Validation of Dynamic Simulation Models Using Metamorphic
Testing and Given-When-Then Patterns

Gaadha Sudheerbabu! Dragos Truscan

1

Mikael Manngérd® Kristian Klemets>

! Abo Akademi University, Finland, firstname.lastname@abo. fi
ZNovia University of Applied Sciences, Finland mikael.manngard@novia.fi
3Univeristy of Turku, Finland kristian.klemets@utu.fi

Abstract

As the maritime industry evolves, there is a focus on
simulation-driven design, testing, and validation using
novel technology solutions. Simulation models designed
to represent the behaviour and features of real systems are
increasingly available for testing during the early phase
of the full development, but in many cases, their testing
suffers from the availability of test oracles. Metamorphic
testing has become increasingly used in different applica-
tion domains as an approach to test systems when an ex-
plicit test oracle is unavailable. In order to increase its
adoption by domain experts, we combine metamorphic
testing with Behaviour Driven development for the veri-
fication and validation of simulation models. The tool-
based approach facilitates automated test generation based
on domain-specific custom metamorphic transformations
to generate meaningful test inputs for metamorphic input
relations. The method also uses features and scenarios ex-
tracted from system requirements and domain expertise
to define metamorphic output relations. By automating
test generation based on system behaviours as features,
scenarios, metamorphic transformations, and output can-
didates for metamorphic relations in a Gherkin-like for-
mat, the tool enables practitioners to verify models based
on domain-specific constraints and metamorphic relation
checks. Our preliminary evaluation shows that the tool
can detect metamorphic relations violations in the simula-
tion models under test and that automated test generation
provides improved coverage.

Keywords: Metamorphic testing, Validation, Simulation,
FMI, FMU

1 Introduction

In recent times, maritime vessels have evolved into com-
plex systems of systems with advanced automation and
control systems. This evolution has made the verifica-
tion and validation of maritime systems more challeng-
ing and has increased the demand for new methods for
early simulation-based testing. The simulation model of a
system is designed based on the properties and behaviour
of the real system it represents. The Functional Mock-
Up Interface (FMI) (Blochwitz et al. 2012) is a standard
that defines a container and an interface to exchange dy-

namic simulation models. The container packs simulation
models into an archive file called functional mock-up unit
(FMU), which contains metadata, interface specification,
binary files, data files, documentation and, optionally, the
source code of the model. The goal of packing simula-
tion models as FMUs is to exchange them between dif-
ferent stakeholders, such as suppliers and manufacturers,
and this opens up the possibility of providing black-box
models of the systems and subsystems for acceptance and
integration testing. Besides the fact that, in many cases,
dynamic simulation models do not come accompanied by
explicit test oracles to allow automated testing, this encap-
sulation complicates the acceptance and integration test-
ing processes.

Metamorphic testing (Tsong Y Chen et al. 2020) is an
increasingly popular testing technique for generating test
cases and verifying test results based on the properties or
functional behaviour of the system. This technique also
effectively addresses one of the fundamental challenges in
software testing, the test oracle problem (Barr et al. 2014).
The test oracle problem is the challenge of determining
the expected output or behaviour of the system under test
(SUT) for a given input. Often, when an explicit test or-
acle is unavailable to validate the correctness of the exe-
cution results of simulation models, they are considered
non-testable (Balci 2003; Weyuker 1982).

A recent study about the research directions in meta-
morphic relation generation (Li et al. 2024) discusses the
possibility of extending the applicability of MT in auto-
mated test generation to wider application domains that
face the oracle problem. Metamorphic testing has been
applied to the verification of simulation software (Murphy
etal. 2011) and to the verification (Jiang et al. 2014; Lind-
vall et al. 2017) and validation (M. M. Olsen and M. S.
Raunak 2016; M. Olsen and M. Raunak 2018) of simula-
tion models. Recent research on the validation of simula-
tion models using metamorphic testing shows that it has
been applied to agent-based and discrete event simulation
models, as well as to hybrid simulation models that in-
clude combinations of agent-based models, discrete event
simulation models, and system dynamics models.

