Resizable Arrays in Object-Oriented Modeling

Martin Otter!

Hilding EImqvist?

IDLR, Institute of Vehicle Concepts, Germany, martin.otter@dlr.de
2Mogram AB, Sweden, hilding.elmgvist@mogram.net

Abstract

The Modelica language (Modelica.org) makes it easy to
build large, complex models by allowing the instantiation
of reusable component models. Modelica tools typically
expand arrays of variables, equations and components and
perform symbolic transformations on the scalar elements.
This reduces the efficiency of the translation process and
makes it difficult to change array dimensions after
translation.

This paper describes modest enhancements of
standard algorithms to avoid scalarization. As a result,
arrays can be resized both after translation and during
simulation. The new technique does, however, impose
certain restrictions on the way models are written. It is
also sketched how to provide more meaningful
diagnostics for erroneous models. Several examples
demonstrate the new algorithms using the Web App
Modiator.

Keywords: Modelica, array equations, compilation

1 Introduction

The Modelica language® makes it easy to build large,
complex models by allowing the instantiation of reusable
component models. Modelica tools typically expand
arrays of variables, equations and components and
perform symbolic transformations on the scalar elements.
This reduces the efficiency of the translation process
especially for models with fine discretization of partial
differential equations or for handling arrays of parametric
data. In many cases, this scalarization can be omitted,
which will be explored in this paper.

Furthermore, avoiding scalarization of arrays allows
changing array sizes without recompilation. This is
important since it's essential to check the fidelity of the
discretization for partial differential equations to ensure
sufficient accuracy, i.e. to allow quick comparison of
simulation results without recompilation with different
numbers of segments. The technique also enables
changing array dimensions during simulation, i.e., a
model modifies its discretization depending on the
model’s behavior, for example increasing the number of
segments when a transient occurs.

This paper outlines the modest enhancements to
standard algorithms required for this new approach. A tool

1 https://specification.modelica.org/maint/3.6/MLS.html
2 https://openmodelica.org/

can verify whether the model complies with the required
restrictions. If so, the new technique is employed,
otherwise the current scalarization approach is used. The
new approach imposes certain restrictions on models.
These restrictions and how to rewrite the model equations
to fulfill them are described. The alternative is to scalarize
the equations internally, and then try to combine them into
array equations and for-loops after the symbolic
algorithms have been applied. Such an approach is much
more involved.

The new approach and all the examples in this article
have been tested with the Web App Modiator which
supports a subset of Modelica. The current features,
restrictions and future plans of Modiator are discussed in
the companion paper (EImgqvist and Otter 2025).

Previous work on avoiding scalarization includes
the following articles: (Otter and Elmqvist 2017) show
that scalarization of array equations is needed for index
reduction when using the standard algorithms, e.g., for
multibody systems. They scalarize array equations
internally and reconstruct arrays after sorting. (Pop et al.
2019) describe a new high-performance frontend to
OpenModelica? (Fritzson et al. 2020) to convert arrays of
component models to array equations and to keep arrays
during flattening. (Zimmermann et al. 2020) propose set-
based graph algorithms to avoid unrolling of for-loop
equations of Modelica models. (Abdelhak et al.
2023,2025) map indices of array variables and equations,
as well as iterator values of for-equations to unique scalar
indices, apply standard algorithms for matching and
sorting on these internally scalarized systems and
reconstruct array equations and for-loops afterwards.
They tested this approach with an extension to
OpenModelica. (Marzorali et al. 2024) propose a
matching algorithm for repetitive structures with for-
loops over vectors of unknowns and test the
implementation as part of the ModelicaCC compiler?.

2 Model Restrictions

This section explores the restrictions that are needed to be
imposed on Modelica authoring to avoid scalarization
with the new method and achieve compile times that are
independent of array sizes (O(1) rather than O(n) or
worse).

Restriction 1: The model must be balanced with regards
to non-scalarized variables and equations. The equation

8 https://github.com/CIFASIS/modelicacc

DOI
10.3384/ecp218189

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

189

mailto:martin.otter@dlr.de
mailto:hilding.elmqvist@mogram.net
https://modelica.org/
https://specification.modelica.org/maint/3.6/MLS.html
https://openmodelica.org/
https://github.com/CIFASIS/modelicacc

Resizable Arrays in Object-Oriented Modeling

number of a for loop is the number of equations in the
loop.

This restriction is illustrated using the CascadedFirstOrder
model from the ScalableTestSuite* (Casella 2015):
tau*der(x[1]) = u - x[1];
foriin 2:N loop
tau*der(x[i]) = x[i-1] - x[i];
end for;

Equations for tau and u are provided elsewhere. This
equation set violates Restriction 1 and needs to be
modified since the number of unknowns is one (der(x)) but
there are two equations. It can, for example, be rewritten
as:

foriin 1:N loop
tau*der(x[i]) = (if i == 1 then u else x[i-1]) - x[i];
end for;

or more compactly using the concatenation operator cat:
tau*der(x) = cat(1, {u}, X[1:N-1]) - x;

The cat function concatenates the array arguments, in this
case along the first dimension. It means that the x vector
is shifted upwards (x[N] omitted) and u is inserted as first
element. Yet another possibility is to use a reduction
expression.

tau*der(x) = {(if i == 1 then u else x[i-1]) - x[i] for i in 1:N}

Restriction 2: All elements of an array must be of the
same kind (algebraic or differentiated).

This means that a model such as a variant of the
CascadedFirstOrder model from above:

X[1] =u;

foriin 2:N loop
tau*der(x[i]) = x[i-1] - x[il;

end for;

violates Restriction 2 because x[1] is an algebraic variable
and variables x[2:N] are variables appearing differentiated.
Such a model needs to be rewritten in one of the forms
shown above. In similar cases, arrays need to be split in
different pieces so that all elements of an array are either
algebraic or states.

An equivalent model to the CascadedFirstOrder
model can be made with an array of components:

model FiltersInSeries
model Filter
input Real u;
output Real x;
parameter Real tau = 0.1;
equation
tau*der(x) = u-x;
end Filter;
parameter Integer N = 10 "Number of filters";
Filter f{N](each x(start=0, fixed=true),
u=cat(1, {1}, f[1:N-1].x));
end FiltersInSeries;

4 https://github.com/casella/ScalableTestSuite

If all components in an array of components have the same
causality, all component equations can be sorted together,
i.e. that each equation in an array of components can be
translated to a for loop over that equation (it is not
important in this simple case since there is only one
equation in each component).

The outputs f.x[1:N-1] are shifted to form the inputs f.u
together with the input 1 to the first filter. Handling
acausal connectors is somewhat more complex. See the
Transmission Line example in section 4.3.

In section 5 more restrictions are discussed and there
might be still more. Modiator never performs
scalarization (also not internally) and therefore valid
Modelica models might be rejected. The user should be
able to understand how to rewrite the model equations
from the error messages. The benefit is that generated
code never contains scalarized equations or enrolled for-
loops, translation is faster and error messages are more
compact since the elements of an array are not shown.

3 Assignment without Scalarization

This section gives an overview how to symbolically
process array equations so that arrays can be resized after
compilation - both for translated Modelica models and
Functional Mockup Units (> version 3.0)°. The details of
the new algorithms are presented in Appendix A.

