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Abstract

Self-restriction to a certain modeling style can enable the
modeling of large-scale systems and the robust modeling
of complex system architectures. This paper discusses
how such a self-restriction can be achieved within the
Modelica language and provides a corresponding
example.
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1 Motivation

Modelica provides the modelers with a lot of freedom on
how to create and compose their models. This freedom
contributed significantly to the appeal of the language. It
enabled many modelers to solve even exotic problems
while the powerful algorithms for symbolic index-
reduction in Modelica compilers still enable the
generation of efficient simulation code. Hence Modelica
has become the language of choice for many experts in
their fields, especially in thermal and energy related fields
where many specialized solutions are needed.

As always, this freedom is associated with a price to be
paid for it. First, what is appealing to an expert maybe
overwhelming for a novice. Beginners in Modelica often
struggle with decrypting the error-messages and often
yearn for more guidance. Even after 25 years, the entry
barrier to the world of equation-based modeling is high.
Second, since equations can be entered in any form, the
code generation has to be relegated to the very last stages
in processing. For monolithic simulation code, this is fine
but code for large-scale systems on GPUs or for variable
structure systems require differently structured code that
becomes available before final system assembly. This is
difficult to fulfill for current Modelica models, despite
notable efforts from (Benveniste 2023, Neumayr 2023).

Being self-aware of its flaws, the Modelica community
has always remained open to take inspiration from new
language developments. Whether these are experimental
languages like MOSILAB (Nytsch-Geusen 2006), SOL
(Zimmer 2010) or larger efforts such as Modia (Elmqvist
2021). However, these developments also revealed how
strong the Modelica legacy is and that maybe a new
language or a major extension is not what is needed.

Indeed, this paper argues that not an extension of the
Modelica language is needed but that a self-imposed
restriction would benefit a significant set of applications.
The conflict between an expert and a novice does not need
to exist. We can formulate basic models by restricted
means and then let the experts extend from this giving
them free choice of their tools. The conflict between
different possible compile paths also does not need to
exist. We can provide models in a restricted form that
enable local analysis and local compilation and when
these restrictions are lifted, full global analysis for
elaborate index-reduction is enabled.

We shall remind ourselves that it is the strength of a
declarative language that it does not stipulate its
computational realization. When we are stricter about the
declarative form, we typically gain freedom on how to
process the content.

2 Robust Modeling Methodology

The greatest source of complexity in the processing of
equation-based models are systems that are over-
idealized. Over-idealization means that the system has
been idealized so strongly that the information on how to
solve this system has been lost in the process of modeling.
A great educational collection of such examples has been
provided by Peter Junglas (Junglas 2025):

e A singular model of gear shift for a car
transmission: the over-idealization neglected the
necessary synchronization during the shift.

e A singular model of an RS Flip-Flop: the over-
regularization neglected the signal delays within
the components

e A model for the distribution of compressed air
with unsolvable non-linear equations: the over-
idealization neglected the kinetic energy of the
fluid that would lead to the flow balance.

e ctc.

Unfortunately, the formulation of over-idealized systems
has a strong legacy in text-books and modeling. To make
matters worse the awareness of this phenomenon is often
little to none. Over-idealized systems not necessarily lead
to singular systems but often also to structural regular
systems involving non-linear equation system in implicit

DOI
10.3384/ecp218147

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

147



The Value of Enforcing a Strict Modeling Methodology within Modelica

form and states with non-linear constraints between
potential state variables.

Because the information on how to solve these models
has been removed, a compiler for such Modelica models
has essentially to perform blunt guessing (often
euphemistically  formulated as “applying clever
heuristics”). No matter how elaborated such guesswork
may be, it involves severe disadvantages:

e Itneeds be performed on a global level to exploit
the full context and hence a global analysis of the
model is needed.

e It does not scale. While guessing may work for
system of low dimensions, it will eventually fail
for increasingly large dimensions.

e The compile process becomes non-deterministic.
Different compilers may have different guessing
strategies.

It is important to emphasize that this is not a problem of
the compiler’s algorithms or of any of the simulation
tools. It is a problem of the input to the compiler. If the
information entering the system is incomplete, no
algorithm can magically retrieve this missing information.
This is basic information theory.

The only solid solution to this problem is thus to insist
on input that is information complete, meaning models
that are idealized (as all models are idealizations) but not
over-idealized.