Behaviour-Driven Development (BDD) is a software
development approach that extends Test-Driven Develop-
ment (TDD) by focusing on the behaviour of an applica-

DOI
10.3384/ecp218139

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

139

Validation of Dynamic Simulation Models using Metamorphic Testing and Given-When-Then ...

tion from the end user’s perspective. The key idea is to
write tests in a natural, readable language that describes
how the application should behave under specific scenar-
ios. BDD helps teams create a shared understanding of re-
quirements and ensures software is aligned with business
goals. BDD uses requirements patterns, such as Given-
When-Then, to describe the expected behaviour of a sys-
tem in a clear, consistent way. It breaks down each sce-
nario into three logical parts: preconditions, action, and
expected outcome, allowing domain experts to specify ex-
ecutable testing scenarios.

In this work, we propose the integration of BDD with
metamorphic testing to facilitate specifying the test de-
sign by domain experts to automate the test case gener-
ation, execution, and verdict assignment for the validation
of dynamic simulation models. The approach can stream-
line the testing process by generating the test design doc-
umentation in a practitioner-friendly BDD format and au-
tomating the different steps of the testing cycle with the
following contributions:

* We propose a set of metamorphic input and output re-
lational operators to test system dynamics simulation
models.

* We provide a framework to allow domain experts to ex-
press test actions and expected behaviour in BDD for-
mat by selecting metamorphic transformations and out-
put relations.

* We provide the tool support for automating different
steps of the metamorphic testing process: the metamor-
phic BDD test case generation, input transformation,
test execution and test verdict assignment.

The rest of the paper is divided into six sections. Sec-
tion 2 describes concepts such as metamorphic testing and
behaviour-driven development testing. Section 3 intro-
duces the overview of our approach. We exemplify our
approach on the simulation model of a lubricating oil cool-
ing system in Section 4 and discuss the results in Section
5. We overview related work in Section 6, and draw the
conclusions in Section 7.

2 Prerequisites

This section describes in more detail the metamorphic
testing technique and behaviour-driven development test-

ing.
2.1 Metamorphic testing

Metamorphic testing (MT) was introduced by Chen et
al. (Tsong Y Chen et al. 2020) as a solution to test sys-
tems without explicit specification of the test oracle. In
MT, the behavioural or functional properties of the system
are defined by posing a hypothesis about using generic re-
lations, known as metamorphic relations (MRs), between
different sets of inputs and their expected outputs.

The typical MT process is shown in Figure 1. A source
test case is the first set of tests performed using seed in-
puts (initial inputs) denoted as x in Figure 1. The seed
inputs are then transformed into morphed inputs denoted
as x' based on a defined metamorphic transformation.
The follow-up test cases are performed using the result-
ing morphed inputs.

Morphing Transformation

Seed Morphed
Input Input
X < Input relation —» e

& &
v

Morphed Output

£(x) ——Output relation—— £(x)

surT

Seed output

Metamorphic
relation

heck

Test
Verdict

Figure 1. Generic metamorphic testing process

An MR is composed of two parts: an input relation and
output relation (Liu et al. 2012). The input relation rep-
resents the relation between the inputs of the source test
case and a follow-up test case, whereas an output rela-
tion represents the relation between the expected outputs
of the source and follow-up test cases. In addition, an im-
plication between the outputs of source and follow-up test
cases is needed to specify the impact of input transforma-
tions on their corresponding outputs. The output relation,
often specified using a relational operator such as equal-
ity, subset, disjoint, complete, and difference (Segura et
al. 2017), should hold for any corresponding output of the
system. The test verdict is assigned based on the violation
or non-violation of output relation.

Several studies show that metamorphic testing has be-
come a popular choice for testing systems without explicit
test oracles and that it has been applied successfully to
many application domains, including embedded systems,
web applications, computer graphics, and simulation and

140

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218139

Session: Modeling Paradigms and Language Experiments in Track for General Modelica

modelling (Segura et al. 2016; Tsong Yueh Chen et al.
2018).

2.2 Behaviour Driven Development testing

Behaviour-driven development (Smart and Molak 2023)
testing aims to build a development process in which
development and testing activities occur concurrently
throughout the product life cycle, facilitating faster and
more reliable releases. The Gherkin language (Wynne
and Hellesoy 2012) serves a key role in BDD and test
automation by allowing developers and other stakehold-
ers to describe software behaviour clearly that is both
human-readable and executable by machines. As a struc-
tured plain-text language, Gherkin uses keywords such as
Feature, Scenario, Given, When, Then to define the ab-
stract description of the feature or behaviour of the sys-
tem, scenarios associated with it and the steps that de-
scribe the initial conditions, test actions, and acceptance
criteria. These steps ensure precise documentation of sys-
tem requirements and test design as user scenarios. An
example of a scenario specified using Given-When-Then
(GWT) patterns is presented in Listing 1.

