
Resizable Arrays in Object-Oriented Modeling
Martin Otter1 Hilding Elmqvist2

1DLR, Institute of Vehicle Concepts, Germany, martin.otter@dlr.de
2Mogram AB, Sweden, hilding.elmqvist@mogram.net

Abstract

The Modelica language (Modelica.org) makes it easy to

build large, complex models by allowing the instantiation

of reusable component models. Modelica tools typically

expand arrays of variables, equations and components and

perform symbolic transformations on the scalar elements.

This reduces the efficiency of the translation process and

makes it difficult to change array dimensions after

translation.

This paper describes modest enhancements of

standard algorithms to avoid scalarization. As a result,

arrays can be resized both after translation and during

simulation. The new technique does, however, impose

certain restrictions on the way models are written. It is

also sketched how to provide more meaningful

diagnostics for erroneous models. Several examples

demonstrate the new algorithms using the Web App

Modiator.

Keywords: Modelica, array equations, compilation

1 Introduction
The Modelica language 1 makes it easy to build large,

complex models by allowing the instantiation of reusable

component models. Modelica tools typically expand

arrays of variables, equations and components and

perform symbolic transformations on the scalar elements.

This reduces the efficiency of the translation process

especially for models with fine discretization of partial

differential equations or for handling arrays of parametric

data. In many cases, this scalarization can be omitted,

which will be explored in this paper.

Furthermore, avoiding scalarization of arrays allows

changing array sizes without recompilation. This is

important since it's essential to check the fidelity of the

discretization for partial differential equations to ensure

sufficient accuracy, i.e. to allow quick comparison of

simulation results without recompilation with different

numbers of segments. The technique also enables

changing array dimensions during simulation, i.e., a

model modifies its discretization depending on the

model’s behavior, for example increasing the number of

segments when a transient occurs.

This paper outlines the modest enhancements to

standard algorithms required for this new approach. A tool

1 https://specification.modelica.org/maint/3.6/MLS.html
2 https://openmodelica.org/

can verify whether the model complies with the required

restrictions. If so, the new technique is employed,

otherwise the current scalarization approach is used. The

new approach imposes certain restrictions on models.

These restrictions and how to rewrite the model equations

to fulfill them are described. The alternative is to scalarize

the equations internally, and then try to combine them into

array equations and for-loops after the symbolic

algorithms have been applied. Such an approach is much

more involved.

The new approach and all the examples in this article

have been tested with the Web App Modiator which

supports a subset of Modelica. The current features,

restrictions and future plans of Modiator are discussed in

the companion paper (Elmqvist and Otter 2025).

Previous work on avoiding scalarization includes

the following articles: (Otter and Elmqvist 2017) show

that scalarization of array equations is needed for index

reduction when using the standard algorithms, e.g., for

multibody systems. They scalarize array equations

internally and reconstruct arrays after sorting. (Pop et al.

2019) describe a new high-performance frontend to

OpenModelica2 (Fritzson et al. 2020) to convert arrays of

component models to array equations and to keep arrays

during flattening. (Zimmermann et al. 2020) propose set-

based graph algorithms to avoid unrolling of for-loop

equations of Modelica models. (Abdelhak et al.

2023,2025) map indices of array variables and equations,

as well as iterator values of for-equations to unique scalar

indices, apply standard algorithms for matching and

sorting on these internally scalarized systems and

reconstruct array equations and for-loops afterwards.

They tested this approach with an extension to

OpenModelica. (Marzorali et al. 2024) propose a

matching algorithm for repetitive structures with for-

loops over vectors of unknowns and test the

implementation as part of the ModelicaCC compiler3.

2 Model Restrictions

This section explores the restrictions that are needed to be

imposed on Modelica authoring to avoid scalarization

with the new method and achieve compile times that are

independent of array sizes (O(1) rather than O(n) or

worse).

Restriction 1: The model must be balanced with regards
to non-scalarized variables and equations. The equation

3 https://github.com/CIFASIS/modelicacc

DOI Proceedings of the 16th International Modelica&FMI Conference 189
10.3384/ecp218189 September 8-10, 2025, Lucerne, Switzerland

RRR

mailto:martin.otter@dlr.de
mailto:hilding.elmqvist@mogram.net
https://modelica.org/
https://specification.modelica.org/maint/3.6/MLS.html
https://openmodelica.org/
https://github.com/CIFASIS/modelicacc

number of a for loop is the number of equations in the

loop.