3.1 Model Unification

In order to make symbolic processing simpler, the
Modelica model is transformed by a model unification
process similar to what is done in OpenModelica (Pop et
al. 2019):

e For-equations with multiple equations in the
body are converted to potentially nested for-
equations with one equation in the body:

for index-expression, ... loop
equation
end for;

e Non-constant variables of arrays of components
are transformed to array variables with outer
indices according to the component array indices.

e Each equation of an array of components is
transformed to a for-loop over the equation.

3.2 Structurally Assignable Property

Afterwards, standard symbolic algorithms are used that
operate, with some modifications on variable symbols.
The following notation is used:

e All variable symbolsv;are collected in a variable
vector v. A symbol v; may represent a scalar or an
array of one or more dimensions. The first variable v,
has index j =0 (as it is common in programming
languages such as C, C++, Javascript).

5 https://fmi-standard.org/docs/3.0.2/

190

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218189

https://github.com/casella/ScalableTestSuite
https://fmi-standard.org/docs/3.0.2/

Session: New Translation Methods and Tools in Track for General Modelica

e All equations e; are collected in an equation vector e.
An equation e; may be a scalar or an array equation
of one or more dimensions with potentially a for-loop
around it, as sketched above. The first equation e, has
index i = 0.

e The relationship between the equations e; and the
variables v; is defined by a sparse representation of
the incidence matrix that is defined as vector G, where
each entry G; is a vector consisting of the indices of
the variable symbols appearing in equation e;. G can
also be interpreted as a representation of a bi-partite
graph.

e The relationship between variable symbols is defined
by the variable association vector A:

Aj = if v; = v then k else — 1.

e The relationship between the equations is defined by

the equation association vector B:
B; = if é; = ¢, then k else — 1.

Additionally, the following new property needs to be

defined for every variable in every equation:

Definition 1: A variable v; is called structurally
assignable with respect to an equation e;, if a complete
assignment is possible for all (scalar) elements of v; with
respect to all (scalar) elements of e;, provided v; and e;
are expanded to scalars and this property holds,
independently of the common dimensions and dimension
sizes of v; and e;.

In general, Definition 2 is difficult to apply. The
following sufficient condition is easier to use:

Theorem 1: A variable v; is structurally assignable with
respect to an equation e;, if
e vjisascalar and e; a scalar equation, or if
e wvjisanarray and e; can be expressed as
0 = s v; + w, where s is a scalar expression and w

is a vector expression and neither s nor w are a
function of v;.

Proof: (a) A scalar variable/equation is already expanded
and therefore the scalar variable can be assigned. (b) If e;
is expressed as 0 = s - v; + w, the k-th element of v; can
be assigned to the k-th element of ¢;. m

The (new) structural assignable property is defined with
vector G,, a companion vector of G, such that G,; ; =
true, if variable VG, is structurally assignable with
respect to equation e; and otherwise G, ; ; = false. Note,
every vector G, ; must have at least one true value, since
otherwise no variable can be assigned for equation e;.

The underlying DAE (Differential Algebraic
Equations) of a model is defined as:
e(v(t),t) (1)

where t is time, the independent variable.

The central goal in this section is to provide an
algorithm, so that by differentiating equations and
variables, appending them to e and v, and updating
A, B,G,G,, a complete assignment of the structurally
assignable highest derivative variables is provided for all
highest derivative equations, that is, every highest
derivative equation is uniquely assigned to a structurally
assignable highest derivative variable:

de;
ei(vj,t); 6_17k is structurally regular for @)
(Bi = —1, Ay = —1,Gqp, = true)

The result of the assignment is reported in vector assign,
such that assign, = i, where i is the index of a highest
derivative equation, that is B;=—1, and v, is a
structurally assignable highest derivative variable, i.e.,
Ay =—1,and Gg;,, = true (,,, is the index of variable
kin Gg;). If all variables and equations are scalarized,
S0 Gg,ip, = true for all the scalarized variables and
equations, then there are several (standard) algorithms to
derive (2) from DAE (1), see for example (Otter, EImqvist
2017, section 3.1).

The notation above is clarified with the cascaded first
order model in vector notation from section 2, where the
equation u =1 is additionally added:

Table 1: Notation for vectorized CascadedFirstOrder model
(T means true, F means False).
€o u=1
e; tau*der(x) = cat(1, {u}, x[1:N-1]) - x
B [-1,-1] // no equation appears differentiated

vy | U
v; | X
v, der(x)

A [-1,2,-1] /I the derivative of x is der(x)

Gy, | [0] Il ey is a function of u

G, [0,1,2] /I e, is a function of u, x, der(x)
Gao | [T] Il eq is structurally assignable for u
Gg1 | [F, F, T]// eq is struct. assignable for der(x)

Using the algorithm given in Appendix A.1, a complete
assignment (2) for the problem formulation in Table 1 is
derived, yielding the following result:

assign = [0, -1, 1] // v, assigned to ey, v, t0 e,

This assignment holds for any valid dimension N (for
N=1, the model is not valid due to x[1:N-1]). With the
algorithms sketched in Appendix A.4, the following
sorted and solved assignment statements can be derived:

u:=1
der(x) := (cat(1, {u}, x[1:N-1]) — x)/tau
and corresponding code generated. The translation time is

independent of dimension N and N can be changed after
translation!

DOI
10.3384/ecp218189

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

191

Resizable Arrays in Object-Oriented Modeling

3.3 Differentiation of Equations

In order to derive (2) from DAE (1), equations might need
to be differentiated. For scalarized variables and equations
several (standard) algorithms are available, see for
example (Otter, Elmqvist 2017, section 3.1). These
algorithms need to be extended to take the new
structurally assignable property G, into account. In
Appendix A.1, it is shown how to extend the algorithm of
Pantelides (1988) in this respect.

Consider the following simple yet non-trivial
example:

Model 1: Model that needs to be differentiated.
Model ModelThatNeedsToBeDifferentiated
Real n[3]; L, e[3]; r[3];
Real s(start=1, fixed=true);
equation
L = sqrt(n*n);
e=2*n/L;
r =e*s;
e*der(r) = der(s) - s;
n={1, 2, sin(time)};
end ModelThatNeedsToBeDifferentiated;

This model has the following structurally assignable
properties:

equations structurally assignable
L = sqgrt(n*n); L

e =2*n/L; en

r=e*s; rs

e*der(r) = der(s) - s; | der(s)
n={1,2,sintime)}; |[n

With the enhanced Pantelides algorithm of Appendix A.1
the following complete assignment of differentiated
equations can be derived:

assigned | highest derivative equations

der(L) der(L) = 0.5*(n*n)*-0.5*(der(n)*n + n* der(n))
der(e) der(e) = (2* der(n)*L - 2*n* der(L))/L"2

der(r) der(r) = der(e)*s + e* der(s)

der(s) e*der(r) = der(s) - s

der(n) n ={0,0, cos(time)}

In section 4, several application examples are given that
demonstrate the usefulness of the new approach.

