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Abstract
In a 2023 Modelica Conference paper, we proposed a novel
method for the modular structural analysis of DAE sys-
tems, in which the structural analysis is not performed on
flattened models, but rather at the class level. A new notion
of structural interface was proposed, in which classes are
enriched with context information. That paper developed
our approach based on a few illustrative examples.

In this paper, we provide the details of our algorithm.
Its performance depends on the system architecture: the
analysis of models having a small number of classes (possi-
bly instantiated many times), with a low treewidth system
architecture, scales up very efficiently with this approach.
We then present additional benchmarks, among which a
urban heating network, a representative real-life example
on which a near-logarithmic scaling up is shown.
Keywords: DAE, Modelica, object-oriented modeling,
structural analysis, index reduction, block-triangular de-
composition, interface theory, Difference Bound Matrices

1 Introduction
Modelica advocates an object-oriented style of program-
ming (Fritzson 2015), in which subsystem or component
models are encapsulated as classes, and instantiated to form
large system models. Unfortunately, state of the art struc-
tural analysis proceeds by, first, flattening the structured
model, and then performing the analysis (Pop et al. 2019).
This impedes the storage of model components as exe-
cutable code or in a format similar to it, which is an crucial
feature of compiled programming languages. Addition-
ally, it poses a challenge when attempting to extend DAE-
based modeling to higher-order modeling or dynamically
changing systems (Broman and Fritzson 2008; Broman
2021). Moreover, as pointed out in (Höger 2015), there
are situations in which modeling capabilities are limited by
the structural analysis itself, as performance issues arise
because of model flattening. Finally, an index-reduction
method for DAE systems defined as array equations is pro-
posed in (Otter and Elmqvist 2017). In the same direction,
(Fioravanti et al. 2023) proposes an array-aware matching
algorithm that scales up to large systems of equations with
arrays and loops.

In our previous work (Benveniste et al. 2023) a structural
analysis-aware interface for components was introduced,
thanks to which:

1. structural analysis is performed at the class level;

2. the results of this structural analysis are then instanti-
ated for each component, knowing its context;

3. these component-level structural analyses are com-
posed to derive system-level structural information.

Our approach was presented with the help of a few il-
lustrative examples. In this paper, we provide a formal
description of our algorithm. Its performance relates to the
following two features of the (otherwise very large) system
model: a small number of classes (possibly instantiated
many times), and a close-to-tree-shaped system architec-
ture. The urban heating network we present as a benchmark
exhibits these features.

The paper is organized as follows. Section 2 provides
a background on structural analysis. In Section 4, we in-
troduce Σ-systems, the abstraction of DAE components
that this work builds upon, and every function needed to
perform the modular structural analysis of models built
from these systems. Section 5 presents the core result
of this paper, namely, the algorithms used for modular
structural analysis. Finally, in Section 6, after addressing
implementation details that are key to the performance of
the algorithm, we present experimental results obtained
from several benchmark models of variable sizes, includ-
ing an industrial-strength model of the heating network
mentioned above.

The full structural analysis also includes the construction
of a block-triangular form for the index-reduced system
of equations. To simplify our presentation, we ignore this
aspect.

2 Background on DAE systems and
their structural analysis

We consider square DAE systems, of the form:

S : f j(the xi’s and their derivatives) = 0 (1)

where X =def {x1, . . . ,xm} is the set of dependent variables
and F =def { f1, . . . , fn} is the set of functions. Through-
out this section, we only consider square systems, mean-
ing that m = n. Instead of the Pantelides algorithm (Pan-
telides 1988) for structural index reduction, we will use
the Σ-method developed by John Pryce (Pryce 2001). This
method is recalled next.

To S as in (1), we associate its (bipartite) incidence
graph GS = (F∪X ,E) having F∪X as set of vertices, and
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having an edge ( f,x)∈ E if and only if x occurs in function
f , regardless of its differentiation degree. To account for
differentiations, we augment GS to

GS = (F∪X ,E,σ) (2)

by adding σ =def {σf,x | ( f,x) ∈ E}, the set of nonnegative
integer-valued weights, where σ f,x is equal to the maximal
differentiation degree of variable x in function f . This
yields a weight for any perfect matching M of GS

1 through
σ(M ) = ∑( f,x)∈M σf,x. The Σ-method consists in solving
the following pair of dual linear programming problems:

maximize J = ∑( f,x)∈E σf,x ξ f,x
subject to ∑ f :( f,x)∈E ξ f,x = 1 ∀x ∈ X

and ∑x:( f,x)∈E ξ f,x = 1 ∀ f ∈ F
and ξ f,x ≥ 0 ∀( f,x) ∈ E

(3)

minimize K = ∑x dx−∑ f cf
subject to dx−cf ≥ σf,x ∀( f,x) ∈ E

and cf ≥ 0 ∀ f ∈ F
(4)

Problem (3) is the primal and Problem (4) is the dual. The
former encodes the search for a maximum weight perfect
matching M of G , also called optimal matching in the
sequel. It is proved in (Pryce 2001, Theorem 3.6) that, if a
solution exists to the index problem, then a unique element-
wise minimal solution for Problem (4) exists. Furthermore,
this solution does not depend on the choice of the opti-
mal matching solving the primal problem. The following
procedure is proposed in (Pryce 2001) to solve (3,4):

Procedure 1 (Σ-method)

1. Solve LP (3), which gives an optimal matching M of
G , described as ( f ,xf ) f∈F or ( fx,x)x∈X ;

2. Using M found in step 1, solve for (dx)x∈X the fol-
lowing constraint system:

∀x ∈ X : dx ≥ σfx,x
∀( f,x) ∈ E : dx−dxf ≥ σf,x−σf ,xf

(5)

whereas cf = dxf −σf ,xf yields the equation offsets.
Index reduction then consists in differentiating cf
times equation f=0.

Notations 1 We denote by L p the primal problem (3)
associated to S, by L d the problem (5) in which matching
M=(ξ f,x)( f,x)∈E is a solution of primal problem (3), and
we write L = (L p,L d). □

1A perfect matching is a one-to-one assignment of variables to equa-
tions, obtained by selecting edges of the incidence graph GS. The exis-
tence of a perfect matching is a criterion for structural nonsingularity.

Using DBMs for the dual problem: In (Pryce 2001),
an iterative procedure is proposed to compute the element-
wise minimal solution of the dual problem, which is unique.
However, handling Problem (5) in a modular way requires
additional algebraic manipulations, which are beyond the
applicability of the Σ-method. However, we found that
Difference Bound Matrices (DBM) (Dill 1989; Miné 2001)
turn out to be a subclass of linear programs to which prob-
lem (5) belongs.