Fortunately, a suitable model class has been recently
identified. We call them Linear Implicit Equilibrium
Dynamics (LIED), (Zimmer 2024)

A DAE system with potential state derivatives X, time
t and algebraic variables w

0=F(x,x,w,t)

is defined as LIED system when it can be transformed
into the following form:

[‘:5 ] = g(x;, xg, t)

w;
A(x;, Xg, Wg) [5(1 ] = f(x}, Xg, W, t)

We see that both the algebraic variables as well as the
state derivatives can be split into a fully explicit part
(xg; wg) and a part (Xx;; w;) with a linear system in
implicit form expressed by the regular matrix A .
Furthermore, the following conditions shall hold true:

kg N &, S &

These conditions essentially mean that it is allowed to
perform certain symbolic mechanism of index reduction
such as the dummy derivative method (Mattsson1993)
originating from Pantelides (Pantelides 1988). Using this
method, states variables of x can be transformed to
algebraic variables in w; and further derivatives may be
added to w; or wg. In practice, this is important because
it means that the linear implicit dynamics can be expressed
by far fewer states than suggested by the vector x of the
original DAE formulation.

Whereas this model class may seem to be overly
restrictive in the first place we could demonstrate that it is
not only applicable but also highly attractive for the
modeling of stiff mechanical systems as in Figure 2
(Zimmer 2023) and complex thermo-fluid architectures
(Zimmer 2022, Junglas 2023) as in Figure 1. Further
library development for energy and electric systems is
currently ongoing.
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Figure 1. Model diagram of a heat pump using the DLR
ThermoFluid Stream library (Zimmer 2022)
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Figure 2. Model diagram of a mechanical system for a
kinematic using the Dialectic Mechanics library (Zimmer
2023).

The goal is now to define a language that is restricted
for such LIED systems and that also represent valid
Modelica code. The expected advantages are naturally
contrarian to the previous bullet list for over-idealized
models:

e Models can be analyzed locally and early
compilation of components is enabled.

e It scales. The dimension of the system will
principally not impact its solvability barring other
issues such as numerics or memory consumption.

e The compile process can be formulated in fully
deterministic way increasing the value of a
reference implementation.

3 Demonstration Example

Whereas the two preceding sections made very abstract
arguments, we shall now provide a concrete example and
then discuss the design ideas based on this code. Listing 1
was placed in the Appendix and presents the model of a
2D  multibody library implementing components
according to dialectic mechanics. The code has been
stripped from most annotations, occasionally shortened
and simplified for presentation purposes.

3.1 Assumed Causality

A key point of the robust modeling approach is that
models are formulated under the assumption of causality.
This enables two major benefits:

1. Code generation for individual components is
enabled.

2. Error messages point to a single line holding either a
equation whose causality is not correct or to a variable
definition that is not causalized.

To achieve this, the connectors need to have an assumed
causality and what derivates are needed. Also, we need to
be able to formulate what is a state and what variables can
be used to tear a linear equation system. Let us go through
each of these points:

Connectors with assumed causality

Input and outputs are the natural way to formulate a
causal connector. Whenever inputs and outputs are used
we will use them as indicator of causality: the input is
assumed to be known to its component and the output is
unknown (and the reverse is true to the outside).

For the modeling of physical systems, conjugated pairs
of potential and flow variables have proven to be useful.
In order to formulate these pairs with an assumed

causality, they are not allowed to stand on their own but
need to be associated with a signal connector.

A potential variable may be declared in a connector
after a signal and then inherits the assumed causality from
this signal. The flow variable must then be declared after
the potential variable and is assumed to be of inverse
causality.

Two examples of such connectors are found in Listing
1, lines 35-51. The FlangeOn is supposed to be on the
root side of a kinematic chain and hence its variable for
position forms an output signal. The corresponding
potential is the velocity and shares this causality. The flow
is the force (or torque respectively and of inverse
causality). The FlangeTo forms then the connector of
opposite sex.

The example demonstrates another feature defined on
Listing 1, line 14 and used in lines 30-34. A new special
predefined type called RealWithDerivative that indicates
that not only the potential variable is available in the
connector but also its derivative. Providing this
information means that differential index-reduction can be
performed on the component level.

