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Abstract 
Self-restriction to a certain modeling style can enable the 
modeling of large-scale systems and the robust modeling 
of complex system architectures. This paper discusses 
how such a self-restriction can be achieved within the 
Modelica language and provides a corresponding 
example. 
Keywords: Modeling Methodology, Language Design, 
Object-Oriented 

1 Motivation 
Modelica provides the modelers with a lot of freedom on 
how to create and compose their models. This freedom 
contributed significantly to the appeal of the language. It 
enabled many modelers to solve even exotic problems 
while the powerful algorithms for symbolic index-
reduction in Modelica compilers still enable the 
generation of efficient simulation code. Hence Modelica 
has become the language of choice for many experts in 
their fields, especially in thermal and energy related fields 
where many specialized solutions are needed.   

As always, this freedom is associated with a price to be 
paid for it. First, what is appealing to an expert maybe 
overwhelming for a novice. Beginners in Modelica often 
struggle with decrypting the error-messages and often 
yearn for more guidance. Even after 25 years, the entry 
barrier to the world of equation-based modeling is high. 
Second, since equations can be entered in any form, the 
code generation has to be relegated to the very last stages 
in processing. For monolithic simulation code, this is fine 
but code for large-scale systems on GPUs or for variable 
structure systems require differently structured code that 
becomes available before final system assembly. This is 
difficult to fulfill for current Modelica models, despite 
notable efforts from (Benveniste 2023, Neumayr 2023). 

Being self-aware of its flaws, the Modelica community 
has always remained open to take inspiration from new 
language developments. Whether these are experimental 
languages like MOSILAB (Nytsch-Geusen 2006), SOL 
(Zimmer 2010) or larger efforts such as Modia (Elmqvist 
2021). However, these developments also revealed how 
strong the Modelica legacy is and that maybe a new 
language or a major extension is not what is needed. 

 

Indeed, this paper argues that not an extension of the 
Modelica language is needed but that a self-imposed 
restriction would benefit a significant set of applications. 
The conflict between an expert and a novice does not need 
to exist. We can formulate basic models by restricted 
means and then let the experts extend from this giving 
them free choice of their tools. The conflict between 
different possible compile paths also does not need to 
exist. We can provide models in a restricted form that 
enable local analysis and local compilation and when 
these restrictions are lifted, full global analysis for 
elaborate index-reduction is enabled. 

We shall remind ourselves that it is the strength of a 
declarative language that it does not stipulate its 
computational realization. When we are stricter about the 
declarative form, we typically gain freedom on how to 
process the content.  

2 Robust Modeling Methodology 
The greatest source of complexity in the processing of 
equation-based models are systems that are over-
idealized. Over-idealization means that the system has 
been idealized so strongly that the information on how to 
solve this system has been lost in the process of modeling. 
A great educational collection of such examples has been 
provided by Peter Junglas (Junglas 2025): 

• A singular model of gear shift for a car 
transmission: the over-idealization neglected the 
necessary synchronization during the shift. 

• A singular model of an RS Flip-Flop: the over-
regularization neglected the signal delays within 
the components 

• A model for the distribution of compressed air 
with unsolvable non-linear equations: the over-
idealization neglected the kinetic energy of the 
fluid that would lead to the flow balance. 

• etc. 

Unfortunately, the formulation of over-idealized systems 
has a strong legacy in text-books and modeling. To make 
matters worse the awareness of this phenomenon is often 
little to none. Over-idealized systems not necessarily lead 
to singular systems but often also to structural regular 
systems involving non-linear equation system in implicit 
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form and states with non-linear constraints between 
potential state variables.  

Because the information on how to solve these models 
has been removed, a compiler for such Modelica models 
has essentially to perform blunt guessing (often 
euphemistically formulated as “applying clever 

heuristics”). No matter how elaborated such guesswork 
may be, it involves severe disadvantages: 

• It needs be performed on a global level to exploit 
the full context and hence a global analysis of the 
model is needed.  

• It does not scale. While guessing may work for   
system of low dimensions, it will eventually fail 
for increasingly large dimensions. 