3.4 Improved Error Diagnostics

If a Modelica model is erroneous, in many cases tools
provide error messages that make it difficult to figure out
the reason for the problem. For example, Modelica tools
could provide an error message of the following kind
which is quite useless: The problem is structurally
singular. It has 2046 scalar unknowns and 2045 scalar
equations. The error messages have improved over time,
but they are often still not helpful enough. In Appendix
A.3, a new, simple algorithm is sketched to significantly
improve error diagnostics. Take for example the
following model which contains several errors:

Model 2. Model having several errors.

model SeveralErrors
Real v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11;

equation
der(vl) = -v1,;
der(v2) = -v3;
v3=-1;
v3=3+V2;

der(v4) = -v4 + v1,
der(vb) = -v5 - v4;
vb=2;

der(v6) = -v6 + v7,

der(v7) = -v8 + v9;

0=v7+Vv8 +V9,
end SeveralErrors;

Modiator provides the following error message.

Translation of BenchmarksForErrorDiagnostics.SeveralErrors failed. ¥

The number of equations (10) and the number of unknowns (9) must be the
same.
(Color coding: assigned, not assignable)

An equation is missing to compute variable v9.
This variable appears in the following equations:
der(v7) = -v8 + v9

0=v7+v8+v9

There are 2 equation sets that are structurally wrong.

The smallest set contains the following equation

v3=3+v2

which represents one equation too many together with the other equations in the
same set:

der(v2) = -v3

v3=-1 Filter logs

Figure 1. Modiator error message for Model 2.

The first message states, that one equation is missing to
compute variable v9 and the equations are listed in which
this variable appears. All of these equations are already
assigned, so it is impossible to assign for v9. Most likely,
just an equation for v9 is missing and should be added.
Modiator lists these types of error messages first, because
little output is expected, since a variable typically only
appears in a few equations.

The second message states that two equation sets are
wrong. Since many equations might be involved, more
information is only given for the set with the smallest
number of equations. For this set, first the equation is
listed that makes the following set of equations
overdetermined. This equation cannot get an assignment
because there is one equation too many in this set.
Afterwards, all the other (already assigned) equations are
listed together with their assignment.

Note, the output of the error messages is not unique
and a different initial ordering of the equations can display
a different message (e.g. instead of v9, variable v8 could
be listed). However, the important point is that the error
message either points to one problematic variable or to
one problematic equation, to help the user identifying the
issue.

192

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218189

Session: New Translation Methods and Tools in Track for General Modelica

4 Application Examples

4.1 Heat Exchanger

The ScalableTestSuite and LargeTestSuite® of (Casella,
2015) contain cocurrent heat exchanger models with
different numbers of segments from 10 to 81920. The
compilation time in Modiator is essentially independent
of n: about 11 milliseconds. The simulation results for
n=10 are shown in Figure 1, and n can be changed after
compilation.

Result Plot

Vvariables of ScalableTestsuite.Thermal.HeatExchanger.ScaledExperiments.CocurrentHeatExchangerEquations_N_10

15 20

Figure 2. Simulation results for the cocurrent heat exchanger
model with 10 segments from the ScalableTestSuite.

A small modification of the model was needed. The
equations:

TA[1] = if time < 8 then 300 else 301;
TB[1] = 310;
foriin 2:N loop
TA[i] = TAtilde[i - 1];
TB[i] = TBtilde[i - 1];
end for;

were replaced by:

TA = cat(1, {if time < 8 then 300 else 301}, TAtilde)
TB = cat(1, {310}, TBtilde)

in order to comply with Restriction 1.

4.2 Shock Waves

Capturing shock waves typically needs a large number of
grid points, i.e. benefits substantially by using the
described array preserving technique. Consider the water
hammer model, Model 3, using only array equations. The
valve at the end of the pipe closes at time=0.01 inducing
a shock wave. The number of grid points n can be changed
after compilation.

Model 3: Modelica Water Hammer model capturing shock
waves from Clément Coic.

model WaterHammer
parameter Integer n=10;
parameter Real L=100 "Length of the pipe (m)";
parameter Real A=3.1415*D"2/4 "Cross-sect. area of pipe (m”2)";
parameter Real rho=1000 "Density of water (kg/m”3)";
parameter Real B=21e8 "Bulk modulus of water (Pa)";
final parameter Real c=sqrt(B/rho) "Speed of sound in water (m/s)";
parameter Real tClose=0.01 "Time at which the valve closes (s)";
parameter Real Q0=0.0002 "Initial flow rate (m"3/s)";

6 https://github.com/casella/ScalableTestSuite

final parameter Real dx=L / n "Length of each pipe segment (m)";
final parameter Real dt=dx / ¢ "Time step for stability (s)";
parameter Real f=0.05 "Darcy-Weisbach friction factor (dim.less)";
parameter Real D=0.05 "Pipe diameter (m)";
Real p[n+1](start=fill(3e5, n+1), fixed=true) "Press. at each node (Pa)";
Real Q[n] "Flow rate in each segment (m"3/s)";
Real V[n](start=fill(0.1, n), fixed=true) "Speed of flow (m/s)";
Real Qend "Flow rate at the end of the pipe (m”3/s)";
Real QPIlusEnds[n+2];
Real valveOpen "1 if valve is open, 0 if closed";
equation
Q=V*A
valveOpen = if time < tClose then 1 else 0;
Qend = QO * valveOpen;
der(V) = -(p[2:n+1] - p[1:n]) / (rho * dX) - (f/ (2 * D)) .* V .* abs(V);
QPIlusEnds = cat(1, {Q[1]}, Q, {Qend});
der(p) = B*(-(QPIusEnds[2:n+2] - QPIusEnds[1:n+1]) / (A * dx));
annotation(experiment(StopTime=0.3));
end WaterHammer;

Figure 3 plots the pressures against time.

Variables of WaterHammerFriction

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 3. Pressures of WaterHammer model.

Such time plots do not convey the wave behavior very
well. It is better to show the pressure profile over the pipe
at different times, Figure 4. Spline interpolation is used
to smooth the curve over the 51 spatial points (n=50). The
pressure wave traverses from right to left. After about 72
milliseconds, the wave starts returning (green curve):

Variables of WaterHammerFriction

450k

400k

350k]

300k

250k

0 20 40 60 80 100

Figure 4. Spatial plot of pressures of WaterHammer model.

4.3 Transmission Line

Consider the transmission line element of Figure 5. Itisa
regular structure of connected electrical components
(Resistor, Inductor, Conductor and Capacitor). Such a
device can be modeled in Modelica using arrays of
components and a for-loop for connections. A voltage
source is connected to the first segment and a resistance
load to the last segment:

DOI
10.3384/ecp218189

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

193

https://github.com/casella/ScalableTestSuite

Resizable Arrays in Object-Oriented Modeling

Rdx Ldx

: Gdx . -I—f'dx

Figure 5. Image of transmission line element from Wikimedia’

Model 4: TransmissionLine
modeled with arrays of components.
model TransmissionLine
import Modelica.Electrical.Analog.Basic;
model TransmissionLineSegment
parameter Real dx = 1 "Length of the segment in meters";
parameter Real resistancePerMeter = 0.01;
parameter Real inductancePerMeter = 0.001;
parameter Real capacitancePerMeter = 1e-9;
parameter Real conductancePerMeter = 1e-6;

Modelica.Electrical.Analog.Interfaces.Pin p;
Modelica.Electrical. Analog.Interfaces.Pin n;