For a standard Modelica compiler, it is not necessary to
have such a special type hence the definition on line 15
simply defines a Real. The definition exists so that other
compilers or a compliance checker can replace this default
definition by a special inner representation.

Given such causalized connectors, the model equations
can now be provided in partially ordered form: each
equation can be causalized based on the previous
equations. A simple example for this is the body model in
Listing 1, lines 130 — 150. It assumes the position and the
derivatives to be known and calculates the forces and
torques from the acceleration.

Declaring Tearing of Linear Equation Systems

Since the modeler shall formulate everything under the
assumption of causality, this also impacts how implicit
linear equation systems across components have to be
formulated. Often the modeler expects the model to react
to a variation by a linear response. This observation
enables to formulate such a system in causalized and torn
form. To indicate a tearing of a linear equation system, a
special predefined model is being declared and then
applied. The model is called LinearResponse.

The revolute joint element shows how to use it. The
modeler expects that a linear response in force results from
a change in acceleration. He formulates it accordingly by
declaring the model LinearResponse. The assumed
causality of the model now naturally follows from this.

Within Modelica the LinearResponse model can be
formulated as in Listing 1, line 6-12. This definition
ensures that the model will be correctly understood by any
existing Modelica tool. Special tools for this modeling
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methodology may replace this definition with an internal
representation.

Declaring States of the System

A predefined type is also used to select the state of the
system. In this case the state variable is declared as
ContinuousState.

The obvious question is why using this mechanism and
not the already available StateSelect attribute? The
reason is to enable an orthogonal mechanism for state
selection.

The special model is used for the restricted modeling
methodology presented here and aims to enable
component-wise compilation. The state-select attribute is
to be set by an expert for full complex (non-restricted)
Modelica models. The motives for selecting states can be
quite different and hence it seems a good idea to avoid any
potential conflict.

When translating a model, the state variable is assumed
to be known and the derivative is assumed as unknown. If
you take the derivative of any non-state variable than this
variable has to be known at this point and the derivative is
derived from this. The Body component is an example
from this. Its derivative does not define a state.

3.2 No Look-ahead

In our restricted modeling methodology, we shall declare
or define items before we use them. Basically, a compiler
or a compliance checker for this restricted set shall be able
to “understand” each line without having to read ahead.
This concession significantly reduces the complexity of a
compiler since many processes can now be performed
directly on the stack instead of having to work on
intermediately stored parts. Far less internal data-
structures are thus needed.

One result of this requirement is that packages must not
be mutually depending on each other anymore. The
common pattern that is used by many existing Modelica
libraries does not match this requirement. We have to
abandon this pattern and separate interfaces from
components from examples in order to shed unnecessary
dependencies.

We can see this in Listing 1 where packages for
interfaces, planar components and examples are separated
and all encapsulated. Import statements are restricted to
encapsulated packages. By separating interfaces,
components and examples the interdependencies are
reduced.

While providing a short-term inconvenience, this
restriction leads to code that is better maintainable in the
long-term and avoids “spaghetti” packages. Even a
modern language like Go enforces such a rule for good
reasons.

3.3 Feature Elimination

When we restrict ourselves to a certain modeling style,
this also offers an opportunity to trim the feature set of the
language. There are a number of small features which
have only very specific purpose or application in the
standard Modelica language that we shall abandon for this
modeling methodology:

- connections.branch/root (used mostly in MultiBody)
- stream (used in Modelica.Fluid)

- operator overload

- expandable connectors

- delay

- homotopy

- inline

- etc.

As the reader can see from the above list of abandoned
language features, it is back to basics again. Another
significant simplification is that annotations can be part of
the code but are completely ignored for the process of
compliance checking or compiling. The information
within the annotation is hence only regarded as auxiliary
meta-information for non-compilation processes as it was
the original intention in early Modelica (this is also an
additional reason why to use special predefined types and
models such as in lines 2-19 rather than custom
annotations)

For the moment, the focus is also on continuous systems
but of course, discrete events also need to be handled. This
shall follow the same guidelines yielding a fully
deterministic process that can be locally analyzed.
However, this is still upcoming work.

3.4 Compatiblity to Modelica

Evidently, the restrictions that are imposed to the modeler
are significant. The Modelica Standard Library clearly
does not comply to these restrictions and other existing
libraries are also unlikely to do so.