• The compile process becomes non-deterministic. 
Different compilers may have different guessing 
strategies.  

It is important to emphasize that this is not a problem of 
the compiler’s algorithms or of any of the simulation 
tools. It is a problem of the input to the compiler. If the 
information entering the system is incomplete, no 
algorithm can magically retrieve this missing information. 
This is basic information theory.  

The only solid solution to this problem is thus to insist 
on input that is information complete, meaning models 
that are idealized (as all models are idealizations) but not 
over-idealized.  

Fortunately, a suitable model class has been recently 
identified. We call them Linear Implicit Equilibrium 
Dynamics (LIED), (Zimmer 2024)   

A DAE system with potential state derivatives 𝒙̇, time 
𝑡 and algebraic variables 𝐰 

 

𝟎 = 𝑭(𝒙̇, 𝒙, 𝐰, 𝑡) 

is defined as LIED system when it can be transformed 
into the following form: 

 

[
𝐰𝐸 
𝒙̇𝐸 ] = g(𝒙𝐼, 𝒙𝐸 , 𝑡) 

𝐀(𝒙𝐼, 𝒙𝐸 , 𝐰𝐸) [
𝐰𝐼 
𝒙̇𝐼  ] = f(𝒙𝐼, 𝒙𝐸 , 𝐰𝐸 , 𝑡) 

We see that both the algebraic variables as well as the 
state derivatives can be split into a fully explicit part 
( 𝒙̇𝐸;  𝐰𝐸 ) and a part ( 𝒙̇𝐼; 𝐰𝐼 ) with a linear system in 
implicit form expressed by the regular matrix 𝐀 . 
Furthermore, the following conditions shall hold true: 

 

𝒙̇𝐸 ∩ 𝒙̇𝐼 ⊆ 𝒙̇   

𝐰𝐸 ∩  𝐰𝐼 ⊇  𝐰 

𝒙̇𝐸 ∩  𝒙̇𝐼 ∩  𝐰𝐼 ⊇  𝒙̇  

𝒙̇𝐸 , 𝒙̇𝐼, 𝐰𝐸 , 𝐰𝐼  are all disjoint 

These conditions essentially mean that it is allowed to 
perform certain symbolic mechanism of index reduction 
such as the dummy derivative method (Mattsson1993) 
originating from Pantelides (Pantelides 1988). Using this 
method, states variables of 𝒙  can be transformed to 
algebraic variables in 𝐰𝐼 and further derivatives may be 
added to 𝐰𝐼 or 𝐰𝐸. In practice, this is important because 
it means that the linear implicit dynamics can be expressed 
by far fewer states than suggested by the vector 𝒙 of the 
original DAE formulation. 

Whereas this model class may seem to be overly 
restrictive in the first place we could demonstrate that it is 
not only applicable but also highly attractive for the 
modeling of stiff mechanical systems as in Figure 2 
(Zimmer 2023) and complex thermo-fluid architectures 
(Zimmer 2022, Junglas 2023) as in Figure 1. Further 
library development for energy and electric systems is 
currently ongoing.  

 

 
Figure 1. Model diagram of a heat pump using the DLR 

ThermoFluid Stream library (Zimmer 2022) 
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Figure 2. Model diagram of a mechanical system for a 
kinematic using the Dialectic Mechanics library (Zimmer 

2023). 
The goal is now to define a language that is restricted 

for such LIED systems and that also represent valid 
Modelica code. The expected advantages are naturally 
contrarian to the previous bullet list for over-idealized 
models: 

• Models can be analyzed locally and early 
compilation of components is enabled.  

• It scales. The dimension of the system will 
principally not impact its solvability barring other 
issues such as numerics or memory consumption. 

• The compile process can be formulated in fully 
deterministic way increasing the value of a 
reference implementation.  
 

3 Demonstration Example 
Whereas the two preceding sections made very abstract 
arguments, we shall now provide a concrete example and 
then discuss the design ideas based on this code. Listing 1 
was placed in the Appendix and presents the model of a 
2D multibody library implementing components 
according to dialectic mechanics. The code has been 
stripped from most annotations, occasionally shortened 
and simplified for presentation purposes.   