This restriction is illustrated using the CascadedFirstOrder

model from the ScalableTestSuite4 (Casella 2015):

tau*der(x[1]) = u - x[1];

for i in 2:N loop

 tau*der(x[i]) = x[i-1] - x[i];

end for;

Equations for tau and u are provided elsewhere. This

equation set violates Restriction 1 and needs to be

modified since the number of unknowns is one (der(x)) but

there are two equations. It can, for example, be rewritten

as:

for i in 1:N loop

 tau*der(x[i]) = (if i == 1 then u else x[i-1]) - x[i];

end for;

or more compactly using the concatenation operator cat:

tau*der(x) = cat(1, {u}, x[1:N-1]) - x;

The cat function concatenates the array arguments, in this

case along the first dimension. It means that the x vector

is shifted upwards (x[N] omitted) and u is inserted as first

element. Yet another possibility is to use a reduction

expression.

tau*der(x) = {(if i == 1 then u else x[i-1]) - x[i] for i in 1:N}

Restriction 2: All elements of an array must be of the

same kind (algebraic or differentiated).

This means that a model such as a variant of the

CascadedFirstOrder model from above:

x[1] = u;

for i in 2:N loop

 tau*der(x[i]) = x[i-1] - x[i];

end for;

violates Restriction 2 because x[1] is an algebraic variable

and variables x[2:N] are variables appearing differentiated.

Such a model needs to be rewritten in one of the forms

shown above. In similar cases, arrays need to be split in

different pieces so that all elements of an array are either

algebraic or states.

An equivalent model to the CascadedFirstOrder

model can be made with an array of components:

model FiltersInSeries

 model Filter

 input Real u;

 output Real x;

 parameter Real tau = 0.1;

 equation

 tau*der(x) = u-x;

 end Filter;

 parameter Integer N = 10 "Number of filters";

 Filter f[N](each x(start=0, fixed=true),

 u=cat(1, {1}, f[1:N-1].x));

end FiltersInSeries;

4 https://github.com/casella/ScalableTestSuite

If all components in an array of components have the same

causality, all component equations can be sorted together,

i.e. that each equation in an array of components can be

translated to a for loop over that equation (it is not

important in this simple case since there is only one

equation in each component).

The outputs f.x[1:N-1] are shifted to form the inputs f.u

together with the input 1 to the first filter. Handling

acausal connectors is somewhat more complex. See the

Transmission Line example in section 4.3.

In section 5 more restrictions are discussed and there

might be still more. Modiator never performs

scalarization (also not internally) and therefore valid
Modelica models might be rejected. The user should be

able to understand how to rewrite the model equations

from the error messages. The benefit is that generated

code never contains scalarized equations or enrolled for-

loops, translation is faster and error messages are more

compact since the elements of an array are not shown.

3 Assignment without Scalarization

This section gives an overview how to symbolically

process array equations so that arrays can be resized after

compilation - both for translated Modelica models and

Functional Mockup Units (≥ version 3.0)5. The details of

the new algorithms are presented in Appendix A.

3.1 Model Unification

In order to make symbolic processing simpler, the

Modelica model is transformed by a model unification

process similar to what is done in OpenModelica (Pop et

al. 2019):

• For-equations with multiple equations in the

body are converted to potentially nested for-

equations with one equation in the body:
for index-expression, … loop

 equation

end for;

• Non-constant variables of arrays of components

are transformed to array variables with outer

indices according to the component array indices.

• Each equation of an array of components is

transformed to a for-loop over the equation.

3.2 Structurally Assignable Property

Afterwards, standard symbolic algorithms are used that

operate, with some modifications on variable symbols.

The following notation is used:

• All variable symbols 𝑣𝑗 are collected in a variable

vector 𝒗. A symbol 𝑣𝑗 may represent a scalar or an

array of one or more dimensions. The first variable 𝑣0

has index 𝑗 = 0 (as it is common in programming

languages such as C, C++, Javascript).

5 https://fmi-standard.org/docs/3.0.2/

Resizable Arrays in Object-Oriented Modeling

190 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218189

https://github.com/casella/ScalableTestSuite
https://fmi-standard.org/docs/3.0.2/

• All equations 𝑒𝑖 are collected in an equation vector 𝒆.

An equation 𝑒𝑖 may be a scalar or an array equation

of one or more dimensions with potentially a for-loop

around it, as sketched above. The first equation 𝑒0 has

index 𝑖 = 0.

• The relationship between the equations 𝑒𝑖 and the

variables 𝑣𝑗 is defined by a sparse representation of

the incidence matrix that is defined as vector G, where

each entry 𝐺𝑖 is a vector consisting of the indices of

the variable symbols appearing in equation 𝑒𝑖. G can

also be interpreted as a representation of a bi-partite

graph.

• The relationship between variable symbols is defined

by the variable association vector 𝑨:

 𝐴𝑗 = 𝐢𝐟 𝑣̇𝑗 = 𝑣𝑘 𝐭𝐡𝐞𝐧 𝑘 𝐞𝐥𝐬𝐞 − 1.

• The relationship between the equations is defined by

the equation association vector 𝑩:

 𝐵𝑖 = 𝐢𝐟 𝑒̇𝑖 = 𝑒𝑘 𝐭𝐡𝐞𝐧 𝑘 𝐞𝐥𝐬𝐞 − 1.

