Context-Oriented Equation-based Modeling in ModelingToolkit.jl

Christian Gutsche'>? Christoph Seidl> Volodymyr Prokopets?
Sebastian G6tz> Zizhe Wang!-? Uwe ABmann?

'Boysen—TU Dresden—Research Training Group, Dresden, Germany
2Chair of Software Technology, Technische Universitit Dresden, Dresden, Germany

{christian.gutsche,

christoph.seidl, volodymyr.prokopets,

sebastian.goetzl,

zizhe.wang, uwe.assmann}@tu-dresden.de

Abstract

Cyber-physical systems are self-adaptive, changing their
behavior at run time to adapt to their context. Hence, their
simulations must also handle variability at run time. The
lack of support for variability in industrial equation-based
modeling languages, such as Modelica, causes problems
when simulating self-adaptive systems, e.g., they only
limitedly support structural variability, and state transi-
tions are based on if-then-else conditions that can cause
conflicts, especially for complex control mechanisms.

We present a modeling technique for equation-based
models containing variability by implementing concise
and dedicated language constructs to express state space
and transitions via contextual modeling. Contextual mod-
eling abstracts the modeled world and allows the definition
of constraints that reduce the risk of reaching conflicting
states. We demonstrate the feasibility of our approach on
a case study, presenting the advantages of our modeling
technique regarding the definition of state control and the
reduction of risk for reaching conflicting states.
Keywords: Cyber-physical systems, Self-Adaptive Sys-
tems, Contexts, VSS, Julia, Simulation

1 Introduction

The 5C architecture of cyber-physical systems (CPSs)
(Lee, Bagheri, and Kao 2015) includes a configuration
level that implies system behavior variability. Therefore,
when simulating CPSs, their simulations must also han-
dle variability. Variability at simulation time is supported
only partially by the equation-based modeling (EBM) lan-
guage Modelica (Fritzson and Engelson 1998), e.g., Mod-
elica does not support conditional definitions of compo-
nents during simulation (Zimmer 2010) and has limita-
tions with switching equations at simulation time if the
DAE index changes (Benveniste, Caillaud, and Malandain
2020). Even if these limitations are bypassed, Modelica
supports only if-then-else or when conditions based on
Boolean expressions. These expressions become complex
and incomprehensible for complex state spaces and tran-
sitions. This lack of expressiveness results in an inconve-
nient definition of variability in simulation models.

In this paper, we present context-oriented equation-
based modeling (COEBM), a modeling technique for

EBM containing variability by implementing concise and
dedicated language constructs to express state space and
transitions via contextual modeling. Contexts abstract the
simulated world and possible control actions. Constraints
between contexts are checked during runtime, prevent-
ing reaching conflicting states, e.g., simultaneously charg-
ing and discharging a battery. During simulation, con-
text changes imply transitions between models to achieve
structural variability. We further develop Contexts.jl, pre-
sented in our previous work (Gutsche et al. 2024), to
achieve better applicability of context-oriented program-
ming (COP) and context modeling in EBM.

For our implementation, we use the EBM language
ModelingToolkit.jl (MTK) (Ma et al. 2021). MTK is im-
plemented as a library-based embedded domain-specific
language (DSL) for the general-purpose programming
language Julia (Bezanson et al. 2015; The Julia Project
2023). This enables utilizing Julia’s features for extend-
ing the modeling language (Rackauckas and Nie 2019)
and using the expressiveness of a programming language
in callbacks during simulation time. We present how to
extend MTK with syntax suitable for COEBM.

The main contributions of this paper are:

1. Integrating COP in EBM for concise syntax for vari-

able reinitialization

2. Integrating Contexts.jl language constructs in MTK

to define structural variability

3. Using context modeling with constraints to prevent

conflicting states in EBM and implementing state
control mechanism

We present a case study to evaluate the contribution’s
feasibility for simulating self-adaptive systems. There-
fore, we model an energy park for green hydrogen pro-
duction with COEBM. We port Modelica models to MTK
and implement the control logic with contextual model-
ing. Simulation speed is crucial when using simulations
to support CPS operation. Therefore, we also provide per-
formance measurements for our COEBM implementation.

In section 2, we present background information on Ju-
lia and context modeling, followed by an overview of re-
lated work about variable structure system (VSS) simula-
tions in EBM in section 3. In section 4, we present the
concept of COEBM and how to simulate systems contain-
ing variability with COEBM. The evaluation, consisting

DOI
10.3384/ecp218155

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

155

Context-Oriented Equation-based Modeling in ModelingToolkit.jl

of the mentioned energy park case study and performance
measurements, is presented in section 5. To conclude, we
provide a discussion in section 6 and a conclusion and out-
look for future work in section 7.

2 Background

2.1 Julia and ModelingToolkit.jl

Julia (Bezanson et al. 2015; The Julia Project 2023)
is a just-in-time compiled general-purpose programming
language. A major difference from other commonly
used programming languages is the multiple dispatch
paradigm. Instead of defining functions within classes and
dispatching over the function’s object, the dispatch relies
on the types of the function’s arguments. Some of the ad-
vantages of this design choice are discussed later. Besides
this, Julia has powerful metaprogramming capabilities.

In addition, Julia provides the rich ecosystem of sci-
entific machine learning (SciML) containing libraries for
mathematical computation and optimization (Lubin et al.
2023), numerical equation solvers (Rackauckas and Nie
2017), and EBM (Ma et al. 2021). The implementation in
Julia enables utilizing multiple dispatch, which allows de-
velopers to, thanks to design choices of DifferentialEqua-
tions.jl, extend the functionality of the SciML ecosystem
(Rackauckas and Nie 2019).

MTK is an embedded DSL implementing Modelica-
like object-oriented EBM in Julia. MTK components con-
sist of variables, parameters, equations, sub-components,
callbacks, and Julia code. Models defined with the macro
@mt kmodel are translated to equation systems. Depend-
ing on the mathematical structure, MTK provides, among
others, ODESystem and PDESystem. These systems
are used to define ODEProblems containing initial val-
ues and a time span. ODEProblems are solved with an
implemented solve function where different solver al-
gorithms are available. MTK benefits from support for
extensibility of the SciML ecosystem (Rackauckas 2021).
We implement our modeling technique in MTK because
of this support for extensibility and the possibilities for
combining Julia language features with EBM.