We hence need new libraries developed under this
methodology. This is no surprise because there was
previously no sufficiently practical guidance on how to
model in an object-oriented way that is also information
complete.

What is important however that libraries that are
developed under these restrictions are fully usable with
any tool supporting the Modelica standard. Even if these
tools do not exploit the special characteristics of the
restricted modeling methodology, they still profit from the
fact that these models are information complete. Not only
shall these libraries work in any Modelica tool, they shall
also be (automatically without further tool support) be
very robust in their usage.
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We currently engage in the development of 4 libraries:

Signal Blocks

Dialectic Mechanics
Controlled Energy Flows
ThermoFluid Stream Lite

Ll e

4 Implementation

To support the development of these new libraries, a
Compliance checker is being implemented. It serves two
functions:

1. The implementation formalizes the restrictions
that have been informally stated above.

2. It provides instant feedback to modelers whether
their library abides to these restrictions.

Formalizing the restricted modeling methodology will
ultimately result in a new language that forms a sub-set of
Modelica. The compliance checker is thus not developed
from an existing Modelica compiler or tool but as a new
tool from scratch. This is the most effective way to shed
complexity and question all the existing requirements.

The compliance checker is implemented as a stand-
alone console application in C++17 using only the
Standard Template Library (STL). Given that the
portability of C++ code between operating systems and
compilers has significantly improved over the last decade
the application may be applied on different operating
systems.

We can use the compliance checker to keep track of the
complexity of the new restricted language. Figures 3 and
4 measure the complexity of the C++ code compared to
the Modelica specification which is written in English
language. The counting for the code includes comments
and the counting for the specification includes also the
examples.

Although we compare an executable code against a
mere description in natural language, we still have far less
complexity. This shows that (at least for now) the
reduction in complexity is very effective.

How is this compliance checker supposed to be used?
As a console application it runs next to the Modelica
development environment of your choice and
automatically checks whenever a modification is saved
whether the file(s) comply to the restricted modeling
methodology. Otherwise it provides an error message that
always refers to a specific line of code.

pure character count (no whitespaces)
900000

800000
700000
600000
500000
400000

300000
200000
100000

Modelica Lite C++ Compliance
Checker

Modelica Specification PDF

Figure 3. Complexity of the compliance checker
implementation in C++ for a restrictive Modelica vs Modelica
Specification PDF version in character count. Projection
indicates an estimate for the complete compliance checker.

Lines of code/text

18000
16000
14000
12000
10000

=1

8000
6000
4000
2000

Modelica Lite C++ Compliance
Checker

Modelica Specification PDF

Figure 4. Complexity of the compliance checker in C++ for a
restrictive Modelica vs Modelica Specification PDF version in
lines of code.

In this way, the existing IDEs for Modelica can be
effectively reused but the modeler is restricted with instant
feedback. In future, the compliance checker can be
extended to enable different compile paths. After all the
compliance checker already performs many processing
steps of a full compiler such as: lexer, parser, type
generation, identifier resolution, partial casualization, etc.

5 Conclusions

Modelica has gained its popularity by providing the
modeler ample freedom in the formulation of its models.

However, there are many applications that profit from a
more restrictive modeling methodology:
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e For complex architectures, (especially when modeled
across different organizational entities) the robustness
of the model often becomes the limiting factor in
model development. If a strict modeling methodology
allows stronger a-priori statements on solvability and
pinpoint error messages, it will be highly welcome.

e For large scale systems or variable structure systems,
a global analysis of the system increasingly becomes
infeasible. If a strict modeling methodology requires
only a local analysis and enables compilation of
components, it will be of high value.

e  Modern compute architectures like GPUs (Kirk 2022)
demand different forms of code generation. Modern
numerical methods such as multi-derivative methods
(Krivovichev 2024) also require different compilation
schemes. If a strict modeling methodology eases the
compiler development by massively reducing
complexity, it will find quick adaptation.

As shown in the previous section, it is possible to
support such a strict methodology fully within the current
version of Modelica without demanding any changes to
the existing language. It is basically an act of self-
discipline. ~Some models may seem unusual for a
Modelica purists but in view of the listed advantages, one
should advocate for pragmatism.

The currently undergoing implementation of a
compliance checker will ease this discipline, formalize the
restrictions and open up the development of independent
compile paths. We plan to release the compliance checker
as open-source software.