DBMs are matrices of integer or real coefficients en-
coding constraint systems like L d. We generically denote
them by A in the sequel. The composition of dual problems
Ai, i = 1,2 is then encoded by the element-wise minimum
of the DBMs: A1 ∧A2. Eliminating variables from the
dual problem is encoded by a matrix denoted by ΠZ(A),
and the complementary operation (reconstructing after the
elimination) is denoted by

Π

Z(A). Both matrices are easily
computed from A.

3 A coupled pendulums model

tb : Table

p1 : Pendulum

p2 : Pendulum

Figure 1. Coupled pendulums, attached to a sliding mass.

Concepts and algorithms introduced presented in the
sequel of the paper are illustrated on a model of two 2D
coupled pendulums, attached to a mass that can slide on
the ground with zero friction, in one dimesion only. The
mechanical assembly is depicted Fig. 1, and the Modelica
model is defined Fig. 2.

To demonstrate the modularity of the structural analysis
method, the model has been as modular as it can be: model
CoupledPendulums consists of an instance of model
Table, two instances of model Pendulum, and three
connecting equations. Two of these connecting equations
are trivial, that amount to a variable renaming. Among
the three equations, only the third, line 37, a force bal-
ance equation, needs to be considered as an equation in the
structural analysis. Equations line 9, 26, and 27 are also
considered as defining synonyms for the first order deriva-
tives of some state variables. They are not to be considered
as equations during the structural analysis.

An important feature of this model is that most variables
of models Table and Pendulum are protected, meaning
that they can not be referenced from outside of the model
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they belong to. The only variables that remain public are
those that are necessary for assembling together the compo-
nents of the mechanical system, namely: the position of the
table x and f, the projection along the x axis of the forces
exerted on the pivot linking the table to each pendulum. As
this is explained in the sequel of the paper, this is crucial
to the performance of the modular structural analysis.

1 model CoupledPendulums
2 model Table
3 parameter Real m = 100.;
4 public Real x(start=0.,fixed=true);
5 protected Real u(start=0.,fixed=true);
6 public Real f;
7 equation
8 m*der(u) - f = 0;
9 der(x) = u;
10 end Table;
11 model Pendulum
12 parameter Real m = 1.;
13 parameter Real l = 1.;
14 parameter Real g = 9.81;
15 parameter Real theta0 = 0.;
16 public Real x;
17 public Real f;
18 protected Real a(start=l*sin(theta0),fixed=true);
19 protected Real b(start=-l*cos(theta0),fixed=false);
20 protected Real u(start=0.,fixed=true);
21 protected Real v(start=0.,fixed=true);
22 protected Real lambda;
23 equation
24 m*der(u) - lambda*(a-x);
25 m*der(v) - lambda*b + m*g;
26 der(a) = u;
27 der(b) = v;
28 (a-x)^2 + b^2 - l^2 = 0;
29 f - lambda*(a-x)/l = 0;
30 end Pendulum;
31 protected Table tb;
32 protected Pendulum p1(theta0=0.1);
33 protected Pendulum p2(theta0=0.);
34 equation
35 p1.x = tb.x;
36 p2.x = tb.x;
37 tb.f + p1.f + p2.f = 0;
38 end CoupledPendulums;

Figure 2. Modelica model of the coupled pendulums.

4 Open DAE systems, Σ-systems, and
Σ-interfaces

So far, we focused on closed systems, i.e., systems that
operate in isolation. In contrast, open systems are designed
to operate in different, yet unspecified environments or
contexts. They are the appropriate notion when dealing
with modularity. In this section, we introduce open DAE
systems and their abstraction for structural analysis, called
Σ-systems.

4.1 Open DAE systems and Σ-systems
An open DAE system (oDAE for short) is a pair S = (F,X),
where F is a set of equations f=0 and X is a set of vari-
ables and their derivatives x′k,x ∈ X . We require that the
cardinalities of these sets satisfy |X | ≥ |F |. The excess

of variables with respect to equations allows capturing in-
teractions with yet unspecified contexts, as shown by the
following notion of composition.

Given S1 and S2 two oDAEs such that F1∩F2 = /0, their
composition S1 ∥S2 is the oDAE S = (F,X) defined by
F = F1⊎F2 and X = X1∪X2. Let Si, i=1,2 be two oDAEs.
Two solutions (M i,ci,di), i=1,2 for their respective oDAE
index problems are called complementary if the union
M 1⊎M 2 is a matching, and if variable offsets agree on
common variables: ∀x ∈ X1∩X2,d1

x = d2
x . When this holds,

matching M =def M 1⊎M 2 is equation-complete.

Lemma 1 Let Si, i=1,2 be two oDAEs, with composition
S = S1 ∥S2. The following properties hold:

1. Every solution (M ,c,d) to the oDAE index problem
for S projects to a pair of complementary solutions
(M i,ci,di), i=1,2 for the oDAE index problems of
Si, i=1,2, where

M i = M ∩ (Fi×Xi), ci = ΠFi(c), di = ΠXi(d) .

2. Conversely, every pair of complementary solutions
(M i,ci,di), i=1,2 for the oDAE index problems of
Si, i=1,2 yields a solution to the oDAE index problem
for S by setting

M = M 1⊎M 2 ; cf = ci
f if f∈Fi ; dx = di

x if x∈Xi .

To account for the fact that the structural analysis of DAEs
and oDAEs works on weighted incidence graphs only, we
introduce the adequate abstraction for this, called Σ-system.
To this end, we distinguish between shared and local vari-
ables,2 by enforcing the following assumption:

Assumption 1 For S = (F,X) an oDAE, we assume a de-
composition X = Xs⊎Xℓ of its set X of variables into its
subsets of shared and local variables. By convention, local
variables of S are never shared with any other oDAE.3

Local variables are determined locally, by the oDAE equa-
tions, whereas shared variables can be determined, depend-
ing on the cases, either locally, by the oDAE system, or
externally, by the equations of its environment. Interaction
with the environment occurs through shared variables only.

Since the structural analysis of oDAE S is built on top
of its incidence graph GS only, we consider an abstraction
of S as GS, now called a Σ-system:

1. A Σ-system is a tuple S = (F,Xℓ,Xs,E,σ), where:

2For instance, local variables are declared using the protected
modifier in Modelica, while shared variables are declared using the
default public modifier.

3We ensure that local variable identifiers are chosen unique, e.g.,
by performing appropriate renaming to avoid local variable identifier
clashes.
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• F is a set of functions; Xℓ and Xs are two dis-
joint sets of local and shared variables; we set
X=Xs⊎Xℓ (the cardinality of F is greater than,
or equal to, that of Xℓ);

• E ⊆ F×X is the set of edges; and

• σ : E→ N is the weight function.