2.2 Context Modeling

Contexts describe the situation and environment in which
a program is executed as discrete categories. Context-
awareness (Abowd et al. 1999) enables software to
achieve dynamic adaptation of its behavior to the cur-
rent situation by specifying behavior for different con-
texts. Contexts are activated and deactivated based on the
global state of the program or its environment. We call this
state activeness. A programming paradigm based on this
principle is called COP (Keays and Rakotonirainy 2003;
Hirschfeld, Costanza, and Nierstrasz 2008). In COP, de-
velopers can specify contextual variants of a function.
During the program’s run time, the current activeness of
contexts is evaluated, calling the function defined for this
context. Therefore, dynamic adaptivity is achieved.

In our previous work (Gutsche et al. 2024), we pre-
sented a COP implementation in Julia. We introduced
the library Contexts.jl, which provides concise syntax
based on metaprogramming to define contexts and achieve
context-dependent behavior for functions by utilizing Ju-
lia’s multiple dispatch. In (Gutsche et al. 2024), we also
already showed that combining Contexts.jl and MTK to
implement variability in equation-based models with con-
texts is possible.

As presented in (Gutsche et al. 2024), context modeling
in Contexts.jl is based on singleton objects representing
contexts. The activeness of contexts can be constrained
by an approach based on context Petri nets (Cardozo et al.
2012). The Petri nets defined in Contexts.jl are Dynamic
Feature Petri nets (Muschevici, Clarke, and Proencga 2010)
that represent the constraints from (Cardozo et al. 2012).
For example, an exclusion constraint prevents two specific
contexts from being active simultaneously, and weak in-
clusion constraints imply that the activation of one context
causes the activation of another context. This reduces the
risk of reaching conflicting states.

3 Related Work

Several approaches aim to increase functionalities for
specifying and simulating variability in EBM. As (Wang
et al. 2025) show, these approaches focus on enabling
EBM to simulate models containing structural variability,
called VSSs (Utkin 1977).

Several new languages were designed, heavily in-
spired by Modelica, including Sol (Zimmer 2010), Hy-
dra (Giorgidze 2012), and Modelyze (Broman and Siek
2012). While they support structural variability, advanced
modeling techniques to specify state spaces and control
mechanisms are not implemented. The already mentioned
MTK and Modia.jl (Elmqvist, Neumayr, and Otter 2018)
are new EBM implementations, implemented as embed-
ded DSLs in Julia. In contrast to MTK, Modia.jl has ded-
icated support for VSS simulation (Neumayr and Otter
2023) but also lacks advanced modeling techniques.

DySMo (Mehlhase 2014), MoVaSe (Esperon,
Mehlhase, and Karbe 2015), and PyVSM (Stiiber
2017) rely on scripts that orchestrate the simulation.
DySMo and PyVSM use Python to simulate different
models, defining variants, e.g., modeled with Modelica.
While they enable VSS simulation, they lack modeling
techniques for constructing state space and transitions.
MoVaSe, later called MoVaSim, is implemented in the
Eclipse ecosystem and includes modeling techniques
to specify model variants. However, the only available
references to MoVaSim are a Work-in-progress paper
(Esperon, Mehlhase, and Karbe 2015) and a dissertation
(Goémez Esperén 2017). The editor itself is not available.
In these approaches, variability modeling and state control
are performed in non-EBM technical spaces, namely
Python and Eclipse, creating a hurdle for users.

OM.jl (Tinnerholm, Pop, and Sjélund 2022) is a Mod-

156

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218155

Session: Modeling Paradigms and Language Experiments in Track for General Modelica

elica compiler written in Julia. OM.jl adds syntax for VSS
allowing specifying different modes and their transitions.
However, also OM.jl lacks advanced modeling to specify
mode transitions. An approach that aims to improve this
modeling is presented in (Wang et al. 2025), where a pre-
processor is used to implement syntax for specifying con-
texts that control the modes. The preprocessed code is
then compiled by OM.jl. However, only one context can
be active at a time, and context activeness is controlled by
Boolean conditions based on the time value. Therefore,
the advantage of using contexts is lost.

We identify a gap: none of them supports both VSS
simulation and advanced modeling of the state space and
control mechanisms with dedicated syntax.

4 Context-Oriented Equation-based
Modeling

We use contexts in COEBM to achieve behavior variabil-
ity. Therefore, a well-defined context model is the base of
COEBM. This section first describes the modeling of such
context models. Afterwards, we present two ways to use
contexts and COP for variability: variable reinitialization
and structure change.

4.1 Contexts in Equation-based Modeling

We classify contexts into measurable and control con-
texts. Measurable contexts change their activeness based
on measured values of observables, e.g., a temperature.
Those observables cannot be directly influenced. Control
contexts describe states or variables controlled by opera-
tors, e.g., a variable voltage. By changing the context, the
operational mode changes.

In (Gutsche et al. 2024), we presented how Contexts.jl
enables the definition of contexts with concise syntax
based on metaprogramming and how constraints based on
(Cardozo et al. 2012) are used to describe the state space.
Using primarily measurable contexts to imply the activa-
tion and deactivation of control contexts via constraints
enables the definition of control mechanisms while mini-
mizing the risk of reaching conflicting states.

We introduce a new constraint for contexts, the
alternative. This constraint implies that out of N
contexts, exactly 1 context must be active at any time. This
constraint occurs frequently in modeling but was not de-
scribed by (Cardozo et al. 2012) or (Gutsche et al. 2024).
We implemented the constraint in Contexts.jl using a Petri
net like the library’s other constraints. The constraint
checks two things when a context’s activeness is changed.
If the currently only active context gets deactivated, this
deactivation will be undone, and if a context C1 gets acti-
vated, but an alternative context C2 was active before, C2
becomes deactivated.

Another concept that we introduce is context groups. A
context group implies an alternative constraint be-
tween the contexts that compose the group. Calling the
group object will return the currently active context of this

group. Context groups should describe orthogonal con-
text dimensions to prevent conflicts. We also implemented
context groups in Contexts.jl to improve the applicability
for COEBM. An example of how to define contexts within
a context group is shown in Listing 1.

1 @newContext Cold, Medium, Warm
2 activateContext (Medium)

3 Temp = ContextGroup (Cold, Medium,
4

Temp () # returns Medium

Warm)

Listing 1. Example for defining contexts Cold, Medium, and
Warm as well as a context group Temp. These contexts describe
the Temperature as a discrete classification.