Basic.Resistor r(R=resistancePerMeter*dx);
Basic.Inductor I(L=inductancePerMeter*dx);
Basic.Capacitor ¢(C=capacitancePerMeter*dx);
Basic.Conductor g(G=conductancePerMeter*dx);
Basic.Ground ground;

equation
connect(p, r.p);
connect(l.n, g.p);
connect(g.p, ¢.p);
connect(c.p, n);
connect(r.n, l.p);
connect(g.n, c.n);
connect(c.n, ground.p);

end TransmissionLineSegment;

parameter Integer N = 10 "Number of segments";
parameter Real length = 1000 "Length of in meters";

TransmissionLineSegment segments[N](dx=fill(length/N, N));

Basic.Ground ground;

Basic.Resistor load(R=100);

Modelica.Electrical. Analog.Sources.ConstantVoltage
source(V=10);

equation

/I Connect the segments in series

foriin 1:N-1 loop
connect(segmentsi].n, segments[i+1].p);

end for;

/I Connect the first segment to the source
connect(source.p, segments[1].p);
connect(source.n, ground.p);

/I Connect the last segment to the load
connect(segments[N].n, load.p);
connect(load.n, ground.p);

end TransmissionLine;

7

https://commons.wikimedia.org/wiki/File: Transmission lin
e_element.svg

In order to avoid recompilation of this model when N is
changed, the connect statements are manually expanded.
Since segments[N].n is connected to a capacitor having a
state, the voltages are copied to the right (n to p) with the
first element coming from source.p via a node nSource
(since source.p needs to be connected, otherwise source.p.i
would be zero). The currents are copied from p to n with
the last current coming from load.p.i via the node nLoad.

segments.p.v = cat(1, {nSource.v}, segments.n.v[1:N-1]);
segments.n.i = -cat(1, segments.p.i[2:10], {nLoad.i});

nSource.i = segments.p.i[1];
nLoad.v = segments.n.v[N];

connect(source.p, nSource);
connect(source.n, ground.p);

connect(load.p, nLoad);
connect(load.n, ground.p);

The compilation time is about 50 milliseconds
independent of n. The resulting voltages over the
capacitors are shown in Figure 6.

‘| e\ Anoo
BRVES

AN\
MRS
f WA\

Figure 6. Capacitor voltages.

It should be noted that enabling changes to the
discretization after compilation relied on certain specific
properties of the model. The capacitor to the right of the
TransmissionLineSegment enabled simultaneous copying
of all voltages to the right in one array equation.
Correspondingly due to the inductor to the left, all
currents could be copied simultaneously in one array
equation to the left.

4.4 Adaptive Grid

An important advantage of not recompiling when array
dimensions change is that a model can refine itself, as
shown in the example of this section.

An insulated rod model is shown below and a plot of
a simulation in Figure 7. It changes the number of
segments at time=2000 and time=4000. The changes
could also be triggered by detecting some transient
behavior.

194

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218189

https://commons.wikimedia.org/wiki/File:Transmission_line_element.svg
https://commons.wikimedia.org/wiki/File:Transmission_line_element.svg

Session: New Translation Methods and Tools in Track for General Modelica

Model 5: Insulated rod model with adaptive grid.

model InsulatedRod_gradient "Insulated rod with gradient"
import SI = Modelica.Units.Sl;
parameter Sl.Length L=1 "lenght of rod";
parameter SI.Area A=0.0004 "area of rod";
parameter Sl.Density rho=7500 "density of rod material";
parameter SI.ThermalConductivity lambda=74
"thermal conductivity of material";
parameter Sl.SpecificHeatCapacity c=450
"specifc heat capacity";

parameter SI. Temperature T0=293 "initial temperature";
parameter Integer nT(min=2)=4 "number of inner nodes";
Sl.Temperature T[nT](start={300, 297.5, 295, 292.5},

each fixed=true) "temperatures at inner nodes";
Sl.HeatFlowRate Q_flow[nT+1];
Real dx;
Real k1;
Real k2;
Real k3;
Real port_a_Q_flow;
Real port_b_Q_flow;
Sl.Temperature port_a_T;
Sl.Temperature port_b_T;

equation

dx = L/nT;
k1 = lambda*A/dx;
k2 = rho*c*A*dx;
k3 =2*k1;

/I Connection equations
port_a T = if time<2000 then 300 else 320;
port_b_Q_flow =0;

/I Acausal part (assignment depends on connection)
port_a_Q_flow = k3*(port_a_T - T[1]);
port_ b Q flow = k3*(T[nT] - port_b_T);

/I Causal part (assignment does not depend on connection)
Q_flow = cat(1, {port_a_Q_flow}, k1*(T[1:nT-1] - T[2:nT]),
{port_b_Q_flow});
der(T) = (Q_flow[1:nT] - Q_flow[2:nT+1])/K2;
when time > 2000 then
ast.setParameter("nT", 8);
ast.setStart("T", interpolate(8, T));
end when;
when time > 4000 then
ast.setParameter("nT", 6);
ast.setStart("T", interpolate(6, T));
end when;
annotation(experiment(StopTime=5000));
end InsulatedRod_gradient;

A new function ast.setParameter is used to change the grid
resolution. Since the state vector changes, new start values
for the states are given using astsetStart. A function
interpolate is interpolating the temperatures from 4 points
to 8 and back to 6. This function considers how the grid
points are distributed along the staggered grid. This
explains why the curves have discontinuities since T[i]
refers to different positions along the rod when nT
changes.

Variables of InsulatedRod_gradient

™

e I

Figure 7. Simulation results of the temperature nodes along an
insulated rod. At time=2000 and time=4000 the number of
segments is changing from 4 to 8 to 6.

5 Reformulation of Array Equations

In this section, valid Modelica models are presented that
are rejected by the algorithm of Appendix A.l. It is
shown how to reformulate the equations in order that code
can be generated.

5.1 Linear Equation Systems

Consider the following valid Modelica model that
contains a linear system of equations

Model 6: Model with a linear system of equations.

model ModelWithLinearSystemOfEquations

parameter Real n[2] = {1,2};

parameter Real A[2,2]=[1,2;3,4];

Real y1[2];

Real y2[2];
equation

yl = n*time;

A*y2 =yl
end ModelWithLinearSystemOfEquations;

Modiator prints the following error message:

Translation of LinearSystemOfEquations failed.