2. Given two Σ-systems S1 and S2, their composition
S1 ∥S2 is only defined if F1∩F2 = /0 and yields the Σ-
system S = (F1⊎F2,Xℓ

1⊎Xℓ
2,X

s
1∪Xs

2,E1⊎E2,σ
1⊎σ2).

3. Given x ∈ Xs, the hiding of x in S is the Σ-system
denoted by S↓x and obtained by replacing, in S, the
pair (Xℓ,Xs) with (Xℓ∪{x},Xs\{x}).

4. Given x∈Xs and y̸∈X , the renaming of x by y in S
is the Σ-system denoted by S[y/x] and obtained by
replacing x by y everywhere in S.

The combined use of these operators allows to define
all Modelica constructs as macros (with the exception of
inner/outer variable declarations, which imply complex
name scoping rules).

Using Section 2, we can associate to a Σ-system S its
oDAE index problem, which, reusing Notations 1, we de-
note by LS = (L p

S ,L
d

S ), or simply L = (L p,L d). Its
solutions take the form (M ,c,d), where matching M is
equation-complete. The variables matched in M are de-
termined by the system itself, therefore we call them de-
pendent variables and denote the resulting set by Xdep .
There are generally several possible choices for Xdep ⊆ X ,
depending on which variables from Xs are chosen to be
part of it.

This choice is parametrized using the notion of selector.
Let S = (F,Xℓ,Xs,E,σ) be a Σ-system. Call selector any
subset Y ⊆ Xs, and consider:

• Xdep = Xℓ⊎Y and EY = E ∩ (F×Xdep);

• σY , the restriction, to EY , of the weight function σ;

• G Y = (F ∪Xdep,EY ,σY ), the incidence graph; and

• any optimal matching MY for G Y , if it exists.

Call MY the selected optimal matching (SOM) for S with
Y , and selected optimal weight its associated weight.

The following result will be instrumental in identifying
the appropriate notion of interface required for structural
analysis:

Theorem 1 Let S1 and S2 be two Σ-systems, and let S =
S1∥S2 be their composition. The following formula holds,
where Y is any selector for S and Yi is any selector for
Si, i=1,2:

JY = max
{
JY1

1 +JY2
2

∣∣∣Y1∩Y2 = /0 and Y1∪Y2 = Y
}
. (6)

We now move to considering the dual problem. For S a Σ-
system and Y ⊆ Xs a selector for it, we denote by L Yd the
dual problem (5) with Xdep =Xℓ⊎Y and X free =Xs\Y . The
following result relates the dual problem of a composition
to the dual problems of each of the composed open systems:

Theorem 2 Let S1 and S2 be two open systems and S =

S1∥S2 their composition. Denoting by L Yid
i , i=1,2 the

dual problem of Si with selector Yi, then, for any choice of
(Y1,Y2) achieving the max in (6):

L Yd ≡ L Y1d
1 ∪L Y2d

2 , (7)

AY = AY
1 ∧AY

2 . (8)

In (7), the ∪ on the right hand side indicates the union of
sets of constraints, whereas the symbol ≡ means that the
two sides possess identical sets of solutions.

4.2 Σ-interfaces
The Σ-interface is precisely what is required for interac-
tions with the outside world — no more, no less. We com-
plement it with the notions of local decomposition and
extension, which summarize the missing information in the
Σ-interfaceneeded to reconstruct solutions to the structural
analysis of the Σ-system.

Notations 2 In the sequel, given a relation R⊆W×W or
a function f : W → Z, and V ⊆W, we denote by

ΠV(R) and ΠV( f )

the restriction of R to V×V and of f to V .4 We will use this
notation with some liberty. For Y ⊆ Xs a selector, we will
write ΠY(J) instead of ΠP(Y )(J) to mean the restriction of
function J to P(Y ), the set of all subsets of Y .

For the following definition, we reuse the DBM associated
to the dual problem introduced in Section 2.

Definition 1 (interface) To Σ-system S = (F,Xℓ,Xs,E,σ),
we associate its Σ-interface

IS =
(
Xs,J,ΠXs(A)

)
, (9)

where J and ΠXs(A) are functions that respectively map
any selector Y ⊆ Xs to:

• JY , the optimal weight of S for the primal problem
with selector Y ;

• ΠXs(AY ), the projection, over Xs, of the DBM AY

associated to the dual problem with selector Y .

In our modular algorithm, we use the following function:

INTERFACECOINTERFACE(S) =
(
IS,

Π

Xs(A)
)

(10)

4Our notation is reminiscent of a projection, on purpose.
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where
Π

Xs(A) is a function that maps each selector Y ⊆ Xs

to
Π

Xs(AY ), the extension of AY from Xs. Function (10)
splits S as its Σ-interface IS and an object

Π

Xs(AY ) that
makes up for the loss of information in IS. The latter
is stored for subsequent reuse when “reverting the Σ-
interface”, as we shall see.

To illustrate the concept of Σ-interface, let us consider
model Table (Fig. 2). It has two public variable, x and f.
Protected variable u (line 5) should be seen as a synomym
for the first order derivative of x (equation line 9). This
means that for the structural analysis, this model has two
variables and one equation (line 8). As a consequence, the
interface It = ({x, f},Jt ,At) of this model admits two valid
selectors: {x} and { f}. The optimal weight Jt and the
DBM At are given in the table below, for each of the two
valid selectors:

Y Jt At

{ f} 0 A{ f}
t

{x} 2 A{x}t

where:

A{ f}
t =

0 x f[ ]0 −2 0
x
f −2 0

A{x}t =

0 x f[ ]0 −2 0
x 0 2
f

Matrix elements that are left blank have the value +∞, and
impose no constraint on the corresponding offset variables.
Therefore, DBM A{ f} is equivalent to the system of in-
equalities dx ≥ 2,d f ≥ 0,dx ≥ 2+ d f . The second DBM
A{x} encodes dx ≥ 2,d f ≥ 0,d f ≥ dx−2.

Theorem 3 (hiding) Let S be a Σ-system, with Σ-interface
(9). Let T =def S↓Z , where Z ⊆ Xs, and define Zs = Xs\Z.
Then, the Σ-interface of T is

IT =
(
Zs,ΠZs(J),ΠZs(A)

)
,

where ΠZs(J) and ΠZs(A) are functions mapping any selec-
tor Y ⊆ Zs to ΠZs(JY ) and ΠZs(ΠXs(AY )).