Modeling the context space should consist of four steps.
First, identify relevant contexts. Second, cluster contexts
to context groups. Third, classify contexts as measurable
or control contexts. Fourth, define constraints between
contexts of different groups. The activation and deactiva-
tion of measurable contexts may imply the activation and
deactivation of control contexts, but not vice versa.

An example is a temperature control system. For the
sake of simplicity, we assume that the system either ac-
tivates heating or cools the system by activating the air
conditioning (AC). These two possible operations create
four contexts: Heat ingOn and Heat ingOf f, compos-
ing the group Heating, and ACOn and ACOff, com-
posing the group AirConditioning. For a basic con-
trol mechanism, the activeness of heating and AC might
only automatically depend on the temperature. We define
a context group Temperature consisting of the contexts
Cold, Medium, and Warm.

While the temperature contexts are measurable, the
contexts for heating and AC are control contexts. We
model the control contexts’ activeness based on the active-
ness of the temperature contexts. Therefore, we specify
the following constraints:

* Cold weakly includes Heat ingOn

* Medium weakly includes both, HeatingOff and

ACOff

* Warm weakly includes ACOn
Note that because Cold and Warm exclude each other,
ACOn and Heat ingOn will never be activated automat-
ically at the same time. To also prevent manual simulta-
neous activation of ACOn and Heat ingOn, we define an
exclusion rule between those two contexts. A visualiza-
tion of the specified context model is shown in Figure 1.

We use context models within EBM in MTK to control
simulation variability. MTK allows the definition of dis-
crete and continuous events. We use events to call callback
functions that include the functionalities of Contexts.jl to
activate or deactivate contexts. Based on the defined con-
straints, other contexts change their activeness, and the
simulation model adapts based on these changes. Hereby,
adaptation can be implemented by variable (or parameter)
reinitialization or structural changes.

DOI
10.3384/ecp218155

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

157

Context-Oriented Equation-based Modeling in ModelingToolkit.jl

control

measurable

Heating

HeatingOff

AirConditioning

ACOff

Temperature

: context groups —p Weak inclusion

- contexts

Figure 1. Context model for a heating system consisting of three
contextual groups. The implicit alternative constraints between
contexts of one group are not separately visualized.

m-m exclusion

4.2 Context-Oriented Variable Reinitializa-
tion

MTK supports variable reinitialization to achieve discrete
changes of variable values. We extend this by using the
COP features of Contexts.jl to control the reinitialization
based on changes in the context activeness. Again, we
explain this mechanism with the example from above.
Therefore, we assume heating can be simulated as on or
off by reinitializing a voltage value. We model possible
context transitions within one context group as a state ma-
chine. For example, the temperature context transitions
from Cold toMediumif 7 > 15°C and from Medium to
Coldif T < 14°C. The difference between temperature
thresholds prevents cyclic event calls. Accordingly, transi-
tions between Warm and Medium are defined, but transi-
tions between Warm and Cold are not foreseen. Callback
functions in MTK are Julia functions, i.e., Julia’s complete
expressiveness is available. In Listing 2, a callback func-
tion is defined on lines 9 to 26, and computational logic
representing the state machine is shown on lines 10 to 24.
In line 25, a context-oriented function is called to reinitial-
ize the voltage value if the previously performed context
changes influenced the activeness of the heating context.
The two context-specific definitions for the function are
shown in lines 1 to 7.

In this explanatory example, the voltage values could
be reinitialized directly based on temperature values in-
stead of activating the temperature contexts. However, for
spaces containing multiple measurable context groups or
when activating control contexts also depends on the ac-
tiveness of other control contexts, separating the state ma-
chines for measurable contexts from the activation of con-
trol contexts is advantageous. Such an example will be
presented in section 5.

4.3 Contextual Views for Structural Changes

A case not natively supported in MTK (or Modelica) is
variability due to changing, adding, or deleting variables,

@context HeatingOn function setV (integ, u)

1

2 integ.u[u.vV] = 12

3 end

4

5 @context HeatingOff function setV(integ, u)
6 integ.ufu.v] = 0

7 end

8

9

function tempChange! (integ, u, p, ctx)
10 if isActive (Warm)

11 if integ.ulu.T] <= 24

12 activateContext (Medium)
13 end

14 elseif isActive (Medium)

15 if integ.ufu.T] <= 14

16 activateContext (Cold)

17 elseif integ.ulu.T] >= 25
18 activateContext (Warm)

19 end

20 elseif isActive (Cold)

21 if integ.ufu.T] >= 15

22 activateContext (Medium)
23 end

24 end

25 @context Heating () setV(integ, u)

26 end

Listing 2. Example for a callback function. The computational
logic from lines 10 to 24 represents a state machine changing the
temperature context based on the current temperature value. The
function call on line 25 is a context-oriented call of the function
defined on lines 1 to 7, performing a variable reinitialization.

equations, and whole components. We realize the simula-
tion of such VSS by defining distinct differential equation
systems that are represented by ODESystem objects in
MTK. When simulating the whole system, the solving al-
gorithm must switch between those ODESystem objects
and perform state migration. The algorithm must transfer
the end values of all variables to the initial values for the
respective variables in the new ODESystem. This work-
flow, realized in Python and not for MTK, was already
applied in DySMo (Mehlhase 2014) to simulate VSS. We
implement an adapted version of this workflow where con-
texts decide which model is simulated next.

In our modeling technique, when to switch the model
and which model should be simulated next is decided
based on the context model, called contextual VSS
(CVSS). Therefore, every model variant is assigned to a
context or multiple contexts linked with logical operators.
Every context must be unambiguously mapped to a model
to ensure systems have a well-defined behavior.

To simulate CVSS in MTK without performing the state
migration manually, we implemented multiple features.
As described in (Rackauckas and Nie 2019), we imple-
ment this extension based on Julia’s type system and mul-
tiple dispatch paradigm.

1. We defined a new problem type for contextual VSS,
CVSSProblem, as a Julia struct. Instead of a
single ODESystem object, the st ruct contains a
dictionary, here called f, for the perviously men-

158

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218155

Session: Modeling Paradigms and Language Experiments in Track for General Modelica

tioned mapping of contexts to ODESystems.