Listing 1. Example test specified using GWT template

Feature: User login
Scenario: Successful login with valid
credentials
Given the user is on the login page
When the user enters valid credentials
Then the user should be redirected to
the dashboard

3 Overview of the approach

We propose a metamorphic behaviour-driven develop-
ment (Metamorphic BDD) approach for testing simulation
models. The approach is intended to allow domain experts
to formulate easily metamorphic tests for FMUs, by map-
ping concepts of MT to the GWT templates (as shown in
Table 1).

Table 1. Mapping MT concepts to GWT patterns

| Metamorphic concept [GWT pattern |
Seed input & output Given
Morphing Transformation When
Follow-up input
Output Metamorphic Relation Then

Let x be an input to the SUT, and X' = MT(x) its
metamorphic transform. The output of the SUT is f(x).
The metamorphic relation is evaluated by a function
MRy (f(x), f(x")), which checks whether the expected
relationship between the outputs holds. Consider the fol-
lowing GWT scenario:

GIVEN x with
WHEN x =MT(x)
THEN MRout(f(x)vf(x/))v

initial value xq

In this case, all the inputs and outputs are time series over
a specified time interval. As such, a metamorphic test con-
sists of four steps:

1. Execute source test, with seed input x;

2. Apply metamorphic transformation to seed input
X = MT(x);

3. Execute follow-up test with morphed input x’;

4. Verify the metamorphic relation between the seed out-
put f(x) and morphed output f(x').

Although the approach can be applied for defining tests
for any kind of simulation system, in this paper, we take
advantage of the information provided in the FMU pack-
age to streamline and automate the tool support. To that
extent, we use the interface specification of the SUT ex-
tracted from the FMU package and the necessary proper-
ties of the system from the requirements specification as
input. This will allow us to facilitate MR definitions and
to automate test generation, execution, and verdict assign-
ment. Finally, a test report is generated as output.

¢ FMU

Import Interface specification A

v

Define features and scenarios

!

Define Initial Conditions
(GIVEN)

|

Select Metamorphic Input Transformation
(WHEN)

l

Select Metamorphic Output Relations
(THEN)

l

Generate Metamorphic BDD Test template

v

Test Generation

!

Test Execution and MR check

v

Test report

SRS

—

Figure 2. Metamorphic BDD testing workflow

DOI
10.3384/ecp218139

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

141

Validation of Dynamic Simulation Models using Metamorphic Testing and Given-When-Then ...

The workflow of the approach is depicted in Figure 2.
In the following, we will discuss the main steps of the
approach.

Import interface specification. In the first step of
our approach, the interface specification of the SUT is im-
ported from the FMU file (modelDescription.xml). This
includes the input and output signals, the initial values for
the inputs and the ranges of the input.

Define features and scenarios. Then, the domain ex-
pert defines the features and scenarios for validating the
relevant properties of the SUT.

Define initial conditions The user defines the initial
condition values for the inputs of the system. These con-
ditions correspond to the GIVEN statement of the GWT
pattern.

Select Metamorphic Input Transformation. For the
WHEN statement, the user selects the metamorphic trans-
formation that should be applied to each input signal in
the scenario defined. A given metamorphic transforma-
tion is defined as a tuple (transformation, relation). The
transformation defines the pattern based on which the in-
put signal is changed (e.g., None, Steps, Drift), whereas
the relation specifies the direction of the change (e.g., con-
stant, increase, decrease). In case of Drift transformation,
the input signals vary by a ramp_rate value selected from
the range +2 and for Steps, they vary from the initial con-
dition value by +(value) until it reaches the lower and up-
per limits of the inputs they are applied upon. The actual
value of the ramp_rate can be defined manually or gen-
erated using a random uniform sampling method, which
is used to create the morphed input values for the corre-
sponding input variable.

Metamorphic Output Relation Selection. The out-
put metamorphic relation can be defined in the THEN
statement, for one or several of the output signals extracted
from the interface specification of the FMU. The output
relations that are applicable to validate the expected prop-
erties of the output signal can be selected from the list
of temporal and relational operator combinations enumer-
ated below:

1. Always_Greater than: Implies that morphed outputs of
the selected output variable should always be greater
than the corresponding seed outputs.