As a direct consequence of the properties of the projection,
note that, for every selector Y ,

ΠZs(AY ) = ΠZs(ΠXs(AY )) (11)

In our modular algorithm, we will use the following func-
tion, where IS is as in (9):

HIDEEXPOSE(IS,Z) =
(
IT,

Π

Z(A)
)

(12)

In (12),
Π

Z(A) is the function mapping each selector Y ⊆
Xs, to

Π

Zs(AY ), the extension of AY from Zs. Function (12)
replaces the pair (IS,Z) by its Σ-interface IT, and object
Π

Zs(AY ) that makes up for the loss of information in IT.
The latter is stored for subsequent reuse when “reverting
the hiding”.

Theorem 3 and (11) show that HIDEEXPOSE can be
evaluated through the Σ-interfaces IS and IT only.

Theorem 4 (composition) Let S1 and S2 be two Σ-
systems, with Σ-interfaces ISi = (Xs

i ,Ji,Ai) , i = 1,2.

1. We have IS1∥S2 = (Xs,J,A), where:

Xs = Xs
1∪Xs

2, and, for Y ⊆ Xs,

JY = max

JY1
1 +JY2

2

∣∣∣∣∣∣
Yi⊆Xs

i , i=1,2
Y1∩Y2 = /0
Y1∪Y2 = Y

 (13)

AY = AY1
1 ∧A

Y2
2 (14)

2. The resulting AY in (14) is independent from the cho-
sen optimizing pair.

The right-hand sides of (13,14) depend only on the Σ-
interfaces of S1 and S2. Hence, we will denote by IS1∥IS2
the so defined operation on Σ-interfaces.

Call optimizing pair the function Y 7→ (Y1,Y2), mapping
any Y to a pair (Y1,Y2) achieving the maximum in (13). In
our modular algorithm, we use the following function:

COMPOSEDECOMPOSE(IS1 ,IS2) =

(
IS1∥IS2

Y 7→ (Y1,Y2)

)
(15)

computing the optimizing pair as its second component,
for subsequent reuse when “reverting the composition”.

To illustrate the composition operator, let us consider the
composition of model Table with the equation “der(f)
+ x = 0”. The interface of the former is given above,
while the latter has for interface Ie = ({x, f},Je,Ae), where
Je and Ae are defined as follows:

Y Je Ae

{ f} 1 A{ f}
e

{x} 0 A{x}e

where:

A{ f}
e =

0 x f[ ]0 0 −1
x
f 1 0

A{x}e =

0 x f[ ]0 0 −1
x 0 −1
f

The composition (It ∥ Ie) = ({x, f},J,A) is as follows:
it admits only one valid selector Y = {x, f}, which optimal
partitioning is Yt = {x} and Ye = { f}. This gives a weight
JY = JYt

t + JYe
e = 3. DBM AY is the pointwise minimum of

AYt
t and AYe

e :

AY =

0 x f[ ]0 −2 −1
x 0 2
f 1 0
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4.3 Reverting the Σ-interface
In this section, we formalize what was meant above by
“reverting” interfaces, hiding, and composition.

Consider a Σ-system S = (F,Xℓ,Xs,E,σ). Call Σ-
solution of S any tuple

ν =
(
Y,(dx)x∈X ,(cf ) f∈F

)
, (16)

where Y⊆Xs is a chosen selector such that JY >−∞, and
variable offsets (dx)x∈X are solution of AY , whereas equa-
tion offsets (cf ) f∈F are computed as in Procedure 1. We
denote by sol(S) the set of all Σ-solutions of S. We equip
sol(S) with the partial order ≤ defined by

ν ≤ ν
′ iff Y = Y ′ and ∀x∈X : dY

x ≤ d′Yx . (17)

The term “minimal” will be referring to this order.
Let I be a Σ-interface following (9). Call local solution

of I any tuple

µ =
(
Y,(dx)x∈Xs

)
, (18)

where Y⊆Xs is a chosen selector such that JY >−∞, and
variable offsets (dx)x∈Xs are solution of ΠXs(AY ). Minimal-
ity is defined as in (17).
Nota: Σ-solutions are the wanted solutions of the index
reduction problem. They are large objects since their cardi-
nality relates to the size of X . In contrast, local solutions
are small objects, whose cardinality relates to the size of
Xs. Local solutions are the minimal objects from which
Σ-solutions for the considered Σ-system can be rebuilt. Our
overall objective is to compute Σ-solutions in a modular
way, by manipulating only local solutions.

When composing Σ-interfaces, their local solutions fuse
into local solutions of the composed interface. Local de-
composition is the reverse operation.

Theorem 5 (local decomposition) Let Ii, i=1,2 be two Σ-
interfaces and let I=I1 ∥I2 be their composition.

1. Let µi, i=1,2 be a local solution of Ii, i=1,2. Say
that µ1 and µ2 are compatible if, with reference to
Theorem 4:

(a) (Y1,Y2) is the optimizing pair for Y=Y1∪Y2, and

(b) for every x,y ∈ Xs
1∩Xs

2, we have: d1,x = d2,x.

If µ1 and µ2 are compatible, we can define their join

µ1 ⊔ µ2 =def (Y,(dx)x∈Xs) , where:
Y = Y1∪Y2

dx = if x ∈ Xs
1 then d1,x else d2,x

(19)

2. Conversely, any Σ-solution µ of I=I1 ∥I2 decomposes
as µ = µ1 ⊔ µ2, where µi is a Σ-solution of Ii and

(a) Y decomposes as Y = Y1∪Y2, where (Y1,Y2) is
the pair returned by the function COMPOSEDE-
COMPOSE defined in (15), and

(b) (di,x)x∈Xs
i

is the restriction of (dx)x∈Xs to Xs
i .

The important step in this decomposition is 2a. Step 2b is
just a restriction and does not need any side information.
Nota: The decomposition µ = µ1 ⊔ µ2 may not be unique,
since optimizing pairs of selectors can be several. However,
step 2b always yields the same result.

We now focus on how to revert the effect of hiding on
Σ-interfaces. We use macro (12) together with objects and
notations of Lemma 3.

Theorem 6 Let I be a Σ-interface as in (9), and let Z⊆Xs

and Zs=Xs\Z. Consider the interface J of the hiding I↓Z .

1. Let µ = (Y,(dx)x∈Xs ,⪯) be a local solution of I such
that Y ∩Z = /0. The hiding of Z in µ , defined by

µ↓Z = (Y,(dx)x∈Zs) , (20)

is a local solution of J and every local solution of J
is obtained in this way. Say that µ↓Z extends to µ .