3.1 Assumed Causality 
A key point of the robust modeling approach is that 
models are formulated under the assumption of causality. 
This enables two major benefits: 
 
1. Code generation for individual components is 

enabled.  
2. Error messages point to a single line holding either a 

equation whose causality is not correct or to a variable 
definition that is not causalized. 
 

To achieve this, the connectors need to have an assumed 
causality and what derivates are needed. Also, we need to 
be able to formulate what is a state and what variables can 
be used to tear a linear equation system. Let us go through 
each of these points: 

Connectors with assumed causality 

Input and outputs are the natural way to formulate a 
causal connector. Whenever inputs and outputs are used 
we will use them as indicator of causality: the input is 
assumed to be known to its component and the output is 
unknown (and the reverse is true to the outside). 

For the modeling of physical systems, conjugated pairs 
of potential and flow variables have proven to be useful. 
In order to formulate these pairs with an assumed 

causality, they are not allowed to stand on their own but 
need to be associated with a signal connector. 

A potential variable may be declared in a connector 
after a signal and then inherits the assumed causality from 
this signal. The flow variable must then be declared after 
the potential variable and is assumed to be of inverse 
causality.  

Two examples of such connectors are found in Listing 
1, lines 35-51. The FlangeOn is supposed to be on the 
root side of a kinematic chain and hence its variable for 
position forms an output signal. The corresponding 
potential is the velocity and shares this causality. The flow 
is the force (or torque respectively and of inverse 
causality). The FlangeTo forms then the connector of 
opposite sex.  

The example demonstrates another feature defined on 
Listing 1, line 14 and used in lines 30-34. A new special 
predefined type called RealWithDerivative that indicates 
that not only the potential variable is available in the 
connector but also its derivative. Providing this 
information means that differential index-reduction can be 
performed on the component level.  

For a standard Modelica compiler, it is not necessary to 
have such a special type hence the definition on line 15 
simply defines a Real. The definition exists so that other 
compilers or a compliance checker can replace this default 
definition by a special inner representation.  

Given such causalized connectors, the model equations 
can now be provided in partially ordered form: each 
equation can be causalized based on the previous 
equations. A simple example for this is the body model in 
Listing 1, lines 130 – 150. It assumes the position and the 
derivatives to be known and calculates the forces and 
torques from the acceleration. 

 
Declaring Tearing of Linear Equation Systems 

Since the modeler shall formulate everything under the 
assumption of causality, this also impacts how implicit 
linear equation systems across components have to be 
formulated. Often the modeler expects the model to react 
to a variation by a linear response. This observation 
enables to formulate such a system in causalized and torn 
form. To indicate a tearing of a linear equation system, a 
special predefined model is being declared and then 
applied. The model is called LinearResponse.  

The revolute joint element shows how to use it. The 
modeler expects that a linear response in force results from 
a change in acceleration. He formulates it accordingly by 
declaring the model LinearResponse. The assumed 
causality of the model now naturally follows from this.  

Within Modelica the LinearResponse model can be 
formulated as in Listing 1, line 6-12. This definition 
ensures that the model will be correctly understood by any 
existing Modelica tool. Special tools for this modeling 
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methodology may replace this definition with an internal 
representation.  

 
Declaring States of the System 

A predefined type is also used to select the state of the 
system. In this case the state variable is declared as 
ContinuousState. 

The obvious question is why using this mechanism and 
not the already available StateSelect attribute? The 
reason is to enable an orthogonal mechanism for state 
selection.  

The special model is used for the restricted modeling 
methodology presented here and aims to enable 
component-wise compilation. The state-select attribute is 
to be set by an expert for full complex (non-restricted) 
Modelica models. The motives for selecting states can be 
quite different and hence it seems a good idea to avoid any 
potential conflict. 

When translating a model, the state variable is assumed 
to be known and the derivative is assumed as unknown. If 
you take the derivative of any non-state variable than this 
variable has to be known at this point and the derivative is 
derived from this. The Body component is an example 
from this. Its derivative does not define a state.  