The model is either wrong because there is no unique mathematical solution, or
the model must be rewritten to allow processing without expanding arrays.
(Color coding: assigned variable, not assignable variable)

An equation is missing to compute variable y2.
This variable appears in the following equations: [|
Ay2 =yl Filter logs

The listed equation must be reformulated, since (a) an
equation is missing to compute variable y2, (b) variable
y2 appears only in this equation and no variable is
assigned to this equation. Note, that y2 is not structurally
assignable according to Theorem 1. The remedy is to
explicitly solve the linear equation system in the model:
equation
yl = n*time;
y2 = Modelica.Math.Matrices.solve(A,y1);

5.2 Models That Must Be Scalarized

There are various kinds of Modelica models that can only
be processed if array variables and equations are
scalarized in the generated code. A simple example is
shown in the following model:

DOI
10.3384/ecp218189

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

195

Resizable Arrays in Object-Oriented Modeling

Model 7: Model where array variables and equations
need to be scalarized.
model ModelThatRequiresScalarization
parameter Real n[:]={1,2,3};
Real s(start=1, fixed=true);
Real r[3];
equation
I =n*s;
der(r)*n = -s;
end ModelThatRequiresScalarization;

Modiator prints the following error message:

Translation of ModelThatRequiresScalarization failed. v

Equation differentiated 10 times which is too much (most likely processing
would be successful if arrays would be expanded, which is not done):
der(r)’n = -s

So, the error message states that the listed equation is
differentiated too often and that the likely reason is that
array variables in this equation must be scalarized, which
is not done in Modiator. If the array variables and
equations are scalarized, the following assignment is
possible:

assigned | highest derivative equations

der(s) der(r[1]) = n[1]*der(s)

der(r[2]) |der(r[2]) = n[2]*der(s)

der(r[3]) |der(r[3]) = n[3]*der(s)

der(r[1]) | der(r[A]D*n[1]+der(r[2])*n[2]+der(r[3])*n[3]=-5

However, it is not possible to convert the scalarized
variables and equations back into array variables and
equations. One remedy is to split variable r1 and the first
equation in two pieces:

Model 8: Reformulation of Model 7 in order that array
variables and equations can be kept
without expansion in the generated code.

model ChangedModelThatRequiredScalarization
parameter Real n1 = 1;
parameter Real n2[:] = {2,3};
Real s(start=1, fixed=true);
Real r1;
Real r2[size(n2,1)];
equation
rl =nl*s;
r2 = n2*s;
der(rl)*nl + der(r2)*n2 = -s;
end ChangedModelThatRequiredScalarization;

An assignment is now possible without expanding array
variables and equations:

assigned | highest derivative equations
der(s) der(rl) = n1*der(s)

der(r2) der(r2) = n2*der(s)

der(rl) der(rl)*nl+der(r2)*n2 = -s

8

https://doc.modelica.org/Modelica%204.0.0/Resources/help
Dymola/Modelica Mechanics MultiBody.html

5.3 Mechanical Systems

In the following simple model, a mass is sliding along a
given direction in 3D space:

Model 9: 3D sliding mass model that requires scalarization.

model SlidingMass3DrequiringScalarization
parameter Real m=1 "Mass of body";
parameter Real n[3] = {1,0,1}/sqrt(2) "Sliding direction™;
parameter Real g[3] = {0,0,-9.81} "Gravity acceleration™;
Real r[3] "Position";
Real v[3] "Velocity";
Real f[3] "Constraint force of prismatic joint";
Real s "Generalized coordinate of prismatic joint";
equation
r =n*s;
v = der(r);
m*(der(v)-g) = f;
0 =n*f;
end SlidingMass3DrequiringScalarization;

Modiator prints the following error message:

Translation of SlidingMass3DthatRequiresScalarization failed. ~
The model cannot be processed without exanding arrays because the following
equation with arrays does not have at least one unknown variable that appears
linearly in the form scalar*variableSymbol:
0=n
The reason is that the scalar equation 0 = n*f contains only
array variables and therefore none of these variables is
structurally assignable.

In (EImgvist and Otter 2017, section 3), it is shown
that array variables and equations of mechanical systems
must be at least internally expanded in order that
processing is possible. After symbolic processing, it is
usually possible to recover the non-expanded forms. Since
the algorithm in Appendix A.1 does not expand array
variables and equations, existing 3D mechanical models,
such as those from the Modelica.Mechanics.MultiBody?
library, cannot be processed by Modiator. For tree-
structured mechanical systems it is easy to fix this issue in
the following way:

A tree-structured mechanical system with g the
vector of generalized minimal coordinates (= generalized
coordinates in the joints) and u the generalized forces (=
generalized forces in the joints) is described by the
following equation:

M(@g+h(qgg=u; M=M" 20 ()

In object-oriented modeling, where bodies, joints and
other objects can be connected together in a nearly
arbitrary fashion, it is easy to define a system where the
symmetric mass matrix M is positive semi-definite (that
is, it is singular) instead of positive definite as postulated
by mechanical principles. Examples:
e A non-zero mass and a zero inertia-matrix is defined
for a body, and the connection structure allows
rotations of the body.

196

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218189

https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/Modelica_Mechanics_MultiBody.html
https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/Modelica_Mechanics_MultiBody.html

Session: New Translation Methods and Tools in Track for General Modelica

e A chain of mechanical objects ends with a joint and
not with a body.

e More as 3 revolute joints are connected directly
together, without having a body between the joints.

Let's subtract a small term ¢,,q from the generalized

forces u, where the scalar ¢, = 0:

M(q)q + h(q,q) = u—eng (4)

or
(emI + M(@))i + h(q,9) =u (5)

where I is the unit-matrix. The new mass matrix is
positive definite (that is, regular) if €,, > 0. This follows
from its positive quadratic form:

xT(epd + M)x = g, xTx + xTMx > 0,if |x] > 0 (6)

since &,xTx>0 and x"Mx >0 . Therefore, the
mentioned issues can no longer occur if £, > 0 and a
mechanical model in Modelica becomes more reliable
against user errors. Note, the original multibody system is
unchanged, if &, = 0. Processing with unexpanded
arrays becomes possible by adding a corresponding term
to the joints of a Modelica model, as shown exemplarily
by the following modified version of the sliding mass
model:

Model 10: Changed Model 9 in order that assignment is
possible without expanding arrays.

model SlidingMass3D

parameter Real eps_m(min=0) = 0 "Small mass in joint™;
equation

r=n%*s;

v = der(r);

f=m*(der(v)-g);

sd = der(s);

0 = n*f + eps_m*der(sd); // der(sd) structurally assignable
end SlidingMass3D;

The last (scalar) equation is now structurally assignable
for the scalar der(sd). With the algorithm of Appendix A.1
the following assignment can be derived:

assigned | highest derivative equations
der(der(r)) |der(der(r)) = n* der(der(s))
der(v) der(v) = der(der(r))

f f=m*(der(v)-g)
der(der(s)) |der(sd) = der(der(s))
der(sd) 0 = n*f + eps_m*der(sd)

When sorting these highest derivative equations, an
algebraic loop is identified that corresponds to (5). The
equations can be, for example, transformed in the
following linear equation in one unknown:

input: der(sd) // tearing variable
output: residue

der(der(s)) := der(sd)

der(der(r)) := n*der(der(s))
der(v) = der(der(r))

9 https://itead.org/project/openscaling.html

f:= m*(der(v)-g)
residue ;= n*f + eps_m*der(sd)

Inserting all terms in the last equation and setting
residue=0, results in one linear equation with der(sd) as
unknown:

(eps_m + m*(n*n))*der(sd) = m*(n*qg)

Note, if arrays are no longer expanded for mechanical
systems, the number of modes of analytically described
elastic bodies, such as beams or plates, can be changed
after translation!

6 Conclusions

The Modelica Web-App Modiator (Elmqvist and Otter,
2025) does not expand arrays of equations, for loops or
arrays of components in order to speed up translation and
avoid recompilation when array changes are made. The
needed restrictions have been described, translation
techniques have been outlined, and several presented
model examples show the benefits of this new method. As
a result, the Modiator Web-App has compilation times
independent of array sizes (O(1) instead of O(n) or worse)
and arrays can be resized after compilation.