2. Conversely, every local solution µ of J extends to a
unique local solution µ⋆ of I, which is minimal among
the set of all local solutions of I extending µ . This
minimal extension is computed by using only

Π

Z(A),
stored as the second component of the function HIDE-
EXPOSE introduced in (12).

Theorem 7 Let S be a basic Σ-system with Σ-interface IS,
and let ν =

(
Y,(dx)x∈X ,(cf ) f∈F

)
be a Σ-solution of S.

1. The hiding of Xℓ in ν , defined by

ν↓Xℓ = (Y,(dx)x∈Xs) ,

is a local solution of IS and every local solution of IS
is obtained in this way. Say that ν↓Xℓ extends to ν .

2. Conversely, every local solution µ of IS extends to
a unique Σ-solution ν = µ⋆ of S, which is minimal
among the set of all Σ-solutions of S extending µ . This
minimal extension is computed by using only the pair
Π

Xs(A), which was stored as the second component
of the function INTERFACECOINTERFACE in (10).

This completes the toolbox for computing a Σ-solution
of the Σ-system in a modular way. With the exception of
basic Σ-systems, only shared variables are involved. Hence,
these concepts remain as small as the set of shared variables
of the associated Σ-systems.5

5Referring to the Modelica taxonomy, we expect all programs to have
a set of public variables of small cardinality. In addition, we expect basic
classes to possess a small set of variables.
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5 Modular algorithm
This section contains the most significant and practical
contribution of this work, namely: a term algebra for the
modular definition of Σ-systems, and a modular algorithm
performing their structural analysis.

While the structural interface theory developed in Sec-
tion 4.2 provides the needed pillars, it is not sufficient to
construct an efficient and scalable algorithm, taking advan-
tage of certain assumptions regarding the DAE systems we
target.

Indeed, the large DAE systems that are typically seen
in the digital twins of industrial systems are sparse. In
addition, they generally result from a composition of a
large number of instances of basic models in much smaller
number, e.g., taken from libraries. Said differently, our tar-
geted DAE systems contain a large number of structurally
identical components, in which only parameter values may
differ.

Our modular algorithm ensures that structural analyses
are computed only once for each representative compo-
nent, and then properly fused to get the global analysis.
Achieving this relies on the interface theory developed in
Section 4.2, complemented with adequate algorithmic tech-
niques and data structures that we explain in this section.

Algorithm 1 Upward sweep: computing interfaces and
cointerfaces with memoization

1: global IC : A →I ×C ▷ memoization table
2: ▷ initially empty
3: function INTERFACE(a)
4: if IC(a) is defined then ▷ if already memoized
5: (i, ·)←IC(a) ▷ then retrieve interface
6: else
7: if a = (a1 ∥ a2) then ▷ composition
8: i1← INTERFACE(a1) ▷ compute

interfaces
9: i2← INTERFACE(a2) ▷ of operands

10: (i,c)← COMPOSEDECOMPOSE(i1, i2)
11: else if a = a′↓x then ▷ hiding
12: i′← INTERFACE(a′) ▷ interface of

operand
13: (i,c)← HIDEEXPOSE(i′,x) ▷ compute

hiding
14: else if a = [y/x]a′ then ▷ renaming
15: i′← INTERFACE(a′) ▷ interface of

operand
16: (i,c)← RENAMEREVERSE(i′,y,x)
17: else if a = b then ▷ basic Σ-system
18: (i,c)← INTERFACECOINTERFACE(Sb)
19: end if
20: IC(a)← (i,c) ▷ memoize (co-)interface
21: end if
22: return i ▷ return interface
23: end function

Algorithm 2 Downward sweep: computing local solutions

1: global IC ▷ initialized by function INTERFACE
2: S ol ⊆A ×S ▷ set of local solutions
3: ▷ initially empty
4: procedure SOLUTION(a,µ)
5: if (a,µ) ̸∈S ol then ▷ visited yet ?
6: add (a,µ) to S ol ▷ mark visited
7: (·,c)←IC(a) ▷ retrieve cointerface
8: if a = (a1 ∥ a2) then ▷ composition
9: (µ1,µ2)← c(µ) ▷ compute local solutions

10: ▷ of both operands
11: SOLUTION(a1,µ1) ▷ propagate local

solutions
12: SOLUTION(a2,µ2) ▷ to the operands
13: else if a = a′↓x then ▷ hiding
14: µ ′← c(µ) ▷ compute local solution
15: ▷ of the operand
16: SOLUTION(a′,µ ′) ▷ propagate to operand
17: else if a = [y/x]a′ then ▷ renaming
18: µ ′← c(µ) ▷ compute renamed solution
19: SOLUTION(a′,µ ′) ▷ propagate to operand
20: else if a = b then ▷ basic Σ-system
21: ν ← c(µ) ▷ compute Σ-solution
22: generate reduced index system of
23: Sb for Σ-solution ν

24: end if
25: end if
26: end procedure

5.1 A term algebra A of Σ-systems
In this section, we consider a term algebra of Σ-systems,
defined by the following grammar:

A ::= B | (A ∥ A ) | A ↓X | A [X /X ] (21)

where B is a predefined set of symbols b denoting basic Σ-
system Sb, and X is a set of variable names x,y, or z. The
semantics of A is a mapping that associates a Σ-system
[[a]] to term a. It is defined inductively on the term:

[[b]] = Sb
[[(a1 ∥ a2)]] = ρ1[[a1]] ∥ ρ2[[a2]]

[[a↓x]] = [[a]]↓x
[[a[y/x]]] = (ρ[[a]])[y/x]

(22)

where ρk, k = 1,2 are any injective renamings of the ver-
tices of [[ak]] = (Fk,Xℓ

k ⊎ Xs
k,Ek,σk), k = 1,2, such that

F1∩F2 = /0, Xℓ
1∩Xℓ

2 = /0, and ρk, k = 1,2 are identity func-
tions on Xs

k. Renaming ρ is any mapping such that it is
the identity on the shared variables of [[a]] and y is not a
variable of ρ[[a]]. Our central problem is the following:

Problem 1 How can one perform the structural analysis
of [[a]] without computing [[a]], that is, by considering only
term a and the Σ-systems Sb of the basic terms b appearing
in a?
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A solution to this problem is developed in this section. The
following notations are used in the sequel:

Notations 3 In the sequel, symbols a,a′,a1,a2 are use to
represent terms; i, i′, i1, i2 denote Σ-interfaces; c denotes
cointerfaces and µ,µ ′,µ1,µ2 represent local solutions,
while symbol ν is used to represent Σ-solutions. Also, we
will use the generic term of Cointerface to denote the com-
plementary components computed by the functions INTER-
FACECOINTERFACE, HIDEEXPOSE, and COMPOSEDE-
COMPOSE, introduced in (10,12,15). □

5.2 A modular algorithm for the structural
analysis of A

In this section, we propose an algorithm solving Problem 1.
This algorithm consists in traversing the sub-term graph,
by first performing an upward sweep using Algorithm 1,
followed by a downward sweep using Algorithm 2, which
we comment next.