2. Always_Greater than or equal to: Implies that mor-
phed outputs of the selected output variable should al-
ways be greater than or equal to the corresponding seed
outputs.

3. Always_Less than: Implies that morphed outputs of the
selected output variable should always be less than the
corresponding seed outputs.

4. Always_Less than or equal to: Implies that morphed
outputs of the selected output variable should always
be less than or equal to the corresponding seed outputs.

5. Always_Equal to: Implies that morphed outputs of the
selected output variable should always be equal to the

corresponding seed outputs.

6. Eventually_Increases than: Implies that morphed out-
puts of the selected output variable should eventually
increase than the corresponding seed outputs.

7. Eventually_Decreases than: Implies that morphed out-
puts of the selected output variable should eventually
decrease than the corresponding seed outputs.

8. Always in given range [lower_limit upper_limit]: Tm-
plies that morphed outputs of the selected output vari-
able should always stay in the range defined as its lower
limit and upper limit in the requirements specification.

All these metamorphic relations assume that the seed
and morphed outputs will be checked at each time step of
the simulation.

Metamorphic BDD test template generation. In this
step, a feature file with the metamorphic BDD format is
generated based on the metamorphic relations selected for
the inputs and outputs in the previous step. This step takes
as input the number of scenario instances to be generated
and the number of time steps per scenario instance to cre-
ate the parametrized BDD test file in Gherkin format.

Test Generation. In this step, the morphed test input
values are generated for the follow-up tests based on the
transformation relation selected and the parametrized val-
ues in the BDD test file. These test inputs are also saved
to a test suite file in ’.json’” format.

The test inputs are generated using the ramp_rate added
as a parametrized value in the BDD test file. The seed in-
put is transformed into morphed input by applying the se-
lected transformation on the initial condition value added
in the GIVEN condition for the corresponding input. If
the transformation selected is None, the value remains the
same as the initial condition value throughout the simula-
tion.

Test Execution and MR checking. In this last step,
the morphed test inputs are executed on the FMU file. For
this case study, the Python package PyFMI (Andersson,
Akesson, and Fiihrer 2016) was used to simulate FMUs.
The simulations run for the source test execution using the
initial condition values for inputs and the follow-up sce-
nario instances using the morphed input values generated.
Then, each set of morphed outputs from follow-up test ex-
ecutions is compared with seed outputs from the source
test execution, using the output MRs to assign the test ver-
dict. The test verdict of each follow-up test execution and
the comparison plots are summarized and presented in a
test report for further analysis.

One should notice that each generated scenario instance
would require executing a seed test and a follow-up test.
However, since the seed test would be identical for each
scenario instance, only one execution of the seed test is
needed in order to collect the corresponding seed output.
That is, if from a given scenario, n scenario instances are
generated, the number of executions of the SUT equals
n+1. This considerably reduces the test execution time.

142

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218139

Session: Modeling Paradigms and Language Experiments in Track for General Modelica

4 Case Study

We will exemplify the approach presented in Section 3 on
a simplified version of a Lubricating Oil Cooling (LOC)
system that transfers heat from the lubrication oil to the
cooling water circuit of a ship engine unit (NoviaRDISea-
faring 2024). The LOC system has a control valve which
controls the lubrication oil temperature at a constant set-
point at the engine inlet using a PI controller. The con-
troller aims to keep the lubrication oil temperature at the
outlet within the boundary values specified at all condi-
tions.

To test the LOC system using our approach, we start by
importing the interface specification of the system. Then,
the relevant features to be tested should be defined in the
framework. For instance, a feature and scenario added to
test the LOC system can be seen in Figure 3.

Feature ID: F6

LOC system temperature control check
Feature :

When engine load increases, input temperature of cold
circuit increases, and mass flow increases the lube oil

temperature eventually increases and stays within limits

Scenario:

Figure 3. Defining the Feature and Scenario to test LOC system

The tool automatically extracts inputs and outputs from
the model description and presents them in the GUI to-
gether with predefined data values. The initial condition
values for the inputs of the system can be provided in the
GIVEN tab, as in Figure 4.

GIVEN WHEN THEN
(Select Initial condition for inputs)

Input Variable Initial Value Lower Limit Upper Limit
temperature_cooling_liquid_in 30 0 100
mass_flow_cooling_liquid_in 15 0 50
setpoint_temperature_oil 55 30 90
engine_load 0 0 1

Figure 4. Setting Initial condition values

For the WHEN statement, the user selects the metamor-
phic transformation that should be applied for all inputs of
the FMU (see Figure 5).