Special emphasis has been put on enabling index
reduction without scalarization for models described by
array equations. The developed extensions of the
Pantelides algorithm are utilized in Modiator and allow
index reduction directly on array equations without
expanding arrays (also not internally). The algorithm is
described and the proofs of its properties are given. The
needed changes to the symbolic processing of a Modelica
tool are modest and reasonable diagnostics can be given
if index reduction and/or assignment fails by pointing to
the equations and arrays that need to be changed, in order
that processing is possible without expanding array
equations and arrays.

The enhanced algorithms presented in the Appendix,
together with tests for some of the models in this paper,
are also provided in Javascript format in file assign-
highest-derivatives-test.ntml in the accompanying zip-
file. Dragging this file into a web browser will execute the
tests and display the test results in the web browser
window.

Acknowledgements

The authors want to thank Clément Coic for providing the
water hammer model in Section 4.2.

This work was partially funded for the first author by
the German Federal Ministry of Education and Research
(BMBF, grant number 011S23062C) within the European
ITEA4 research project OpenSCALING®.

DOI
10.3384/ecp218189

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

197

https://itea4.org/project/openscaling.html

Resizable Arrays in Object-Oriented Modeling

References

Abdelhak, Karim, Francesco Casella and Bernhard Bachmann
(2023). “Pseudo Array Causalization”. In: Proceedings of the
15" International Modelica Conference,

DOI: 10.3384/ecp204177.

Abdelhak, Karim, and Bernhard Bachmann (2025). “Constant
Time Causalization using Resizeable Arrays”. In:
Proceedings of the 16™ International Modelica Conference,
Lucerne, Switzerland.

Casella, Francesco (2015). “Simulation of Large-Scale Models
in Modelica: State of the Art and Future Perspectives”. In:
Proceedings of the 11" International Modelica Conference,
DOI: 10.3384/ecp15118459.

Elmaqvist, Hilding and Martin Otter (2025): “Modiator, a Web
App for Modelica Simulation®. In: Proceedings of the 16"
International Modelica & FMI Conference, Lucerne.

Fritzson, Peter et al. (2020). “The OpenModelica Integrated
Environment for Modeling, Simulation, and Model-Based
Development”. In: Modeling, Identification and Control.
41(4), pp. 241-285. DOI 10.4173/mic.2020.4.1

Marzorati, Denise, Joaquin Fernandez and Ernesto Kofmann
(2024): “Efficient Matching in Large DAE Models”. In:
ACM Transactions on Mathematical Software, Volume 50,
Issue 4, Article No. 18, pp. 1-25. DOI: 10.1145/3674831

Mattsson, Sven-Erik and Gustaf Soderlind (1993). “Index
Reduction in Differential-Algebraic Equations using Dummy
Derivatives”. In: SIAM Journal of Scientific Computing.
14(3), pp. 677-692.

Modelica Association (2023). Modelica — A Unified Object-
Oriented Language for Systems Modeling, Language
Specification, Version 3.6. URL.:
https://specification.modelica.org/maint/3.6/MLS.html.

Otter Martin and Hilding Elmgqvist (2017): “Transformation of
Differential Algebraic Array Equations to Index One Form”.

In: Proceedings of the 12" International Modelica
Conference, Prag. DOI: 10.3384/ecp17132565
Pantelides, Constantinos C. (1988). “The Consistent

Initialization of Differential-Algebraic Systems”. In: SIAM
Journal on Scientific and Statistical Computing 9.2, pp. 213—
231. DOI: 10.1137/0909014

Pop, Adrian et al. (2019). “A New OpenModelica Compiler
High Performance Frontend”. In: Proceedings of the 131"
International Modelica Conference, pp. 689-698.
DOI: 10.3384/ecp19157689

Tarjan, Robert (1972): "Depth-First Search and Linear Graph
Algorithms". In: SIAM Journal on Computing 1(2), pp. 146-
160. DOI: 10.1137/0201010

Zimmermann, Pablo, Joaquin Fernandez, and Ernesto Kofman
(2020). “Set-Based Graph Methods for Fast Equation Sorting
in Large DAE Systems”. In: Proceedings of the 9th
International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. EOOLT’2019. Berlin, Ger-
many, Association for Computing Machinery.
DOI: 10.1145/3365984.3365991

Appendix A

In this appendix, the enhancements of standard algorithms
are sketched to find a complete assignment (2) for a DAE
(1) without expanding array variables and equations.

A.1 Assign Highest Derivatives

Starting point is the algorithm of Pantelides (1988). The
modified algorithm is provided in Javascript format
(which is nearly the same as C/C++ format here) in the
following listing. The yellow parts are deviations from
(Pantelides, 1988) and are discussed below:

Listing 1: Function assignHighestDerivatives in Javascript
format to determine highest derivative equations that have a
complete assignment with respect to structurally assignable

highest derivative variables. Yellow parts are deviations from
(Pantelides, 1988).

al |function assignEquation(i,
G,Ga,assign,vColor,eColor,vinspect){
const Gi = G[i]
const Gai = Ga[i]
eColor[i] = true
for (let j=0; j<Gi.length; j++) {
const v = Gi[j]
if(vinspect[v] === -1 && assign[v] === -1 && Gai[j]){
assign[v] = i;
return true}}
for (let j=0; j<Gi.length; j++) {
const v = Gi[j]
if (vinspect[v] === -1 && assign[v] > -1 && IvColor[v]
&& Gailj]) {
vColor[v] = true
if (assignEquation(assign[v],
G,Ga,assign,vColor,eColor,vinspect)) {
assign[v] = i;
return true}}
}

return false

b

a2 |export function assignHighestDerivatives(G,Ga,A) {
let nNA = A.length

let nB = G.length

const assign = Array(nA).fill(-1)

const B = Array(nB).fill(-1)

const eColor = Array(nB)

const vColor = Array(nA)

a3 | function colorEquation(i) {
eColor[i] =true
for (const v of G[i]) {
if (A[v] === -1 && assign[v] > -1 && !vColor[v]
&& BJassign[v]] ===-1) {
vColor[v] = true
colorEquation(assign[v])}
} !/ end for

}

a4 | const nB_initial = nB
for (let k = 0; k < nB_initial; k++) {
leti=k
while (true) {
eColor.fill(false)

198

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218189

https://dx.doi.org/10.3384/ecp204177
https://dx.doi.org/10.3384/ecp15118
https://dx.doi.org/10.4173/mic.2020.4.1
https://dx.doi.org/10.1145/3674831
https://specification.modelica.org/maint/3.6/MLS.html
https://doi.org/10.3384/ecp17132565
https://dx.doi.org/10.1137/0909014
https://dx.doi.org/10.3384/ecp19157689
https://doi.org/10.1137/0201010
https://dx.doi.org/10.1145/3365984.3365991