Upward sweep Algorithm 1 Σ-interfaces are computed
inductively, starting from basic Σ-systems. A memoization
table IC:A→I×C is used to store the local interface
and cointerface for each sub-term. Memoization (Cormen
et al. 2022, Section 14.3) is an algorithmic technique that
consists in ensuring that a function f (x) is evaluated at
most once for each parameter value x. This relies on a
data structure that stores f (x) for each value x encountered
so far during program execution. Table IC has a double
purpose: it is both used to prevent the evaluation of function
INTERFACE(a) whenever this has already been done, and
to store the local cointerface associated to a term. This
cointerface is used in the downward sweep.

Downward sweep Algorithm 2 Local solutions are com-
puted for each sub-term. In procedure SOLUTION(a,µ), a
is a term and µ a local solution, seen as its context. This
procedure computes the local solutions of the sub-terms of
a, in the context of µ . To do this, the local cointerface c of
term a, computed during the first phase, is retrieved from
table IC.

In the sequel, we call modular structural analysis the
successive execution of Algorithms 1 and 2.

5.3 Back to the coupled pendulums example
The coupled pendulums model, introduced Section 3, can
be expressed as the following component algebra term:

CoupledPendulums = ( Table[tb. f/ f ] ∥
( ConnectingEquation ∥

Pendulum[p1. f/ f ] ∥
Pendulum[p2. f/ f ]
) ↓p1. f ,p2. f

) ↓x,tb. f

where Table and Pendulum are the Σ-systems obtained
from the classes Table and Pendulum defined Fig. 2,

and ConnectingEquation is the Σ-system obtained from the
connecting equation, line 37.

The execution of Algorithm 1 is detailed Fig. 9.
The figure displays the term as an acyclic directed
graph where each node represents a subterm of term
CoupledPendulums, and each edge represents the contain-
ment relation. The algorithm starts with basic Σ-systems,
and propagates Σ-interfaces in the opposite direction of the
edges. Each time the Σ-interface of a term is computed,
its corresponding cointerface is stored in the memoization
table.

Figure 10 details the downward sweep of Algorithm 2:
partial Σ-solutions are propagated down the subterm graph.
The end result consists of Σ-solutions for each basic Σ-
system instance, that can be used to perform the index
reduction of each of these oDAE systems.

6 Implementation and benchmarking
In this section, we address an important implementation
aspect of our modular method, then we benchmark our
prototype implementation on several examples: a vibrating
string model, an industrial-strength thermofluid model of
a urban heat network, and a Heat Equation model defined
with arrays and a for loop.

6.1 Avoiding the combinatorial explosion due
to selectors

A difficulty in our interface theory is the consideration
of selector-dependent structural analysis problems. The
primal and dual problems are functions of the selector,
that can be numerous, except for systems with only a few
public variables. With a mere enumeration of selectors,
composition operators can result in an exponential growth
of the number of valid selectors.

Indeed, the number of valid selectors usually remains
rather small, as the maximum number of shared variables
for all the subsystems of a given system is small (below
20 or so). In such cases, enumerating valid selectors is not
costly. It is however possible that, for some subsystems, the
set of shared variables is larger, and enumerating selectors
may become too costly. In Modelica, this typically happens
whenever a class has public variables of array types.

In such cases, the set of valid selectors can be repre-
sented by its Boolean characteristic function. The primal
and dual interfaces can also be represented as tuples of
Boolean functions In this approach, efficient representa-
tions exist, namely Binary Decision Diagrams and their
extensions; we use the Reduced-Ordered variant (ROBDD)
introduced by (Bryant 1986). In our implementation, we
adopted a hybrid approach, where selectors are enumer-
ated for systems with a number of public variables below a
given threshold, while the characteristic function approach
is used when this threshold is exceeded (Benveniste et al.
2022).

The experimental comparison of the enumerative and
symbolic approaches, presented in Section 6.2, turns in
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import ...;
model HarmonicString

parameter Integer n = 1 "Number of elements";
parameter Mass m = 1e-3 "Mass";
parameter Distance l = 1e-2 "Length";
parameter TranslationalSpringConstant c = 1;
parameter TranslationalDampingConstant d = 1e-3;
parameter Distance s0 = 0 "Initial position";
Flange_a a;
Flange_b b;
static if n > 1 then
protected
parameter Integer n1 = n / 2;
parameter Integer n2 = n - n1;
HarmonicString s1(n=n1, m=n1*m/n, ...);
HarmonicString s2(n=n2, m=n2*m/n, ...);

else
protected
Element e(m=m, l=l, c=c, d=d, s0=s0);

end if;
equation

...
end HarmonicString;

Figure 3. A mass-spring-damper system; the element (top left) is assembled from the 1-D translational mechanical components of
the Modelica Standard Library. An assembly of two elements is shown at the bottom left. A chain of mass-spring-damper elements
of length n is defined by the recursive Modelica-like class shown on the right. Although Modelica does not allow for recursive
classes, our software prototype allows recursion, provided conditional statements can be evaluated at compile time.

favor of the enumerative approach. Nevertheless, the sym-
bolic approach should not be ruled out, as subsystems with
a large number of shared variables may occur, and the enu-
merative approach would fail on these particular instances.

6.2 Benchmarking
Our implementation has been benchmarked on two aca-
demic examples and an industrial strength model. The
former are a vibrating string model, and a 1-D finite ele-
ment model of the Heat Equation; the latter is an industrial-
strength model of a urban heat network system. All three
models have been made parametric so that one can adjust
their size, in terms of numbers of equations and variables.
For these examples, the performance of the modular struc-
tural analysis is compared with a global reference imple-
mentation of the Σ-method.

6.2.1 The Vibrating String example

This example is a lumped model of a vibrating string, con-
sisting in a chain of mass-spring-damper elements. The
Modelica diagrams and code of this model are given by Fig-
ure 3. The mass-spring-damper element is built using the
translational mechanics package of the Modelica Standard
Library (MSL). The chain is defined by dichotomy, using
a recursive class. , exactly like the chain circuit example.