2. We specify a new implementation of the
solve function of DifferentialEquations.jl for
CVSSProblem types with multiple dispatch. This
solve function checks the keys of £, which are the
contexts ODESystems are mapped to. If a context
is active, the respective ODESystem will be used
for simulation. Therefore, an ODEProblem and a
respective Integrator object are created. The
initial values u0 and simulation start time t O are set
to either the original start values or the end values
of the previous partial solving process. Then, the
ODEProblem is solved, and its ODESolution
is saved. If the simulation is restarted, the process
is repeated. The simulation ends if the specified
ending time is reached, the function terminate!
is called, or an error occurs. The workflow is
visualized in Figure 2

3. We define a new function restart!. It calls the
terminate! function to stop the solving pro-
cess. If a termination with restart! is detected
by the solve function, the activeness of contexts
is checked again, followed by solving the respective
ODESystem.

4. We define VSSSolution as a subtype of
SciMLBase.AbstractODESolution. The
VSSSolution contains all the attributes of ODE
solution structs but also contains a vector of
the ODESolution objects obtained during the
solving. We implement the get index function for
the VSSSolution objects so that the solutions are
obtained as usually done in MTK.

1 function tempChange! (integ, u, p, ctx)
2 ACContext = AirConditioning()

3 ## State machine as shown in

4 ## Listing 1, lines 10 to 25

5 if ACContext != AirConditioning()
6 restart! (integqg)

7 end

8

9

end

10 £ = Dict (ACOn => system_acOn,

11 ACOFF => system_acOff)

12 prob = CVSSProblem(f, [], (0, 60))
13 sol = solve(prob, RadaulIA5())

Listing 3. Example for a callback function (lines 1 to 8) and
the code to simulate the system (lines 10 to 13). The function
restart! (line 6) is used to stop the simulation and restart it
with a new mode based on the context activeness of the AC con-
text. In lines 10 and 12, the dictionary f is defined that maps
context to ODESystem objects that are used for simulation.
With £, we define a CVSSProblem (line 12) and simulated
by solving the CVSSProblem (line 13).

We assume the heating example from above is mod-
eled as a VSS system where there is one model for active
AC and one model for inactive AC. Accordingly, we cre-
ate two ODESystems, that we call system_acOn and

get active context

get ODESystem from f
Was ODEProblem already

defined for this context? ?
no yes

setu@ tou_end,
set totot_end

A

create ODEProblem,

get ODEProblem

setuo, to

create Integrator object

solve Integrator

save ODE solution

yes| Terminated

_ @& Wwith restart
. ?function?

no

Solving ended
by termination?

yes

no

save CVSS solution

Figure 2. Workflow for solving a CVSS problem. The al-
gorithm checks which contexts mapped to ODESystems are
active. If this ODESystem is solved for the first time, a re-
spective ODEProblem is created with the initial values u0 and
start time t0 and saved. If the ODESystem is used another
time during solving the CVSSProblem, this ODEProblem is
obtained again and newly initialized with remake using the
new u0 and t0. An Integrator object is created from
ODEProblem and the ODESystem is solved, and the solution
is saved. If the simulation was stopped with the restart!
function, the end values of variables are used to restart the simu-
lation within another context. In the end, the solution is returned
as aVSSSolution object.

system_acOff. Both ODESystems contain events
that call the callback function tempChange! as we de-
fined in Listing 2, but we extend it with the model switch-
ing logic as shown in Listing 3 on lines 1 to 8. In line 2
in Listing 3, we save the AC context before changing the
temperature context. If the AC context was changed due to
changes in the temperature context, the restart ! func-
tion is called to perform the model switch. The definition
of the context to feature map £ is shown on lines 10 and
11. Line 12 shows CVSS definition and line 13 the solve
call, recreating MTK syntax.

5 Evaluation

We show the feasibility of our modeling process by pre-
senting a simulation of an energy park where hydrogen is
produced from renewable energy sources as a case study.
After presenting the modeling process and simulation re-
sults, performance measurements are provided.

DOI
10.3384/ecp218155

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

159

Context-Oriented Equation-based Modeling in ModelingToolkit.jl

5.1 Case Study: Modeling of an Energy Park

The energy park model consists of wind turbines and pho-
tovoltaic (PV) modules for producing electricity, a battery,
and an electrolyzer to produce green hydrogen. Also, the
park is connected to the electricity grid. Because only
green hydrogen should be produced, hydrogen production
must be stopped when renewable electricity is unavailable.
Also, excess electricity should be stored in a battery to
power the electrolyzer with green electricity, even if the
weather conditions would not allow it. The energy park
should adapt its behavior based on its state, Hence, it is
self-adaptive, and context awareness is advantageous.

One of the disadvantages of MTK compared to Mod-
elica is the relatively low availability of libraries. There-
fore, most of the needed components have been modeled
by us. The models are inspired by Modelica libraries like
the Modelica Standard Library, PhotoVoltaics (Brkic et
al. 2019), and Wind Power Plants (Eberhart et al. 2015).
The electrolyzer model and system design are inspired by
(Migoni et al. 2016). A scheme of the system is shown in
Figure 3.

Electricity Grid
Wind Turbine Same Battery |

PV Modules

Electrolyzer

Figure 3. Scheme of the simulation model. Wind turbines and
PV modules supply electricity, and an electrolyzer consumes
electricity. A battery is used for storing excess electricity. The
system can also exchange electricity with the grid.

As this simulation does not aim to give detailed in-
sight into the technical properties of an energy park, the
model contains numerous simplifications. We simplified
the components themselves compared to the implementa-
tions in Modelica. We modeled the system completely in
DC with a constant voltage, and converters are neglected.
The hydrogen has no physical properties besides mass.
Nevertheless, the electricity and hydrogen output are in
the correct order of magnitude, and their behavior is mod-
eled reasonably. Because these properties are significant
for the presented control via COEBM, the model is suited
to show the feasibility of COEBM.

To only produce green hydrogen, two variation points
can be controlled: First, the battery can be charged and
discharged, and second, the electrolyzer can be put into ac-
tive and standby mode. Battery charging and discharging
is controlled by variable reinitialization, while the elec-
trolyzer operation mode is controlled with a structural
change. The active electrolyzer is modeled inspired by
(Migoni et al. 2016), while we model standby mode as a
resistor representing a constant electrical load. When to
switch modes depends on different variable values and the
system’s state itself.