Session: New Translation Methods and Tools in Track for General Modelica

vColor fill(false)
if (assignEquation(i,G,Ga,assign,vColor,eColor,A)) break

a5 for (let j=0; j<nB; j++) {
if (eColor[j] && Galj].some(val=>val===false)){
colorEquation(j)}}}

a6 for (let j=0; j<nB; j++) {
if (eColor[j]) {
nB++; B.push(-1); B[j]=nB-1;
for (const v of G[j]) {
if (Alv]===-1){
nA++; A.push(-1); A[v]=nA-1; assign.push(-1)}}
G.push(Gj.map(m =>A[m]))
Ga.push(Galj])}}
for (letj=0;j<nA;j++) {
if (vColor[j]) assign[A[j]] = B[assign[j]]}
a7 i = BJi]
eColor.length = nB
vColor.length = nA
} // end while
a8 | }//end for
return [assign,B]}

Utility function assignEquation(i,...), see code block (a1), is
basically function AUGMENTPATH of (Pantelides,
1988). The function inspects all variables v of equation i
that are structurally assignable and have vinspect[v] =-1. It
returns true if a v is assigned to equation i and otherwise it
returns false. If false is returned, the following property
holds:

Theorem 2: If assignEquation returns with false, the
equations with eColor[k] = true are minimally structurally
singular with respect to the variables with vColor[k] = true
(these variables are structurally assignable with respect
to the assigned equations).

Proof: Follows from the proof of Lemma 3.3 of
(Pantelides, 1988), with the only difference that a subset
of the variables is inspected (variables that are structurally
assignable and have vinspect[v] = -1, i.e. are highest
derivative variables since A is passed to the function as
vinspect). m

This property means that the colored equations are the
smallest subset that need to be differentiated. This subset
has more equations than variables and therefore
differentiating this subset will introduce more new
equations as it will introduce more new variables.

The core function assignHighestDerivatives, see code
blocks (a2-a9), inspects all equations in sequence. For
every equation, function assignEquation is called with
vinspect = A, that is only highest derivative variables are
inspected, see last statement in code block (a4). If the
function returns true, the next equation is inspected.
Otherwise, a while loop iterates over the function call,
until an assignment is found. If assignEquation returns false,
the colored set of equations needs to be differentiated.

Colored equations that have at least one highest
derivative variable that is not structurally assignable are
inspected by calling the function colorEquation on them, see
code blocks (a5,a3). This function colors additional

equations that need to be differentiated. Assume for
example, that equation j colored by assignEquation has a
highest derivative variable v that is not structurally
assignable with respect to equation j, is already assigned,
is not colored and the equation to which v is assigned is a
highest derivative equation. If equation j is differentiated,
then v is also differentiated, but without differentiating the
highest derivative equation assign[v], because this equation
was not colored by assignEquation. The construction of
code blocks (a5,a3) ensures, that these assigned equations
are also colored and are thus differentiated. Note, this
additional equation coloring appears, for example, in
Model 1 from section 3.3.

In code block (a6), the data structures G,Ga,A,B,assign
are appended with new entries that include the incidences
of the equations and the highest derivative variables that
will appear when the equations are differentiated. This
part is nearly identical to code block (3b-5) of
ALGORITHM 4.1 of (Pantelides, 1988). The essential
difference is that in (3b-5) of (Pantelides, 1988) first all
colored variables are appended to A before G,B are
updated. However, this is not possible here, because a
colored equation j may have a variable v that is not
structurally assignable and that is not assigned. When
differentiating equation j, v is differentiated as well, but
the differentiated v may not yet exist because it was not
colored. For this reason, A is updated when the incidence
of the differentiated equation j is appended to G. The
remaining part of the code is identical to ALGORITHM
4.1 of (Pantelides, 1988). Function assignHighestDerivatives
returns the newly constructed arrays assign,B via the return
statement, and the updated arrays G,Ga,A via the argument
list.

A.2 Assign Extended System

Since assignHighestDerivatives has a while loop, the question
arises whether this loop will terminate for all inspected
equations. In (Pantelides, 1988) an extended system EG =

[GG] is analyzed consisting of G and of the incidence
h

matrix G, of additional equations 0 = h;(v;,v;) for
every variable wv; appearing differentiated. A

. . G .
corresponding matrix EG, = [Gha] defines whether the
,a

elements of EG are structurally assignable or not. Hereby,
all elements of G}, , representing the new equations h; are
true.

Theorem 3: If G, has only true values then the while loop
in function assignHighestDerivatives terminates for all
inspected equations after a finite number of iterations if
and only if the extended system EG is structurally
nonsingular. In such a case, the highest derivative
equations of G have a complete assignment with respect
to the highest derivative variables. If EG is structurally
singular, then the underlying DAE (1) has no solution
since it is impossible to find a set of consistent initial
conditions.

DOI
10.3384/ecp218189

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

199

Resizable Arrays in Object-Oriented Modeling

Proof: This is Theorem 4.2 of (Pantelides, 1988)
formulated with the notation of this paper. m

Unfortunately, this strong property does no longer hold, if
one or more elements of G, are false, that is, not all
variables are structurally assignable. This is demonstrated
with the simple example of Model 7 of section 3.3. A
complete assignment of the extended system EG with
respect to all structurally assignable variables is possible:

assigned | equations of extended system
r r=n*s

s der(r)*n=-s

der(r) 0 = h(r, der(r))

Analyzing the equations of Model 7 with function
assignHighestDerivatives results in the following sequence of
assignments: Function assignEquation returns false for r = n*s
because r is not a highest derivative variable and s is not
structurally assignable. Therefore, this equation is
differentiated leading to the new highest derivative
equations:

assigned
der(r)

highest derivative equations
der(r) = n*der(s)
der(N*n=-s

Function assignEquation returns false for der(r)*n = -s because
der(r) is not structurally assignable and s is no highest
derivative variable. Differentiating this equation and
additionally the first equation due to code block (a5),
results in the following new highest derivative equations:

assigned
der(der(r))

highest derivative equations
der(der(r)) = n*der(der(s))
der(der(r))*n = - der(s)

A similar situation as in the previous step occurs: The
second equation needs to be differentiated, because
der(der(r)) is not structurally assignable and der(s) is no
highest derivative variables. Also, the first equation is
differentiated due to code block (a5). As a result, an
infinite number of differentiations occurs.

If instead, variables r and n are expanded, the highest
derivative equations are identified and assigned as shown
in section 3.3. As can be seen, it is not possible for this
model to have an assignment of structurally assignable
variables without expanding array variables and array
equations. m

The consequence is that the number of iterations of the
while loop in function assignHighestDerivatives must be
explicitly limited and when this limit is reached, the
function either returns with an error or the model is
processed again with all arrays expanded. Assume that the
following assumption holds (which is checked before
function assignHighestDerivatives is called):

Assumption 1. The number of equations e; of the
underlying DAE (1) is identical to the number of highest
derivative variables, so variables v; that have 4; = —1.

then the following theorem states the property of the
return result of function assignHighestDerivative:

Theorem 4: The highest derivative equations of G have a
complete assignment with respect to their structurally
assignable highest derivative variables, if Assumption 1
holds and the while-loop in function assignHighestDerivatives
terminates after a finite number of iterations for all
inspected equations.