Figure 6 shows an example resulting input signal gen-
erated upon selecting Steps_Increase using a ramp_rate
of 3.64 at a time interval of 5 for the input tempera-
ture_cooling_liquid_in with an initial condition value 30.
The transformation will preserve the original limits of the
signal, 0 and 100, respectively.

Figure 7 shows the output signals of the LOC system
and the set of predefined output relations that can be se-
lected for each signal. From the listed set of relations, the

GIVEN WHEN THEN

(Select transformation for inputs)
Input Variable Transformation Relation

temperature_cooling_liquid_in Steps_Increase

mass_flow_cooling_liquid_in Drift_Increase

setpoint_temperature_oil None_Constant

engine_load Drift_Increase

Figure 5. Metamorphic Input Transformation Selection options

Transformed Input for temperature_cooling_liquid_in

100 1 —— temperature _cooling liquid_in

80 4

60 4

Value

40 +

204

] T T T T T
o] 20 40 60 80

Time Step

T T T
100 120 140

Figure 6. Example of transformed input using Steps_Increase
transformation.

ones corresponding to the output variable selected and the
input transformation applied can be chosen to facilitate the
automatic generation of the metamorphic BDD test file.

GIVEN WHEN THEN

Select Relations for: temperature_oil
(Select metamorphic relation between seed and morphed outputs)

(Select outputs to verify)
Morphed Output Always in given range (0 100]

Output Variable [~ Always_Greater than

(0] temperature_cooling_liquid_out [~ Always_Greater than or equal to

O mass_flow_cooling_liquid_out r Always_Less than

B temperature_oil
! p - ™ Always_Less than or equal to
[position_valve
™ Always_Equal to

[~ Eventually_Increases than

r Eventually_Decreases than

Figure 7. Metamorphic Output Relation Selection options

Figure 8 shows the first few scenario instances of the
parametrized BDD test file created based on the inputs and
outputs selected in Section 4, and the test generation spe-
cific parameters such as number of scenario instances to
be generated as 5, and the number of time steps per sce-
nario instance as 1000.

For the BDD test scenario in Figure 8, the follow-up
test inputs generated for one of the scenario instances are
depicted in Figure 9. Figure 10, shows the seed and mor-

DOI
10.3384/ecp218139

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

143

Validation of Dynamic Simulation Models using Metamorphic Testing and Given-When-Then ...

Feature: Fé_LOC system temperature control check
Scenario: F€_scenario When engine load increases, input temperature of cold
circuit increases, and mass flow increases the lube 0il temperature eventually
increases
Given 'Fé_scenario' has seed inputs with initial values '[30, 15, 55, 0]'
generating seed outputs in '1000' time steps

When 'engine_load' transform by 'Drift_Increase' with ramp-rate '0.0027'
And "mass_flow_cooling liquid in' transform by "Drift_Increase' with
ramp-rate '0
And 'temperature_cooling_liquid in' transform by 'Steps_Increase' with
ramp-rate '3 '
Then morphed outputs of 'temperature_oil'
And morphed outputs of 'position_valve'

'Always in given range [0 100]'
'Always in given range [0 1]°'

Figure 8. Metamorphic BDD test specification in GWT format

Morphed Inputs

100 1+ —— temperature_cooling_liquid_in

mass_flow_cooling_liquid_in
—— setpoint_temperature_oil
80 4 —— engine_load

.

60

40 -

Input value ranges

201

0 25 50 75 100 125 150 175 200
time(sec)

Figure 9. Plot of follow-up test generated for a scenario instance
in Figure 8

phed outputs of the scenario presented in Figure 8 where
the expected behaviour of the system is that the lubricat-
ing oil temperature at the outlet eventually increases com-
pared to the seed outputs and stays within the boundary
limits in response to the input transformations depicted in
Figure 9. The verdict is assigned by checking the values of
temperature_oil from the simulation results of the source
and follow-up test execution of the system using the meta-
morphic output relation.