The variation points are directly translated to con-
texts. The control contexts BatteryCharging,
BatteryDischarging, and BatteryIdle
form the context group BatteryChargingMode.
The contexts ElectrolyzerActive and
ElectrolyzerStandby form the context group
ElectrolyzerOperation. The measurable con-
texts represent three properties. First, the power that
is fed into or drawn from the grid. We define 4 con-
texts, GridOutput when power is drawn from the
grid and GridInputLow, GridInputHigh, and
GridInputHighWithElectrolyzer, represent-
ing different quantities of power supply to the grid.
GridInputHighWithElectrolyzer got its name
because it can only be reached if the electrolyzer is oper-
ated with maximal power. The second context group rep-
resents the state of charge (SoC) of the battery containing
the contexts BatterySoCMin, BatterySoCMedium,
and BatterySoCMax. And third, we define
two contexts ElectrolyzerMaxPower and
ElectrolyzerMinPower that are activated based on
the voltage with which the electrolyzer is operated. Note
that those contexts are not part of a context group because
they can be deactivated simultaneously. The context
model is visualized in Figure 4.

The lower part of Figure 4 represents the weak inclu-
sion constraints, which implement the control logic. We
define seven constraints. Every constraint realizes a spe-
cific control step. If the electrolyzer is not operated with
maximal power and the battery is charging, charging is
stopped (C1). If the electrolyzer is not operated with max-
imal power and the battery is in idle mode and not empty,
the battery gets discharged (C2). Those constraints in-
crease hydrogen production. If the battery discharges but
becomes empty, it is set to idle mode (C3). Respectively,
if the battery charges but becomes fully charged, it is set
to idle mode (C4). If the electrolyzer is active and at min-
imum power, but grid input is low or we have grid output,
the electrolyzer is set to standby mode (C5). This con-
straint prevents producing hydrogen from grid electricity.
If the electrolyzer is in standby mode and the grid input
is high, the electrolyzer is set to active mode (C6). If the
electrolyzer is operated with maximal power and a cer-
tain amount of power is supplied to the grid, the battery is
charged if it is not already fully charged (C7).

We define events and callback functions to activate
measurable contexts during simulation time. For each of
the two context groups GridState and BatterySoC,
we define one callback similarly designed as the one
shown in Listing 2. Again, we implement a state ma-
chine to control the activation of measurable contexts, and
constraints imply the activation of control contexts. We
use the restart! function and context-oriented func-
tions for variability control. We also define two callback
functions for each context: ElectrolyzerMaxPower
and ElectrolyzerMinPower. One function activates
the context, and one deactivates it. One of those callback

160

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218155

Session: Modeling Paradigms and Language Experiments in Track for General Modelica

GridState

GridOutput GridInputHigh
GridinputHighWithElectrolyzer

BatteryChargingMode

BatteryCharging Batteryldle
BatteryDischarging

BatterySoC

BatterySoCMin BatterySoCMedium BatterySoCMax

ElectrolyzerOperation

ElectrolyzerActive ElectrolyzerStandby

ElectrolyzerMaxPower ElectrolyzerMinPower

1

)
)
C3) BatterySoCMin & BatteryDischarging —Batteryldle
C4) BatterySoCMax & BatteryCharging — Batteryldle
)
)
)

IElectrolyzerMaxPower & BatteryCharging — Batteryldle
C2) !ElectrolyzerMaxPower & !BatterySoCMin & Batteryldle — BatteryDischarging

C5) (GridOutput | GridinputLow) & ElectrolyzerActive & ElectrolyzerMinPower — ElectrolyzerStandby
C6) GridinputHigh & ElectrolyzerStandby — ElectrolyzerActive
C7) GridInputHighWithElectrolyzer & ElectrolyzerMaxPower & Batteryldle & !BatterySoCMax — BatteryCharging

Figure 4. Context model of the energy park simulation. It defines a total of 14 contexts and 4 context groups. The grid state,
battery SoC, and electrolyzer power are used for measurable contexts. The battery’s charging mode and electrolyzer activeness are
implemented as control contexts. The seven constraints that control the system are shown in the lower part of the scheme.

functions is shown in Listing 4, and the rest can be viewed
in the code example in the Git repository!. The events
that call these functions are also shown in the repository.
The call on lines 5 and 6 in Listing 4 changes the battery’s
activation mode. Here, the advantage of using COP is no-
ticeable. Without COP, if-then-else conditions would be
needed to check the wanted operation mode. This would
result in 7 lines instead of the one presented. In line 8, the
restart function is called. The solve function automati-
cally chooses the correct next simulation model. It is not
needed to specify explicitly to which model to switch.

1 function electrolyzerMin! (integ, u, p, ctx)
2 oldContext = ElectrolyzerOperation ()

3 if ! (isActive(ElectrolyzerMinPower))

4 activateContext (ElectrolyzerMinPower)

5 @context BatteryChargingMode () (

6 batteryMode (integ, u))

7 if oldContext != ElectrolyzerOperation ()
8 restart! (integq)

9 end

10 end

11 end

Listing 4. Example of a callback function that checks if the
context ElectrolyzerMinPower must be activated. If the
control contexts change after that, variable reinitialization and
model switches are performed.

We use solar irradiation data from (Krihenmann et al.
2016b) and wind speed data from (Krihenmann et al.
2016a) as input data. We simulate the system for 1000 h.
Figure 5a shows the power of the wind turbines, PV, elec-
trolyzer, battery, and the power exchange with the grid.
Positive power values indicate power consumption, while
negative values indicate power supply. For the grid, pos-
itive values indicate power fed into, and negative values
indicate power drawn from the grid.

! github.com/cgutsche/Contextual EBM.jl

The effects of context control are better visible in Fig-
ure 5b. We achieved control of the electrolyzer and bat-
tery by activating measurable contexts. The positive val-
ues of the battery power curve show that the battery is
only charged if the electrolyzer is operated with maxi-
mal power. The negative values show that the battery is
discharged if the electrolyzer can not be operated with
maximum power because the power generated by renew-
able energy systems is insufficient. The results show that
for multiple days, electricity is barely produced by wind
power plants. Then, only the PV provides electricity dur-
ing the day to operate the electrolyzer, while the elec-
trolyzer is set to standby at night. Therefore, by properly
defining the context model, we achieved the goals of pro-
ducing hydrogen only with energy supplied by renewables
and increasing the hydrogen output with battery control.
In total, the model switched 32 times during the simula-
tion. The electrolyzer was active during 826.3h from a
total 1000 h simulated.