In this way, we can have the best of both worlds.
Confined modeling efforts for special systems can be
performed by experts using the full feature-set of
Modelica. Modeling efforts of larger architectures or with
versatile compute architectures can be performed using a
strict modeling methodology such as the one presented
here.
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Appendix
1 Listing 1. Example code 64 package Motion
65
iencapsulated 2L LU 66 model Root "Frame fixed"
q 67
: type ContinuousState = Real; 68 parameter SI.Position re_abs[2] = {0,0}
: T : T 69 "5
g mog::ut12§:;Rizzggjgl‘contlnuous state 70 parameter SI.Angle phi_abs = 0
2 71
g eqz::gg: HER LEREIIER, 72 Interfaces.FlangeOnPlanar flangeOnP;
10 residual = 0; 3 ti
11 annotationdefaultConnectionStructurallyInconsistent=true); 74 équation
12 end LinearResponse; 75 flangeOnP.r@ = re_abs;
13 76 flangeOnP.phi = phi_abs;
14 type RealWithDerivative = Real; 77 flangeOnP.ve = {0,0};
15 type RealWith2Derivatives = Real; 78 flangeOnP.w = ©;
16 79 end model Root;
17 package Units 80
18 [...] 81 model RevoluteJoint "Ideal Revolute Joint
19 end Units; 82 Interfaces.FlangeToPlanar flangeToP;
20 83 Interfaces.FlangeOnPlanar flangeOnP;
2lend package Base; 84 parameter SI.Time TD
22 85
23 86
24encapsulated package Mechanical 87 protected
25 88 B.LinearResponse Cut;
26 encapsulated package Interfaces 89
27 import B = Base; 90 B.ContinuousState phi(unit="rad")
28 import SI = Base.Units.SI; 91
29 92 B.ContinuousState w(unit="rad/s")
30 type VelocityInt = B.RealWithDerivative 93
31 (unit = ) 94 SI.AngularAcceleration z
32 type AngularVelocityInt = 95 n v i}
33 B.RealWithDerivative(unit = ) 96 SI.Torque t "actuation torque”;
34 97
35 connector FlangeOnPlanar 98 equation
36 output SI.Position re[2]; 99
37 output SI.Angle phi; 100 z = Cut.balance;
38 VelocityInt vo[2]; 101 ) . .
39 AngularVelocityInt w; 102 //dialectic damping term
40 flow SI.Force fo[2]; 103 der(phi) = w + z*TD;
41 flow SI.Torque t; 104 der(w) = z;
42 end FlangeOnPlanar; 105
43 106 //rigidly connect positions
44 connector FlangeToPlanar 107 flangeOnP.ré = flangeToP.re;
45 input SI.Position re[2]; 108 flangeOnP.v@ = flangeToP.vO;
46 input SI.Angle phi; 109 flangeOnP.phi = flangeToP.phi + phi;
47 VelocityInt ve[2]; 110 flangeOnP.w = flangeToP.w + w;
48 AngularVelocityInt w; 111
49 flow SI.Force fo[2]; 112 //balance forces
50 flow SI.Torque t; 113 flangeToP.f@ = -flangeOnP.f0;
51 end FlangeOnPlanar; 114 flangeToP.t = -flangeOnP.t;
5 115 t = flangeOnP.t;
53 [...] 116 Cut.residual = t;
54 end package Interfaces; 117
55 118 end RevoluteJoint;
56 encapsulated package Planar 119 )
57 import B = Base; 120 end Motion;
58 import Interfaces = Mechanical.Interfaces; 121
59 import SI = package Base.Units.SI; 122
60 123
61 124
62 125
63 126
127
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package Parts

model Body
Interfaces.FlangeToPlanar flangeToP;
parameter SI.Mass m
parameter SI.Inertia J H
parameter SI.Acceleration g[2]

)

parameter Boolean enableGravity = true;

protected
SI.Acceleration a@[2] 4
SI.AngularAcceleration z

B

equation
a0 = der(flangeToP.vO);
z = der(flangeToP.w);
flangeToP.f0 =
if enableGravity then m*a@-m*world.g
else m*aQ;
flangeToP.t = J*z;
end Body;

end Parts;

end Planar;

encapsulated package Examples
import Planar = Mechanical.Planar;

[..

-]

end package Examples;

162end package Mechanical;
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