4.1 Tool support

Tool support has been in Python using the GUI toolkit
Tkinter (Lundh 1999) for the user interface (see Fig-
ure 11). Most of the steps in the metamorphic testing pro-
cess are fully automated based on the input and output MR
selection using the framework. To implement automa-
tion, we have used Python, Behave library, a BDD frame-
work for Python (Behave 2012), and PyFMI, which in-
teracts with the FMU generated using Simulink (MAT-
LAB/Simulink 2024) to perform automated test execution.
Allure (Allure 2025), an open-source tool for visualising
the results of a test run, is used to generate the test report
(see Figure 12), which is integrated with Behave and can
also be integrated with task management tools like Jira.

Seed Outputs

100 A temperature_cooling_liquid_out
mass_flow_cooling_liquid_out

—— temperature_oil

80 position_valve
——————————————— Alarm limit =
8 +Alarm Range
g
© 60
o
=3
©
>
H 40 x
-
O
201
0+
0 200 400 600 800 1000
time(sec)
Morphed Outputs
100 A
80 4
«
3 —— temperature_cooling_liquid_out
[£ = .
60 —— mass_flow_cooling_liquid_out
5 —— temperature_oil
g —— position_valve
é 40 == Alarm limit
g +Alarm Range
O
201 _ _— — —
0+

0 200 400 600 800 1000

Figure 10. Example of seed and morphed output plots included
in the test report

5 Results and discussion

We have defined 6 features and their corresponding sce-
narios, and provided 7000 time steps to generate the test
inputs for each execution of the SUT. The number of steps
executed per feature and scenario depends on the num-
ber of scenario instances and the number of Given-When-
Then templates in the BDD test file. The execution time
of the tests was Im14.584s. The test results, comprising
the features and behaviours tested, and the test verdict, are
summarised in a test report in HTML format. The test
suite with test inputs and outputs is saved in ’.json’ for-
mat. A domain expert performs further analysis to fix the
defects identified by the failed tests, based on the details
in the test report and test inputs that caused the system
to fail. The failed scenario instance of Feature 6 high-
lighted in Figure 12 checks if the output relation, Always
in given range [lower_limit upper_limit], is satisfied for
the temperature_oil. Based on the evaluation of observed
outputs, the MR is not satisfied, and the input transforma-
tions and the ramp_rates used in the scenario instance can
be further analysed to fine-tune the model parameters to
fix the issue.

144

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218139

Session: Modeling Paradigms and Language Experiments in Track for General Modelica

¢ METAMORPHIC-GWT TESTER GUI

Browse Project Folder

FeaturelD: F6
Feature :
System under Consideration - lube_oil_cooling_system

Number of Scenario instances to generate: |5 Scamar:

Number of time steps per scenario: 1000

Save Feature as Metamorphic BDD test |

Load Feature: F6_Feature_20250721-000629.feature

Generate and execute metamorphic tests |

4 features passed, 2 failed, 0 skipped
4 scenarios passed, 2 failed, 0 skipped
75 steps passed, 2 failed, 33 skipped, 0 undefined
Took 1m14.584s

View test report
Reset & Add next Feature

[position_valve

When engine load increases,
circuit increases, and mass flow increases ti

(Select outputs to verify)
Output Variable

[_] temperature_cooling_liquid_out
O mass_flow_cooling_liquid_out

temperature_oil

Finalize Output Metamorphic relations

LOC system temperature control check

input temperature of cold
lube o0il

temperature eventually increases and stays within limits

GIVEN WHEN THEN

Select Relations for: temperature_oil

(Select metamorphic relation between seed and morphed outputs)

Morphed Output Always in given range [0 100] |

[” Always_Greater than

[~ Always_Greater than or equal to
[~ Always_Less than

™ Always_Less than or equal to

[T Always_Equal to

™ Eventually_Increases than

Scenario:

increases

Fé scenario When engine load increases,
circuit increases,

Given 'F6_scenario’

generating seed_outp

™ Eventually_Decreases than

Save

Feature: F6_LOC system temperature control check

input temperature of cold
and mass flow increases the lube 0il temperature eventually

has seed_inputs with initial values '[30, 15, 55, 0]’

uts in "1000' time steps

Figure 11. GUI of the Metamorphic GWT tool

6 Related work

Yao, Deng, et al. (Deng et al. 2021) proposed a declar-
ative metamorphic testing approach, BMT, for testing au-
tonomous driving models. The approach designed for gen-
erating MRs using custom traffic behaviours is primarily
applied to image processing to verify deep learning mod-
els on their erroneous predictions. Their work also used
behaviour-driven development based domain-specific lan-
guage to build the metamorphic relation and to generate
a test template similar to our approach. However, they
target image processing systems for autonomous driving
models, whereas our work focuses on testing the dynamic
simulation models exported as FMUs in the maritime ap-
plication domain.