5.2 Performance

One advantage of simulating VSS is to switch between
more and less detailed models depending on the needed
accuracy under different input conditions. Also, one pos-
sible use case for CVSS simulation is to support the op-
eration of CPS where simulation time becomes crucial.
However, computing the context control logic, callback
functions in events, and the system switches are expected
to have a computational overhead. Therefore, we provide
performance measurements to evaluate its impact.

We compare 7 different scenarios. First, the CVSS sim-
ulation of the energy park as it was presented (CVSS). Sec-
ond, the restart! functions are removed from the call-
backs, and the system is simulated as an ODEProblem
(Active and Standby). Hence, the events are still triggered,
and contexts are activated, but the simulation model is not
switched. Third, the events are kept, but the callback func-
tions contain no action, i.e., the context activeness is un-

DOI
10.3384/ecp218155

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

161

Context-Oriented Equation-based Modeling in ModelingToolkit.jl

—— Wind Turbines
— PV
20 —— Electrolzyer
— Grid
Battery
10
s o WL t(
il .
@
g
a -10
-20
-30
0 250 500 750 1000
time [h]

(a) Complete Simulation results.

Wind Turbines
— PV
Electrolzyer
Grid

Battery

10

Power [MW]

L

LI

time [h]

750

(b) Detailed view.

Figure 5. Simulation results of the energy park model.

changed (ActiveEmptyCB and StandbyEmptyCB). Fourth,
the events are entirely removed from the simulation mod-
els (ActiveNoCB and StandbyNoCB). The measurements
are performed 10 times, and the simulations not based
on CVSSProblem are performed for the model with the
electrolyzer in active and standby mode. The results are
shown in Figure 6

-

120

)
(]
g 100
-
c
2
E o= =
> 80
IS
@ =
60 -
= -
-
5> e < & ol < o
o & 5§ o o 5o ©
™ ® «° (}.\\,e‘“\ @ 1("‘& ‘\&,\ﬁ
P*d'\\l _a“é ey

Figure 6. Boxplot that shows the simulation time for seven dif-
ferent simulations. Every model was simulated 10 times.

The comparison of the models that do not contain any
events shows that the active electrolyzer model increases
the simulation time, which is explainable by the model’s
increased complexity. Adding empty callbacks also in-
creases simulation time. This effect is stronger for the
model with an active electrolyzer, which is explainable
by a larger number of events. Adding the context control

logic to the callbacks significantly increases the simula-
tion time for the model with an active electrolyzer. Using
profiling showed that computing the constraints between
contexts is the main reason for this increase.

To estimate the additional computation time of the
COEBM simulation, we compare the mean simulation
time of the CVSS simulation with a weighted sum of the
mean simulation time for the active and standby models
with empty callbacks that do not activate contexts. The
weights are calculated as 826.3h/1000h for the active
model and 1 —826.3h/1000h for the standby model, so
that they represent the share of the respective models in the
total simulation time. The mean CVSS simulation took
81.4s, and the weighted sum of the active and standby
simulation results in 74.2 s. Hence, the increase in simu-
lation time is approximately 10 %.

6 Discussion

The presented approach of COEBM allows simulating
VSS that can not be simulated in standard Modelica or
MTK without external tools or manually concatenating
simulations and their results. COEBM enables specifying
control mechanisms based on contextual modeling with
concise syntax provided by Contexts.jl. Instead of manu-
ally (de-)activating components or reinitializing variables
based only on if-then-else conditions, constraints between
contexts can be used to control the system, and context-
adaptive behavior is achieved. Defining constraints within
the context model prevents reaching conflicting states. As
discussed in (Gutsche et al. 2024), context control in Con-
texts.jl provides the basis for model-checking.

The case study shows that using the context model sim-

162

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218155

Session: Modeling Paradigms and Language Experiments in Track for General Modelica

ulation control is feasible and advantageous. COP reduces
the code complexity. Instead of if-then-else-cascades,
only a context-oriented function call is used to check how
to operate the battery. The remaining if-then-else condi-
tions are comprehensible as they represent state machines
and contain Boolean expressions that depend on one or a
few variables. The goals of the variability were achieved.

Contexts discretize continuous variables and, therefore,
are activated based on threshold values. Therefore, the
choice of threshold values influences the control. In the
case study, the threshold values were defined meaning-
fully. However, changing them can, e.g., change when
the electrolyzer gets activated and influences the amount
of produced hydrogen. Future research could investigate
obtaining optimal values via optimization.

The performance measurements show that computing
context control is time-consuming. However, Contexts.jl
was not optimized for performance. Julia gives develop-
ers many tools to improve performance. The context con-
trol computation can be optimized. For example, the li-
brary uses normal Julia arrays for computing constraints,
but static arrays can improve the performance 2.

Context activeness must be initialized before the simu-
lation. If initial activeness does not fit the initial variable
values, the control mechanisms could work faulty. MTK
allows the calculation of initial variable values, which can
be used to initialize the context activeness correctly.

The presented case study has several simplifications.
Some simplifications are only relevant for getting techni-
cal insights and could be resolved by adding or replacing
components in the model. However, other simplifications
would also influence the control logic. The model does not
include an intermediate state between active electrolyzer
and standby, resulting in discrete jumps within the simula-
tion. Also, shutdown is not implemented. Adding models
for deactivated and ramp-up states would create additional
models and contexts and, therefore, more complexity, but
the modeling technique is still applicable.

While we focused on modeling variable behavior, an-
other interesting use case for variability in simulation is
the use of surrogate models. If the needed accuracy allows
surrogates, contexts can switch between more and less de-
tailed models or data-driven components. Using neural
networks within EBM models is supported by MTK.

7 Conclusion and Outlook

We presented how COEBM enables simulating equation-
based models containing variability. Therefore, we de-
scribed a modeling technique based on contexts. Con-
textual modeling is used to abstract the simulated world
and specify control mechanisms. Constraints in the con-
textual model prevent reaching conflicting states. This is
advantageous when modeling self-adaptive systems, e.g.,
cyber-physical systems, with complex state spaces.

2github.com/JuliaArrays/StaticArrays. jl

We presented a case study of an energy park for hydro-
gen production, showing the feasibility of the modeling
process in more complex scenarios. We achieve VSS sim-
ulation by switching between different simulation models
and performing state migration. Performance measure-
ments show that the context control negatively impacts
simulation time but can be improved by changing the Con-
texts.jl implementation of computing context control.