The performance of the modular method was compared
with a classical implementation of the Σ-method, where
the primal problem is solved using an implementation of
the Hungarian method (Munkres 1957), the dual problem
is solved by a fixed point iteration, as advocated in (Pryce
2001). This reference implementation also puts the equa-
tions in Block Triangular Form (BTF), based on the com-
putation Strongly Connected Components, using Tarjan’s

0.00010

0.00100

0.01000

100.100 1.103 10.103 100.103 1.106 10.106 100.106 1.109

Global
Modular

Figure 4. CPU times (seconds) of the modular (in green) and
global (in purple) methods for the Vibrating String, as a function
of the number of equations.

algorithm (Tarjan 1972). Figure 4 gives the computation
times of both methods, for a range of instances of Vibrating
String model, up to about 109 equations. The computation
times for the modular method are logarithmic in the num-
ber of equations, because the number of interfaces to be
computed is logarithmic in the model parameter value. The
modular method runs faster than the global one, except for
small models with less than a few hundred equations.

6.2.2 The Urban Heat Network model

This is an industrial-strength thermofluidic model of a ur-
ban heat network system, inspired by (Mans et al. 2022).
The complete network comprises hot and cold water pipes,
heat exchangers and circulation pumps, expansion tanks,
and heat sources and sinks. Pipes and heat exchangers are
lumped models, consisting in several elements connected
in series. Figure 5 shows the variables-to-components inci-
dence graph of the model for parameter value n = 10, and
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Figure 5. (a) Variables-to-components graph of the Urban Heat Network model for n = 10. Blue circles represent variables that are
shared between two components; purple boxes represent instances of the basic thermofluidic components. (b) Modelica model of a
substation, instantiated n times in the model and interconnected with a network of pipes.
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Figure 6. CPU times (seconds) of the modular (in green) and
global (in purple) methods, as a function of the number of equa-
tions.

the Modelica model of a substation, that is instantiated n
times and connected to a tree-shaped network of hot and
cold water pipes. Figure 6 gives the computation times of
the global and modular methods for instances of this model
up to about 106 equations.

Although its measured time complexity is not logarith-
mic in the size of the model, the modular method runs
faster than the global method for instances of the model
with more than about 7,000 equations. This is due to the
fact that the model has a low treewidth (Bodlaender 1988),
as evidenced by Figure 5a.

6.2.3 The Heat Equation model

Figure 7 shows the Modelica code of a finite element model
of the 1D Heat Equation. This model, taken from (Fiora-
vanti et al. 2023), consists of an array of real variables and
a set of equations defined thanks to a for loop. This is a
challenging benchmark for two reasons. First, it is a sys-
tem of ordinary differential equations, on which each of the
three steps of the global structural analysis method (primal
and dual problems, then BTF decomposition) has a compu-
tation time that is linear in the size of the model. Second,

model Thermal1D

parameter Integer N = 5;
parameter Real g = 0.00314785; // W/K

parameter Real c = 0.2707936; // J/K

parameter Real Tleft = 400 + 273.15; // K

parameter Real Tright = 20 + 273.15; // K

Real T[N](each start=Tright);
equation

c*der(T[1]) = g * (2*Tleft - 3*T[1] + T[2]);
for i in 2:N-1 loop
c*der(T[i]) = g*(T[i-1] - 2*T[i] + T[i+1]);

end for;
c*der(T)[N] = g*(T[N-1] - 3*T(N) + 2*Tright);

end Thermal1D;

Figure 7. Modelica code of the 1-D Heat Equation, with an array
and a loop of equations.

this model does not provide a class instantiation tree de-
composition of the system of equations; this decomposition
has to be defined manually, or computed automatically.

As a reference, we performed the structural analysis us-
ing a manually-defined balanced binary tree decomposition
of the system of equations, very similar to that of the Vi-
brating String example. Unsurprisingly, the performances
(Figure 8, top graph) show that, above a certain threshold
in the size of the system, the modular structural analysis
takes only a fraction of the computation time required for
the global (classical) structural analysis. As a matter of
fact, it should be noticed that the empirical time complexity
is logarithmic in the number of equations.

To our knowledge, computing an almost-balanced tree
decomposition, that minimizes the number of shared vari-
ables between subtrees, is an open problem, in the general
case of (possibly nested) loops of equations. It is nev-
ertheless possible to compute tree decompositions, not
necessarily balanced, using the heuristics implemented
in Snowflake (Thibault 2024; Thibault 2022). Because
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Figure 8. CPU times (seconds) of the modular (in green) and
global (in purple) methods for the Heat Equation model, as a
function of the number of equations, with balanced (top graph)
and unbalanced (bottom graph) tree decompositions.

Snowflake implements a greedy decomposition algorithm,
it results in an unbalanced, comb-shaped tree. The perfor-
mances obtained with this tree decomposition are shown
in the bottom graph of Figure 8. Although the modular
structural analysis also has a linear time complexity for this
model, it can be observed that, for large instances of the
model, the computation times of the global and modular
methods are almost the same. This examplifies the impor-
tance of a balanced tree decomposition for the performance
of the modular method.

7 Conclusion and perspectives
Only square and structurally nonsingular DAE models are
suitable for simulation. Such models correspond to closed
systems, considered in isolation. In contrast, open com-
ponent models, possessing more variables than equations,
constitute the adequate framework to deal with model com-
position. Variables in open models are either local (pro-
tected variables in Modelica, i.e., private to the class), or
public (possibly shared with other component models).
Open models can be made aware of assumptions on their
(unspecified yet) context. Overall, open models address
the system view of physical modeling.

In this paper, we propose a notion of Σ-interface for open
component models. Σ-interfaces involve only shared vari-
ables, thus abstracting away equations and local variables.
The Σ-interface of an open model carries the information
needed to perform modular structural analysis. We pro-
pose a hierarchical and modular algorithm that performs
the interface-based structural analysis for DAE systems

composed of possibly many open component models. Our
algorithm exploits the sparsity of the underlying system as
reflected in its incidence graph. Furthermore, very much
like message passing, its efficiency relates to the model
treewidth: the lower, the better.

The modular structural analysis algorithm was bench-
marked on two academinc examples and an industrial-
strength model of a urban district heating network. We
succeeded in performing the structural analysis of DAE
systems comprizing from 106 to 109 equations, depending
on the model. Except for small instances of the models,
computation times of the modular algorithm were a fraction
of the computation times of state-of-the-art global struc-
tural analysis algorithms. As expected, sublinear execution
times have been measured for several of the use cases.

This Σ-interface theory breaks one of the acknowledged
obstacles to the scalability of DAE-based modeling lan-
guages, such as Modelica. Our contribution thus provides
an important step towards the modular compilation of Mod-
elica.