7 Conclusions

We proposed a metamorphic testing approach combined
with behaviour-driven development for the validation of
simulation models. The main contributions of our ap-
proach were: specifying the metamorphic tests as scenar-
ios using GWT patterns, and defining a set of metamor-
phic transformations and metamorphic relations to vali-
date dynamic simulation systems. Tool support for the
approach has been provided in the form of a GUI-based
tool that allows the domain expert to import FMU specifi-
cations and to formulate metamorphic tests as parametriz-
able scenarios. The tool also allows the generation of ad-
ditional tests from these scenarios. Currently, the input-

output combinations in metamorphic relations are selected
based on domain expertise to facilitate the test generation
process. However, this can be done semi-automatically
based on the availability of artefacts such as SysML dia-
grams, causal graphs or cause-effect diagrams (Clark et al.
2023).

Future work will focus on customizing the framework
to utilize information mined from causal modelling ap-
proaches for the systematic generation of metamorphic re-
lations. At the moment, the test generation uses random
generation, but future work will replace it with a guided
approach, based on our previous work on combining meta-
morphic testing and generative adversarial networks (Sud-
heerbabu et al. 2024). Future work also includes a study
with practitioners on the usability and practical effective-
ness of the tool to both researchers and practitioners in the
context of acceptance and integration testing.

Acknowledgment

This work has been supported by Business Finland
via the Virtual Sea Trial project (VST), under grant
7187/31/2023.

References

Allure (2025). Allure report. https://allurereport.org/docs/. Ac-
cessed: 2025-03-16.

Andersson, Christian, Johan Akesson, and Claus Fiihrer (2016).
“Pyfmi: A python package for simulation of coupled dynamic

DOI
10.3384/ecp218139

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

145

https://allurereport.org/docs/

Validation of Dynamic Simulation Models using Metamorphic Testing and Given-When-Then ...

Behaviors o

le

name #

status: [0] marks: (@](@)(@)(0](£]

v F1_LOC system temperature control verification
#1 F1_scenario When engine load increases and it runs at full 4s 195ms

load, then the lube oil temperature at the outlet eventually
increases

> F2_LOC system temperature boundary condition check n
v F3_LOC system control valve position verification
#1 F3_scenario When engine load increases, input temperature 7s 534ms
of cold circuit increases, and mass flow increases the lube

oil if oil temperature at outlet increases above set_point then
control valve position eventually decreases

v F4_LOC system control temperature control safety check
#1 F4_scenario When engine load increases, input temperature 4s 320ms

of cold circuit decreases, the lube oil temperature at outlet
stays within allowed boundary limits

> F5_Lube oil temperature at outlet boundary condition check
v F6_LOC system temperature control check n
€ #1 F6_scenario When engine load increases, input temperature 1s 339ms

of cold circuit increases, and mass flow increases the lube
oil temperature eventually increases

Overview History Retries

AssertionError: temperature_oil not in range

Categories: Product defects
Severity: normal

Duration: @ 1s 339ms
Execution
v Test body

Given 'F6_scenario’ has seed_inputs with initial values '[30, 15, 55, 0]
generating seed_outputs in '1000' time steps

When 'engine_load' transform by 'Drift_Increase’ with ramp-rate '0.0027"

And 'mass_flow_cooling_liquid_in' transform by 'Drift_Increase' with
ramp-rate '0.0027"

And ‘temperature_cooling_liquid_in' transform by 'Steps_Increase’ with
ramp-rate '3.64'

v Then morphed_outputs of 'temperature_oil' '‘Always in given range [0 100]'

AssertionError: temperature_oil not in range

And morphed_outputs of 'position_valve' 'Always in given range [0 1]

Figure 12. Test report with summary of test verdicts

models with the functional mock-up interface”. In: Technical
Report in Mathematical Sciences 2.

Balci (2003). “Verification, validation, and certification of mod-
eling and simulation applications”. In: Proceedings of the
2003 Winter Simulation Conference, 2003. Vol. 1. IEEE,
pp. 150-158.

Barr, Earl T et al. (2014). “The oracle problem in software test-
ing: A survey”. In: IEEE transactions on software engineer-
ing 41.5, pp. 507-525.