We are currently working on implementing additional
modeling tools in Julia to simplify the generation of model
variants using a single underlying model (Atkinson, Stoll,
and Bostan 2010; Seifert 2011). This will improve code
reuse and maintainability. Additionally, concise syntax for
defining variability not located in the simulation model’s
top-level would improve modeling.

Another interesting topic for future research is inves-
tigating the combination of the presented approach and
OM_ jl to achieve COEBM in Modelica. Additionally,
MTK provides an experimental feature to use Functional
Mock-up Units (FMUs) within MTK models. This could
pave the way for coupling FMUs and Modelica models to
COEBM.

Acknowledgements

The authors would like to thank the Boysen-TU Dresden—
Research Training Group for the financial support that has made
this contribution possible. The Research Training Group is co-
financed by the Friedrich and Elisabeth Boysen Foundation and
the TU Dresden. The authors would also like to thank the Ger-
man Research Foundation (DFG) for financially supporting the
presented research via SFB/TRR 339 (Project ID 453596084).

Disclaimer

To improve the use of the English language, the authors used the
Al-based tools DeepL and Grammarly.

References

Abowd, Gregory D. et al. (1999). “Towards a Better Understand-
ing of Context and Context-Awareness”. In: Handheld and
Ubiquitous Computing. Ed. by Hans-W. Gellersen. Berlin,
Heidelberg: Springer. ISBN: 978-3-540-48157-7.

Atkinson, Colin, Dietmar Stoll, and Philipp Bostan (2010).
“Orthographic Software Modeling: A Practical Approach
to View-Based Development”. In: Evaluation of Novel Ap-
proaches to Software Engineering. Ed. by Leszek A. Maci-
aszek, César Gonzalez-Pérez, and Stefan Jablonski. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 206-219. ISBN:
978-3-642-14819-4.

Benveniste, Albert, Benoit Caillaud, and Mathias Malandain
(2020). “The mathematical foundations of physical systems
modeling languages”. In: Annual Reviews in Control 50,
pp- 72—-118. 1SSN: 1367-5788. DOTI: https://doi.org/10.1016/j.
arcontrol.2020.08.001. URL: https://www.sciencedirect.com/
science/article/pii/S1367578820300547.

Bezanson, Jeff et al. (2015). Julia: A Fresh Approach to Numer-
ical Computing. arXiv: 1411.1607 [cs .MS].

DOI
10.3384/ecp218155

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

163

github.com/JuliaArrays/StaticArrays.jl
https://doi.org/https://doi.org/10.1016/j.arcontrol.2020.08.001
https://doi.org/https://doi.org/10.1016/j.arcontrol.2020.08.001
https://www.sciencedirect.com/science/article/pii/S1367578820300547
https://www.sciencedirect.com/science/article/pii/S1367578820300547
https://arxiv.org/abs/1411.1607

Context-Oriented Equation-based Modeling in ModelingToolkit.jl

Brkic, Jovan et al. (2019-03). “Open Source PhotoVoltaics Li-
brary for Systemic Investigations”. In: Proceedings of the
13th International Modelica Conference, Regensburg, Ger-
many, March 4-6, 2019. Link6ping Electronic Conference
Proceedings. DOI: 10.3384/ecp1915741.

Broman, David and Jeremy G Siek (2012). “Modelyze: a gradu-
ally typed host language for embedding equation-based mod-
eling languages”. In: EECS Department, University of Cali-
fornia, Berkeley, Tech. Rep. UCB/EECS-2012-173.

Cardozo, Nicolas et al. (2012). Context Petri Nets: Definition
and Manipulation. English. Vrije Universiteit Brussel.

Eberhart, Philip et al. (2015-09). “Open Source Library for the
Simulation ofWind Power Plants”. In: Proceedings of the
11th International Modelica Conference, Versailles, France,
September 21-23, 2015. Linkoping Electronic Conference
Proceedings, pp. 929-936. DOI: 10.3384/ecp15118929.

Elmqvist, Hilding, Andrea Neumayr, and Martin Otter (2018).
“Modia-dynamic modeling and simulation with julia”. In: Ju-
liacon, University College London, UK.

Esperon, Daniel Gomez, Alexandra Mehlhase, and Thomas
Karbe (2015). “Appending variable-structure to modelica
models (WIP)”. In: Proceedings of the Conference on Sum-
mer Computer Simulation, pp. 1-6.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and sim-
ulation”. In: ECOOP’98—Object-Oriented Programming:
12th European Conference Brussels, Belgium, July 20-24,
1998 Proceedings 12. Springer, pp. 67-90.

Giorgidze, George (2012). “First-class models: On a noncausal
language for higher-order and structurally dynamic mod-
elling and simulation”. PhD thesis. University of Nottingham.

Goémez Esperén, Daniel (2017). “Strukturvariabilitit in der ob-
jektorientierten Modellierung und Simulation durch Gener-
ierung von Varianten”. PhD thesis. Technische Universitaet
Berlin (Germany). DOI: 10.14279/depositonce-5805.

Gutsche, Christian et al. (2024). “Context-Oriented Program-
ming and Modeling in Julia with Context Petri Nets”. In:
2024 50th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pp. 1-9. DoI: 10.1109/
SEAA64295.2024.00011.

Hirschfeld, Robert, Pascal Costanza, and Oscar Nierstrasz
(2008). “Context-oriented Programming”. In: Journal of Ob-
Jject Technology.

Keays, Roger and Andry Rakotonirainy (2003). “Context-
oriented programming”. In: Proceedings of the 3rd ACM In-
ternational Workshop on Data Engineering for Wireless and
Mobile Access. MobiDe "03. San Diego, CA, USA: Associa-
tion for Computing Machinery, pp. 9-16. ISBN: 1581137672.
DOI: 10.1145/940923.940926. URL: https://doi.org/10.1145/
940923.940926.

Kriahenmann, S. et al. (2016a). Stiindliche Raster der Global-
strahlung fiir Deutschland (Projekt TRY-Weiterentwicklung).
DWD Climate Data Center (CDC). por: DOI: 10. 5676/
DWD_CDC/TRY _Basis_v001.

Krihenmann, S. et al. (2016b). Stiindliche Raster der
Windgeschwindigkeit fiir ~Deutschland (Projekt TRY-
Weiterentwicklung). DWD Climate Data Center (CDC). DOI:
DOI:10.5676/DWD_CDC/TRY_Basis_v001.

