sciencedirect.com/science/article/pii/S1474667015351673
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/https://doi.org/10.1016/0009-2509(77)80221-2
https://doi.org/https://doi.org/10.1016/0009-2509(77)80221-2
https://www.sciencedirect.com/science/article/pii/0009250977802212
https://www.sciencedirect.com/science/article/pii/0009250977802212
https://doi.org/10.3390/app8091680
https://www.mdpi.com/2076-3417/8/9/1680
https://www.mdpi.com/2076-3417/8/9/1680
https://doi.org/10.2514/6.2009-2019

Appendix: Proof of Lemma 1
Lemma 1. Let 𝑝 ∈ 𝑃𝑚 be a polynomial and 𝑝𝜀 (𝑡) = 𝑝

(
𝑡
2
)
+ 𝜀(𝑡) be a variation of 𝑝

(
𝑡
2
)

by 𝜀 ∈ 𝑃𝑚, then for a given

𝛿 ∈ R with
√

2
2 < 𝛿 < 1

∥ ¤𝑝𝜀 (𝑡)∥
∥ ¤𝑝(𝑡)∥ < 𝛿, if ∥ ¤𝜀(𝑡)∥ <

√
2𝛿−1

2

 ¤𝑝 (𝑡
2

)

.
Proof.

∥ ¤𝑝(𝑡)∥2 =
∫ 1

0
¤𝑝(𝑡)2 d𝑡 =

∫ 1
2

0
¤𝑝(𝑡)2 d𝑡 +

∫ 1

1
2

¤𝑝(𝑡)2 d𝑡 =
1
2

(∫ 1

0
¤𝑝
(𝑡
2

)2
d𝑡 +

∫ 1

0
¤𝑝
(
𝑡 +1

2

)2
d𝑡

)
=⇒ ∥ ¤𝑝(𝑡)∥ = 1

√
2

(∫ 1

0
¤𝑝
(𝑡
2

)2
d𝑡 +

∫ 1

0
¤𝑝
(
𝑡 +1

2

)2
d𝑡

) 1
2

=
1
√

2

(

 ¤𝑝 (𝑡
2

)

2
+

 ¤𝑝 (

𝑡 +1
2

)

2
) 1

2
(15)

Also ¤𝑝𝜀 (𝑡) = 1
2 ¤𝑝

(
𝑡
2
)
+ ¤𝜀(𝑡) and by the Minkowski inequality ∥ ¤𝑝𝜀 (𝑡)∥ ≤ 1

2

 ¤𝑝 (

𝑡
2
)

+ ∥ ¤𝜀(𝑡)∥, implying

∥ ¤𝑝𝜀 (𝑡)∥
∥ ¤𝑝(𝑡)∥ ≤

1
2

 ¤𝑝 (

𝑡
2
)

+ ∥ ¤𝜀(𝑡)∥

1√
2

(

 ¤𝑝 (
𝑡
2
)

2 +

 ¤𝑝 (
𝑡+1
2

)

2
) 1

2
≤ 1
√

2

 ¤𝑝 (
𝑡
2
)

+2∥ ¤𝜀(𝑡)∥

 ¤𝑝 (

𝑡
2
)

 =

1
√

2

(
1+ 2∥ ¤𝜀(𝑡)∥

 ¤𝑝 (

𝑡
2
)

)
. (16)

By setting 1√
2

(
1+ 2∥ ¤𝜀 (𝑡) ∥
∥ ¤𝑝(𝑡2)∥

)
< 𝛿 for 𝛿 ∈ R with

√
2

2 < 𝛿 < 1 and rearranging terms, the proposition follows. □

Enhancing Collocation-Based Dynamic Optimization through Adaptive Mesh Refinement

138 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218127

	Introduction
	Dynamic Optimization
	Problem Definition
	Direct Collocation
	Resulting NLP

	Adaptive Mesh Refinement
	L2-Boundary-Norm
	Phase I
	Illustration of Phase I

	Phase II
	On-Interval Condition
	Fast Computation
	Termination

	Boundary Condition
	Algorithm

	Implementation
	Acceleration of Refinement Iterations
	Optimization of DAEs

	Results and Performance
	Diesel Electric Power Train
	Code Generation and Compilation
	Results Without Mesh Refinement
	Phase I Refinement
	Results Using L2-Boundary-Norm
	Resolution Under Runtime Constraints
	Discussion of Results

	Limitations
	Discussion and Future Work