  

3.2 No Look-ahead 
In our restricted modeling methodology, we shall declare 
or define items before we use them. Basically, a compiler 
or a compliance checker for this restricted set shall be able 
to “understand” each line without having to read ahead. 

This concession significantly reduces the complexity of a 
compiler since many processes can now be performed 
directly on the stack instead of having to work on 
intermediately stored parts. Far less internal data-
structures are thus needed.  

One result of this requirement is that packages must not 
be mutually depending on each other anymore. The 
common pattern that is used by many existing Modelica 
libraries does not match this requirement. We have to 
abandon this pattern and separate interfaces from 
components from examples in order to shed unnecessary 
dependencies.  

We can see this in Listing 1 where packages for 
interfaces, planar components and examples are separated 
and all encapsulated. Import statements are restricted to 
encapsulated packages. By separating interfaces, 
components and examples the interdependencies are 
reduced.  

While providing a short-term inconvenience, this 
restriction leads to code that is better maintainable in the 
long-term and avoids “spaghetti” packages. Even a 

modern language like Go enforces such a rule for good 
reasons.  

3.3 Feature Elimination  
When we restrict ourselves to a certain modeling style, 
this also offers an opportunity to trim the feature set of the 
language. There are a number of small features which 
have only very specific purpose or application in the 
standard Modelica language that we shall abandon for this 
modeling methodology: 
- connections.branch/root (used mostly in MultiBody) 
- stream (used in Modelica.Fluid) 
- operator overload 
- expandable connectors 
- delay 
- homotopy 
- inline 
- etc. 
 

As the reader can see from the above list of abandoned 
language features, it is back to basics again. Another 
significant simplification is that annotations can be part of 
the code but are completely ignored for the process of 
compliance checking or compiling. The information 
within the annotation is hence only regarded as auxiliary 
meta-information for non-compilation processes as it was 
the original intention in early Modelica (this is also an 
additional reason why to use special predefined types and 
models such as in lines 2-19 rather than custom 
annotations) 

For the moment, the focus is also on continuous systems 
but of course, discrete events also need to be handled. This 
shall follow the same guidelines yielding a fully 
deterministic process that can be locally analyzed. 
However, this is still upcoming work. 
 
3.4 Compatiblity to Modelica  
Evidently, the restrictions that are imposed to the modeler 
are significant. The Modelica Standard Library clearly 
does not comply to these restrictions and other existing 
libraries are also unlikely to do so.  

We hence need new libraries developed under this 
methodology. This is no surprise because there was 
previously no sufficiently practical guidance on how to 
model in an object-oriented way that is also information 
complete.  

What is important however that libraries that are 
developed under these restrictions are fully usable with 
any tool supporting the Modelica standard. Even if these 
tools do not exploit the special characteristics of the 
restricted modeling methodology, they still profit from the 
fact that these models are information complete. Not only 
shall these libraries work in any Modelica tool, they shall 
also be (automatically without further tool support) be 
very robust in their usage.  
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We currently engage in the development of 4 libraries: 

1. Signal Blocks 
2. Dialectic Mechanics 
3. Controlled Energy Flows 
4. ThermoFluid Stream Lite 

 

4 Implementation  
To support the development of these new libraries, a 
Compliance checker is being implemented. It serves two 
functions: 

1. The implementation formalizes the restrictions 
that have been informally stated above.  

2. It provides instant feedback to modelers whether 
their library abides to these restrictions.  

Formalizing the restricted modeling methodology will 
ultimately result in a new language that forms a sub-set of 
Modelica. The compliance checker is thus not developed 
from an existing Modelica compiler or tool but as a new 
tool from scratch. This is the most effective way to shed 
complexity and question all the existing requirements. 

The compliance checker is implemented as a stand-
alone console application in C++17 using only the 
Standard Template Library (STL). Given that the 
portability of C++ code between operating systems and 
compilers has significantly improved over the last decade 
the application may be applied on different operating 
systems.  

We can use the compliance checker to keep track of the 
complexity of the new restricted language. Figures 3 and 
4 measure the complexity of the C++ code compared to 
the Modelica specification which is written in English 
language. The counting for the code includes comments 
and the counting for the specification includes also the 
examples. 