Behave (2012). Behave. https://behave.readthedocs.io/en/latest/.
Accessed: 2025-02-15.

Blochwitz, Torsten et al. (2012). “Functional mockup interface
2.0: The standard for tool independent exchange of simula-
tion models”. In: 9th international modelica conference. The
Modelica Association, pp. 173-184.

Chen, Tsong Y et al. (2020). “Metamorphic testing: a new ap-
proach for generating next test cases”. In: arXiv preprint
arXiv:2002.12543.

Chen, Tsong Yueh et al. (2018). “Metamorphic testing: A re-
view of challenges and opportunities”. In: ACM Computing
Surveys (CSUR) 51.1, pp. 1-27.

Clark, Andrew G et al. (2023). “Metamorphic testing with causal
graphs”. In: 2023 IEEE Conference on Software Testing, Ver-
ification and Validation (ICST). IEEE, pp. 153-164.

Deng, Yao et al. (2021). “BMT: Behavior driven development-
based metamorphic testing for autonomous driving models”.
In: 2021 IEEE/ACM 6th International Workshop on Meta-
morphic Testing (MET). IEEE, pp. 32-36.

Jiang, Mingyue et al. (2014). “Testing model transformation
programs using metamorphic testing”. In.

Li, Rui et al. (2024). “Metamorphic Relation Generation: State
of the Art and Research Directions”. In: ACM Transactions
on Software Engineering and Methodology.

Lindvall, Mikael et al. (2017). “Metamorphic model-based test-
ing of autonomous systems”. In: 2017 IEEE/ACM 2nd In-
ternational Workshop on Metamorphic Testing (MET). IEEE,
pp- 35-41.

Liu, Huai et al. (2012). “A new method for constructing meta-
morphic relations”. In: 12th Intl. Conference on Quality Soft-
ware. IEEE, pp. 59-68.

Lundh, Fredrik (1999). “An introduction to tkinter”. In:
URL: www. pythonware. com/library/tkinter/introduction/in-
dex. htm 539, p. 540.

MATLAB/Simulink (2024). Simulink(R2024a). Natick, Mas-
sachusetts, United States. URL: https://www.mathworks.com.

Murphy, Christian et al. (2011). “On effective testing of health
care simulation software”. In: Proceedings of the 3rd work-
shop on software engineering in health care, pp. 40—47.

NoviaRDISeafaring (2024). VST. https:// github.com/Novia-
RDI-Seafaring/fmu-opc-hackathon/tree/main/fmus/loc.

Olsen, Megan and Mohammad Raunak (2018). “Increasing va-
lidity of simulation models through metamorphic testing”. In:
IEEFE Transactions on Reliability 68.1, pp. 91-108.

Olsen, Megan M and Mohammad S Raunak (2016). “Metamor-
phic validation for agent-based simulation models.” In: Sum-
merSim, p. 33.

Segura, Sergio et al. (2016). “A survey on metamorphic test-
ing”. In: IEEE Transactions on software engineering 42.9,
pp- 805-824.

Segura, Sergio et al. (2017). “Metamorphic testing of RESTful
web APIs”. In: IEEE Transactions on Software Engineering
44.11, pp. 1083-1099.

Smart, John Ferguson and Jan Molak (2023). BDD in Action:
Behavior-driven development for the whole software lifecy-
cle. Simon and Schuster.

Sudheerbabu, Gaadha et al. (2024). “Iterative Optimization
of Hyperparameter-based Metamorphic Transformations”.
In: 2024 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW). 1EEE,
pp- 13-20.

Weyuker, Elaine J (1982). “On testing non-testable programs”.
In: The Computer Journal 25.4, pp. 465-470.

Wynne, Matt and Aslak Hellesoy (2012). The cucumber book:
behaviour-driven development for testers and developers.
Pragmatic Bookshelf.

146

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218139

https://behave.readthedocs.io/en/latest/
https://www.mathworks.com
https://github.com/Novia-RDI-Seafaring/fmu-opc-hackathon/tree/main/fmus/loc
https://github.com/Novia-RDI-Seafaring/fmu-opc-hackathon/tree/main/fmus/loc

	Introduction
	Prerequisites
	Metamorphic testing
	Behaviour Driven Development testing

	Overview of the approach
	Case Study
	Tool support

	Results and discussion
	Related work
	Conclusions