Lee, Jay, Behrad Bagheri, and Hung-An Kao (2015). “A Cyber-
Physical Systems architecture for Industry 4.0-based manu-
facturing systems”. In: Manufacturing Letters 3, pp. 18-23.
ISSN: 2213-8463. DOT: https://doi.org/10.1016/j.mfglet.2014.
12.001.

Lubin, Miles et al. (2023). “JuMP 1.0: Recent improvements
to a modeling language for mathematical optimization”. In:
Mathematical Programming Computation. DOI: 10. 1007/
$12532-023-00239-3.

Ma, Yingbo et al. (2021). ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing. arXiv: 2103.05244 [cs.MS].

Mehlhase, Alexandra (2014). “A Python framework to create
and simulate models with variable structure in common simu-
lation environments”. In: Mathematical and Computer Mod-
elling of Dynamical Systems 20.6, pp. 566-583. DoOI: 10.
1080/13873954.2013.861854.

Migoni, G. et al. (2016). “Efficient simulation of Hybrid Renew-
able Energy Systems”. In: International Journal of Hydro-
gen Energy 41.32, pp. 13934-13949. 1sSN: 0360-3199. DoOTI:
https://doi.org/10.1016/j.ijhydene.2016.06.019.

Muschevici, Radu, Dave Clarke, and José Proenga (2010-01).
“Feature Petri Nets.” In: Proceedings of the 14th Interna-
tional Software Product Line Conference (SPLC 2010) 2,
pp- 99-106.

Neumayr, Andrea and Martin Otter (2023). “Modelling and
Simulation of Physical Systems with Dynamically Changing
Degrees of Freedom™. In: Electronics 12.3. 1SSN: 2079-9292.
DOTI: 10.3390/electronics12030500. URL: https://www.mdpi.
com/2079-9292/12/3/500.

Rackauckas, Christopher (2021). Modelingtoolkit, modelica,
and modia: The composable modeling future in julia. The
Winnower. DOI: 10.15200/winn.162133.39054.

Rackauckas, Christopher and Qing Nie (2017).
“DifferentialEquations.jl-a performant and feature-rich
ecosystem for solving differential equations in Julia”. In:
Journal of Open Research Software 5.1.

Rackauckas, Christopher and Qing Nie (2019). “Confederated
modular differential equation APIs for accelerated algorithm
development and benchmarking”. In: Advances in Engineer-
ing Software 132, pp. 1-6. ISSN: 0965-9978. DOLI: https://doi.
org/10.1016/j.advengsoft.2019.03.009. URL: https://www.
sciencedirect.com/science/article/pii/S0965997818310251.

Seifert, Mirko (2011). Designing Round-Trip Systems by
Change Propagation and Model Partitioning. Technische
Universitdt Dresden. URL: https://nbn- resolving.org/urn:
nbn:de:bsz: 14-qucosa-71098.

Stiiber, Moritz (2017). “Simulating a Variable-structure Model
of an Electric Vehicle for Battery Life Estimation Using Mod-
elica/Dymola and Python.” In: Proceedings of the 12th inter-
national Modelica conference, pp. 132-031.

The Julia Project (2023). Julia 1.10 Documentation. https://docs.
julialang.org/en/v1/. Accessed: 2024-01-25.

Tinnerholm, John, Adrian Pop, and Martin Sj6élund (2022).
“A Modular, Extensible, and Modelica-Standard-Compliant
OpenModelica Compiler Framework in Julia Supporting
Structural Variability”. In: Electronics 11.11. 1SSN: 2079-
9292. pot: 10.3390/electronics11111772.

Utkin, Vadim (1977). “Variable structure systems with sliding
modes”. In: IEEE Transactions on Automatic control 22.2,
pp. 212-222.

Wang, Zizhe et al. (2025-01). “Proposal for A Context-oriented
Modelica Contributing to Variable Structure Systems”. In:
Modelica Conferences, pp. 53—62. DOI: 10.3384/ecp20753.

Zimmer, Dirk (2010). Equation-based modeling of variable-
structure systems. Swiss Federal Institute of Technology,
Ziirich. URL: https://people.inf.ethz.ch/fcellier/PhD/zimmer_
phd.pdf.

164

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218155

https://doi.org/10.3384/ecp1915741
https://doi.org/10.3384/ecp15118929
https://doi.org/10.14279/depositonce-5805
https://doi.org/10.1109/SEAA64295.2024.00011
https://doi.org/10.1109/SEAA64295.2024.00011
https://doi.org/10.1145/940923.940926
https://doi.org/10.1145/940923.940926
https://doi.org/10.1145/940923.940926
https://doi.org/DOI:10.5676/DWD_CDC/TRY_Basis_v001
https://doi.org/DOI:10.5676/DWD_CDC/TRY_Basis_v001
https://doi.org/DOI:10.5676/DWD_CDC/TRY_Basis_v001
https://doi.org/https://doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/https://doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.1007/s12532-023-00239-3
https://arxiv.org/abs/2103.05244
https://doi.org/10.1080/13873954.2013.861854
https://doi.org/10.1080/13873954.2013.861854
https://doi.org/https://doi.org/10.1016/j.ijhydene.2016.06.019
https://doi.org/10.3390/electronics12030500
https://www.mdpi.com/2079-9292/12/3/500
https://www.mdpi.com/2079-9292/12/3/500
https://doi.org/10.15200/winn.162133.39054
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.03.009
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.03.009
https://www.sciencedirect.com/science/article/pii/S0965997818310251
https://www.sciencedirect.com/science/article/pii/S0965997818310251
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-71098
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-71098
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/
https://doi.org/10.3390/electronics11111772
https://doi.org/10.3384/ecp20753
https://people.inf.ethz.ch/fcellier/PhD/zimmer_phd.pdf
https://people.inf.ethz.ch/fcellier/PhD/zimmer_phd.pdf

	Introduction
	Background
	Julia and ModelingToolkit.jl
	Context Modeling

	Related Work
	Context-Oriented Equation-based Modeling
	Contexts in Equation-based Modeling
	Context-Oriented Variable Reinitialization
	Contextual Views for Structural Changes

	Evaluation
	Case Study: Modeling of an Energy Park
	Performance

	Discussion
	Conclusion and Outlook