Although we compare an executable code against a 
mere description in natural language, we still have far less 
complexity. This shows that (at least for now) the 
reduction in complexity is very effective.  

How is this compliance checker supposed to be used? 
As a console application it runs next to the Modelica 
development environment of your choice and 
automatically checks whenever a modification is saved 
whether the file(s) comply to the restricted modeling 
methodology. Otherwise it provides an error message that 
always refers to a specific line of code. 
 

 

Figure 3. Complexity of the compliance checker 
implementation in C++ for a restrictive Modelica vs Modelica 

Specification PDF version in character count. Projection 
indicates an estimate for the complete compliance checker. 

  

 

Figure 4. Complexity of the compliance checker in C++ for a 
restrictive Modelica vs Modelica Specification PDF version in 

lines of code.  
 

In this way, the existing IDEs for Modelica can be 
effectively reused but the modeler is restricted with instant 
feedback. In future, the compliance checker can be 
extended to enable different compile paths. After all the 
compliance checker already performs many processing 
steps of a full compiler such as: lexer, parser, type 
generation, identifier resolution, partial casualization, etc. 

5 Conclusions 
Modelica has gained its popularity by providing the 
modeler ample freedom in the formulation of its models.  

However, there are many applications that profit from a 
more restrictive modeling methodology: 

Projection 

Projection 
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• For complex architectures, (especially when modeled 
across different organizational entities) the robustness 
of the model often becomes the limiting factor in 
model development. If a strict modeling methodology 
allows stronger a-priori statements on solvability and 
pinpoint error messages, it will be highly welcome. 
 

• For large scale systems or variable structure systems, 
a global analysis of the system increasingly becomes 
infeasible. If a strict modeling methodology requires 
only a local analysis and enables compilation of 
components, it will be of high value. 

 
• Modern compute architectures like GPUs (Kirk 2022) 

demand different forms of code generation. Modern 
numerical methods such as multi-derivative methods 
(Krivovichev 2024) also require different compilation 
schemes. If a strict modeling methodology eases the 
compiler development by massively reducing 
complexity, it will find quick adaptation. 

 
As shown in the previous section, it is possible to 

support such a strict methodology fully within the current 
version of Modelica without demanding any changes to 
the existing language. It is basically an act of self-
discipline.  Some models may seem unusual for a 
Modelica purists but in view of the listed advantages, one 
should advocate for pragmatism.  

The currently undergoing implementation of a 
compliance checker will ease this discipline, formalize the 
restrictions and open up the development of independent 
compile paths. We plan to release the compliance checker 
as open-source software. 

In this way, we can have the best of both worlds. 
Confined modeling efforts for special systems can be 
performed by experts using the full feature-set of 
Modelica. Modeling efforts of larger architectures or with 
versatile compute architectures can be performed using a 
strict modeling methodology such as the one presented 
here.  
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Appendix 
Listing 1. Example code  1 

encapsulated package Base "Base elements” 2 
 3 
  type ContinuousState = Real;  4 
 5 
  model LinearResponse "continuous state" 6 
    input Real residual; 7 
    output Real balance; 8 
  equation 9 
    residual = 0; 10 
      annotationdefaultConnectionStructurallyInconsistent=true); 11 
  end LinearResponse; 12 
 13 
  type RealWithDerivative = Real; 14 
  type RealWith2Derivatives = Real; 15 
 16 
  package Units 17 
    [...] 18 
  end Units; 19 
 20 
end package Base; 21 
 22 
 23 
encapsulated package Mechanical 24 
 25 
  encapsulated package Interfaces 26 
    import B = Base; 27 
    import SI = Base.Units.SI; 28 
 29 
   type VelocityInt = B.RealWithDerivative 30 
                       (unit = "m/s") 31 
  type AngularVelocityInt = 32 
    B.RealWithDerivative(unit = "rad/s") 33 