Of course, some issues remain open. In particular, mod-
els with higher treewidth are not handled well by our ap-
proach. Such unstructured models typically involve arrays
of variables and components, with square regular grids
being an example. While our notion of Σ-interface remains
a useful candidate abstraction in this case, alternative al-
gorithms for solving the Σ-method in a modular way still
have to be found.
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J⃝ Y J A Y1 Y2
{x, tb. f} 6 A10 {x} {tb. f}

A10 =

0 x tb. f[ ]0 −2 0
x 0 2

tb. f −2 0

I⃝ is identical to H⃝, after renaming f by tb. f .

H⃝
Y J A
{ f} 0 A8
{x} 2 A9

A8 =

0 x f[ ]0 −2 0
x
f −2 0

A9 =

0 x f[ ]0 −2 0
x 0 2
f

G⃝
Y J A
{tb. f} 4 A6
{x} 6 A7

A6 =

0 x tb. f[ ]0 −2 0
x −2 0

tb. f
A7 =

0 x tb. f[ ]0 −2 0
x

tb. f 2

E⃝ and F⃝ are given Fig. 10.

D⃝

Y J A Y1 Y2
{p1. f , p2. f} 4 A3 {p1. f} {p2. f}
{x, p1. f} 6 A4 {p1. f} {x}
{x, p2. f} 6 A5 {x} {p2. f}

A3 =

0 x p1. f p2. f
0 −2 0 0

x
p1. f −2 0
p2. f −2 0

A4 =

0 x p1. f p2. f
0 −2 0 0

x 0 2
p1. f −2 0
p2. f

A5 =

0 x p1. f p2. f
0 −2 0 0

x 0 2
p1. f
p2. f −2 0

K⃝ Y J A
/0 6 A11

A11 =
0
[ ]0

Term K⃝ has no public variable. It admits one valid
selector: the empty set. This means that the Coupled-
Pendulum model is structurally nonsingular.

Table
Ⓗ

rename
tb.f / f
Ⓘ

↑Ⓗ

ConnectingEquation
Ⓔ

Pendulum
Ⓐ

rename
p1.f / f
Ⓑ

↑Ⓐ

rename
p2.f / f
Ⓒ

↑Ⓐ

||
Ⓓ

↑Ⓑ ↑Ⓒ

||
Ⓕ

↑Ⓔ ↑Ⓓ

hide
p1.f, p2.f
Ⓖ

↑Ⓕ

||
Ⓙ

↑Ⓘ ↑Ⓖ

hide
tb.f, x
Ⓚ

↑Ⓙ

B⃝ (resp. C⃝) is identical to A⃝, up to a renaming of f
by p1. f (resp. p2. f ).

A⃝
Y J A
{ f} 2 A1
{x} 4 A2

A1 =

0 x f[ ]0 −2 0
x
f −2 0

A2 =

0 x f[ ]0 0 0
x 0 2
f

Figure 9. Primal/dual interfaces and primal cointerfaces computed during the upward sweep. Start reading the figure from the
bottom. For the sake of clarity, the BTF components of the interfaces/cointerfaces have been omitted.
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A14 =

0 tb. f p1. f p2. f x


0 0 0 0 −2
tb. f 0 0 0
p1. f 0 −2
p2. f 0 −2

x

A15 =

0 tb. f p1. f p2. f x


0 0 0 0 −2
tb. f 0 0 0
p1. f 0 −2
p2. f

x 2 0

F⃝

Y J A
{tb. f , p1. f , p2. f} 4 A14
{tb. f , p1. f ,x} 6 A15
{tb. f , p2. f ,x} 6 A16
{p1. f , p2. f ,x} 6 A17

Table
ⓔ

rename
tb.f / f

↓ⓓ

ConnectingEquation
ⓘ

Pendulum
ⓜ

rename
p1.f / f

↓ⓛ

rename
p2.f / f

↓ⓛ

||

↓ⓙ ↓ⓚ

||

↓ⓖ ↓ⓗ

hide
p1.f, p2.f

↓ⓕ

||

↓ⓑ ↓ⓒ

hide
tb.f, x

↓ⓐ

E⃝

Y J A
{tb. f} 0 A11
{p1. f} 0 A12
{p2. f} 0 A13

A11 =

0 tb. f p1. f p2. f
0 0 0 0

tb. f 0 0 0
p1. f
p2. f

A16 is obtained from A15 by exchanging rows and columns
p1. f and p2. f . A17 is obtained from A15 by exchanging
rows tb. f and p1. f , then columns p1. f and p2. f .

a⃝ =
(
{x, tb. f},< dx = 2,dtb. f = 0 >

)
is computed using

the cointerface of term 11⃝, retrieved from the memoization
table.

b⃝ =
(
{x},< dx = 2,dtb. f = 0 >

)
is computed from a⃝, us-

ing the cointerface of term 10⃝.

c⃝ =
(
{tb. f},< dx = 2,dtb. f = 0 >

)
.

d⃝ =
(
{x},< dx = 2,d f = 0 >

)
is the reverse renaming of

b⃝.

e⃝ =
(
{x},< dx = 2,d f = 0 >,< c8 = 0 >

)
is the Σ-

solution for the instance of model Table (Fig. 2). c8 is
the offset of the equation line 8. This means that this equa-
tion is not differentiated.

f⃝=
(
{tb. f , p1. f p2. f},< dx = 2,dtb. f = dp1. f = dp2. f = 0 >

)
.

g⃝ =
(
{tb. f},< dtb. f = dp1. f = dp2. f = 0 >

)
.

h⃝ =
(
{p1. f , p2. f},< dx = 2,dp1. f = dp2. f = 0 >

)
.

i⃝ =
(
{tb. f},< dtb. f = dp1. f = dp2. f = 0 >,< c37 = 0 >

)
.

Equation line 37 does not need to be differentiated.

j⃝ =
(
{p1. f},< dx = 2,dp1. f = 0 >

)
.

k⃝ =
(
{p2. f},< dx = 2,dp2. f = 0 >

)
.

l⃝ =
(
{ f},< dx = 2,d f = 0 >

)
.

m⃝ =
(
{ f},< dx = da = db = 2,d f = dlambda = 0,>,

< c28 = 2,c24 = c25 = c29 = 0 >). Both instances of
model Pendulum appear in the context of the same partial
solution l⃝. This model has to undergo only one index
reduction, where the only equation to be differentiated is
line 28.

A12 (resp. A13) is obtained from A11 by exchanging rows
tb. f and p1. f (resp. p2. f ).

Figure 10. Partial solutions computed during the downward sweep. Start reading the figure from the top. For the sake of clarity, the
BTF components of the partial solutions have been omitted.
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