Proof: If the function returns successfully, then all
underlying equations have been inspected once, due to the
for-loop of code block (a4). Since every equation gets an
assignment for a structurally assignable highest derivative
variable that is not yet assigned, due to code block (a1), all
equations are assigned for highest derivative variables
that are structurally assignable. This assignment does not
influence already assigned equations, because otherwise
these equations would have been colored and then
differentiated together with the not-yet assigned equation
and their assigned variables would have been
differentiated correspondingly. Due to Assumption 1, all
highest derivative variables or derivatives of them are
assigned because the same number of equations get an
assignment. m

If the while-loop does not terminate, then either the DAE
(1) has no unique solution, or a complete assignment with
respect to expanded arrays is possible.

In order that meaningful diagnostics can be given, the
following theorem is utilized:

Theorem 5: If the extended System EG is structurally
singular with respect to the structurally assignable
variables, the while-loop does not terminate for at least
one of the inspected equations.

Proof: Follows from the proof of Theorem 4.2 in
(Pantelides, 1988), Part B until “the algorithm will keep
differentiating until infinitum". m

Note, if the extended System EG is structurally singular
with respect to the structurally assignable variables, it is
still possible that the DAE is solvable if the array variables
and array equations are expanded. This can be easily seen
from Model 6 in section 5.1. The extended System EG

assigned | equations of extended system
yl yl = n*time
- A*y2 =yl

is structurally singular with respect to the structurally
assignable variables because the first equation can be
assigned to y1 and the second equation can be also
assigned to y1 but not to y2, because y2 is not structurally
assignable according to Theorem 1. Therefore, the while
loop does not terminate, but this can be detected
beforehand. If arrays are expanded, the elements of the
second equation can be assigned to the elements of y2 and
the extended system is structurally regular.m

200

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218189

Session: New Translation Methods and Tools in Track for General Modelica

Listing 2 shows the code for function assignExtendedSystem
that builds and checks the extended system for structurally
assignable variables.

Listing 2: Function assignExtendedSystem in Javascript format
to determine a complete assignment of the extended system
with respect to the structurally assignable variables. Yellow

parts are deviations from (Pantelides, 1988).

bl |export function assignExtendedSystem(G,Ga,A) {
// Build extended system
const EG =[...G]
const EGa =[...Ga]
const nA = A.length
for (let i=0; i<nA; i++) {
const Ai = A[i];
if (A[i]>-1){
EG.push([i, A[i]]); // h-equation
EGa.push([true, true])}
}

b2 | // Assignment of extended system
const assign = Array(nA).fill(-1)
const vColor = Array(nA)
const eColor = Array(EG.length)
const vinspect = Array(nA).fill(-1) // inspect all variab.
const unassignedEquations = []
for (let i=0; i<nA,; i++){
eColor.fill(false)
vColor fill(false)
if (lassignEquation(i,EG,EGa,
assign,vColor,eColor,vinspect) && i<G.length){
unassignedEquations.push(i)}

}

b3 | // Collect unassigned variables
const unassignedVariables =[]
for (let j=0; j<assign.length; j++) {
if (assign[j] === -1) unassignedVariables.push(j)

return [unassignedEquations, unassignedVariables]

}

In code block (b1) the extended system for G and Ga is
constructed. In code block (b2), function assignEquation is
called for all equations of the extended system and for all
of its variables (due to vinspect = Array(nA).fill(-1)). If
assignEquation returns false, and the inspected equation is
no h-equation, it is pushed on stack unassignedEquations.
(beause h-equations should not be reported to the user and
if a h-equation is not assigned, there is also an unassigned
variable). In code block (b3) the unassigned variables are
collected in stack unassignedVariables. Both stacks are
returned. If one of them is not empty, the complete
assignment of the extended system failed and the
unassigned equations and unassigned Vvariables are
returned and reported to the user.

The practical application of the theorems requires
additionally the following small extension:

Function assignHighestDerivatives(G, Ga, A, maxDer =-1)
gets an additional optional argument that defines the
maximum number of allowed differentiations for an
equation (if maxDer =-1, the number of differentiations
is not limited) . If this limit is reached, the function

terminates. It returns [assign,B,eqDiffTooMuch]. If the
maximum number of differentiations is reached,
eqDiffTooMuch is the equation of the underlying DAE
that was differentiated too often. This equation can be
reported in the error message.

A.3 Improved Error Diagnostics

The information for the error messages presented in
section 3.4, is deduced from assignExtendedSystem(...) of
Listing 2 by extending this function a bit:

e The function already collects all unassigned
variables. For every unassigned variable, all
equations are inspected where this variable appears
and then these equations are printed together with
their assignments.

e The function also collects all unassigned equations
which is not very useful. Instead, when no assignment
can be found, all colored equations are collected
together because they constitute the set of equations
that, together with the unassigned equation, creates an
overdetermined system. This combined set is stored.
If more overdetermined sets of equations appear, only
the one with the smallest number of equations is kept.

A.4 Further Symbolic Processing

A tool could call the presented functions in the following
order:

1. Call assignExtendedSystem. If the function returns with
unassigned equations and/or unassigned variables
either print an error message showing the unassigned
equations/variables (“Either DAE is not solvable or
processing not possible without expanding arrays,
which is not supported") or expand all arrays and
equations and perform the standard processing of the
tool for expanded equations/arrays.

2. If assignExtendedSystem returns successfully, call
assignHighestDerivatives. If the function terminates
because the maximum number of differentiations
reached, either print an error message showing the
equation that was differentiated too often ("Equation
eqDiffTooMuch differentiated until the limit of
maxDer differentiations reached. Either DAE is not
solvable or processing is not possible without
expanding arrays, which is not supported.") or
expand all arrays and equations and perform the
standard processing of the tool for expanded
equations/arrays.

3. If assignHighestDerivatives returns successfully, a full
assignment of the highest derivative equations with
respect to the structurally assignable highest
derivative variables was found and standard
processing continues with only symbol information
(so with unexpanded equations/arrays).

After the complete assignment of the highest derivative
equations with respect to the structurally assignable
highest derivative variables is determined with function

DOI
10.3384/ecp218189

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

201

Resizable Arrays in Object-Oriented Modeling

assignHighestDerivatives the standard approach of object-
oriented modeling can be used for further processing and
code generation by using basically only the symbol
information (without expanding arrays):

1. Analytically differentiating the equations
The equations are analytically differentiated based on
the information provided in G, A, B, assign.

2. Equation sorting
G and assign of the highest derivative variables 4
with A, = —1 define a directed graph where the
nodes are the highest derivative equations together
with the assigned highest derivative variables. The
edges are defined by the rows of the incidence matrix
G that correspond to the highest derivative equations.
With the algorithm of (Tarjan, 1972) the strong
components (algebraic loops) in the directed graph
are determined and the equations are sorted.

3. State selection
From the sorted highest derivative equations, the
constraint equations are determined by the algorithm
of (Mattsson and Sdéderlind, 1993) based on the
highest derivative equation systems determined in
step 2. From this information states are statically
and/or dynamically selected.

4. Code generation
Code is generated. Arrays with small, fixed
dimensions and corresponding array equations with
small, fixed dimensions might be expanded. If arrays
are kept unexpanded, then the generated code must
support array operations where dimension sizes might
be only known at run-time and can be changed after
translation to object code. Typically, Modelica tools
support this already, because code generation for
Modelica functions need a similar infrastructure to
operate on arrays.

202 Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218189