 34 
    connector FlangeOnPlanar 35 
      output SI.Position r0[2]; 36 
      output SI.Angle phi; 37 
      VelocityInt v0[2]; 38 
      AngularVelocityInt w; 39 
      flow SI.Force f0[2]; 40 
      flow SI.Torque t; 41 
    end FlangeOnPlanar; 42 
 43 
    connector FlangeToPlanar 44 
      input SI.Position r0[2]; 45 
      input SI.Angle phi; 46 
      VelocityInt v0[2]; 47 
      AngularVelocityInt w; 48 
      flow SI.Force f0[2]; 49 
      flow SI.Torque t; 50 
    end FlangeOnPlanar; 51 
 52 
    [...] 53 
  end package Interfaces; 54 
 55 
  encapsulated package Planar 56 
    import B = Base; 57 
    import Interfaces = Mechanical.Interfaces; 58 
    import SI = package Base.Units.SI; 59 
 60 
 61 
 62 
 63 

    package Motion 64 
 65 
      model Root "Frame fixed" 66 
 67 
        parameter SI.Position r0_abs[2] = {0,0} 68 
        "Fixed absolute x,y-position"; 69 
        parameter SI.Angle phi_abs = 0  70 
        "Fixed angle"; 71 
        Interfaces.FlangeOnPlanar flangeOnP; 72 
 73 
      equation  74 
        flangeOnP.r0 = r0_abs; 75 
        flangeOnP.phi = phi_abs; 76 
        flangeOnP.v0 = {0,0}; 77 
        flangeOnP.w = 0; 78 
      end model Root; 79 
 80 
      model RevoluteJoint "Ideal Revolute Joint" 81 
        Interfaces.FlangeToPlanar flangeToP; 82 
        Interfaces.FlangeOnPlanar flangeOnP; 83 
        parameter SI.Time TD  84 
        "dialectic time constant"; 85 
 86 
      protected 87 
        B.LinearResponse Cut; 88 
 89 
        B.ContinuousState phi(unit="rad") 90 
        "position of component"; 91 
        B.ContinuousState w(unit="rad/s")  92 
        "(kinetic) velocity of component"; 93 
        SI.AngularAcceleration z  94 
        "acceleration of component"; 95 
        SI.Torque t "actuation torque"; 96 
 97 
      equation  98 
 99 
        z = Cut.balance; 100 
 101 
        //dialectic damping term 102 
        der(phi) = w + z*TD; 103 
        der(w) = z; 104 
 105 
        //rigidly connect positions 106 
        flangeOnP.r0 = flangeToP.r0; 107 
        flangeOnP.v0 = flangeToP.v0; 108 
        flangeOnP.phi = flangeToP.phi + phi; 109 
        flangeOnP.w = flangeToP.w + w; 110 
         111 

//balance forces 112 
        flangeToP.f0 = -flangeOnP.f0; 113 
        flangeToP.t = -flangeOnP.t; 114 
        t = flangeOnP.t; 115 
        Cut.residual = t; 116 
 117 
      end RevoluteJoint; 118 
 119 
    end Motion; 120 
 121 
     122 
 123 
 124 
 125 
 126 
 127 
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    package Parts 128 
 129 
      model Body 130 
        Interfaces.FlangeToPlanar flangeToP; 131 
        parameter SI.Mass m  "Mass of the body"; 132 
        parameter SI.Inertia J "Inertia"; 133 
        parameter SI.Acceleration g[2]  134 

 "Gravity"; 135 
        parameter Boolean enableGravity = true; 136 
 137 
      protected 138 
        SI.Acceleration a0[2] "Acceleration"; 139 
        SI.AngularAcceleration z  140 
        "Angular acceleration"; 141 
 142 
      equation  143 
        a0 = der(flangeToP.v0); 144 
        z = der(flangeToP.w); 145 
        flangeToP.f0 =  146 
          if enableGravity then m*a0-m*world.g  147 
          else m*a0; 148 
        flangeToP.t = J*z; 149 
      end Body; 150 
 151 
    end Parts; 152 
 153 
  end Planar; 154 
 155 
  encapsulated package Examples 156 
    import Planar = Mechanical.Planar; 157 
    [...] 158 
 159 
  end package Examples; 160 
 161 
end package Mechanical; 162 
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