Additionally, the following new property needs to be

defined for every variable in every equation:

Definition 1: A variable 𝑣𝑗 is called structurally

assignable with respect to an equation 𝑒𝑖, if a complete

assignment is possible for all (scalar) elements of 𝑣𝑗 with

respect to all (scalar) elements of 𝑒𝑖, provided 𝑣𝑗 and 𝑒𝑖

are expanded to scalars and this property holds,

independently of the common dimensions and dimension

sizes of 𝑣𝑗 and 𝑒𝑖.

In general, Definition 2 is difficult to apply. The

following sufficient condition is easier to use:

Theorem 1: A variable 𝑣𝑗 is structurally assignable with

respect to an equation 𝑒𝑖, if

• 𝑣𝑗 is a scalar and 𝑒𝑖 a scalar equation, or if

• 𝑣𝑗 is an array and 𝑒𝑖 can be expressed as

0 = 𝑠 ∙ 𝑣𝑗 + 𝑤, where 𝑠 is a scalar expression and 𝑤

is a vector expression and neither 𝑠 nor 𝑤 are a

function of 𝑣𝑗.

Proof: (a) A scalar variable/equation is already expanded

and therefore the scalar variable can be assigned. (b) If 𝑒𝑖

is expressed as 0 = 𝑠 ∙ 𝑣𝑗 + 𝑤, the k-th element of 𝑣𝑗 can

be assigned to the k-th element of 𝑒𝑖. ∎

The (new) structural assignable property is defined with

vector 𝑮𝑎 , a companion vector of G, such that 𝐺𝑎,𝑖,𝑗 =

true , if variable 𝑣𝐺𝑖,𝑗
 is structurally assignable with

respect to equation 𝑒𝑖 and otherwise 𝐺𝑎,𝑖,𝑗 = false. Note,

every vector 𝐺𝑎,𝑖 must have at least one true value, since

otherwise no variable can be assigned for equation 𝑒𝑖.

The underlying DAE (Differential Algebraic

Equations) of a model is defined as:

𝒆(𝒗(𝑡), 𝑡) (1)

where 𝑡 is time, the independent variable.

The central goal in this section is to provide an

algorithm, so that by differentiating equations and

variables, appending them to 𝒆 and 𝒗 , and updating

𝑨, 𝑩, 𝑮, 𝑮𝒂 , a complete assignment of the structurally

assignable highest derivative variables is provided for all

highest derivative equations, that is, every highest

derivative equation is uniquely assigned to a structurally

assignable highest derivative variable:

𝑒𝑖(𝑣𝑗 , 𝑡);
𝜕𝑒𝑖

𝜕𝑣𝑘
 is structurally regular for

 (𝐵𝑖 = −1, 𝐴𝑘 = −1, 𝐺𝑎,𝑖,𝑣𝑘
= true)

(2)

The result of the assignment is reported in vector assign,

such that 𝑎𝑠𝑠𝑖𝑔𝑛𝑘 = 𝑖, where 𝑖 is the index of a highest

derivative equation, that is 𝐵𝑖 = −1 , and 𝑣𝑘 is a

structurally assignable highest derivative variable, i.e.,

𝐴𝑘 = −1, and 𝐺𝑎,𝑖,𝑣𝑘
= true (,𝑣𝑘

 is the index of variable

k in 𝐺𝑎,𝑖). If all variables and equations are scalarized,

so 𝐺𝑎,𝑖,𝑣𝑘
= 𝑡𝑟𝑢𝑒 for all the scalarized variables and

equations, then there are several (standard) algorithms to

derive (2) from DAE (1), see for example (Otter, Elmqvist

2017, section 3.1).

The notation above is clarified with the cascaded first

order model in vector notation from section 2, where the

equation u = 1 is additionally added:

Table 1: Notation for vectorized CascadedFirstOrder model

(T means true, F means False).

𝑒0 u = 1

𝑒1 tau*der(x) = cat(1, {u}, x[1:N-1]) - x

𝑩 [-1,-1] // no equation appears differentiated

𝑣0 u

𝑣1 x

𝑣2 der(x)

𝑨 [-1,2,-1] // the derivative of x is der(x)

𝐺0 [0] // 𝑒0 is a function of u

𝐺1 [0,1,2] // 𝑒1 is a function of u, x, der(x)

𝐺𝑎,0 [T] // 𝑒0 is structurally assignable for u

𝐺𝑎,1 [F, F, T] // 𝑒1 is struct. assignable for der(x)

Using the algorithm given in Appendix A.1, a complete

assignment (2) for the problem formulation in Table 1 is

derived, yielding the following result:

assign = [0, -1, 1] // 𝑣0 assigned to 𝑒0, 𝑣2 to 𝑒1

This assignment holds for any valid dimension N (for

N=1, the model is not valid due to x[1:N-1]). With the

algorithms sketched in Appendix A.4, the following

sorted and solved assignment statements can be derived:

u := 1

der(x) := (cat(1, {u}, x[1:N-1]) – x)/tau

and corresponding code generated. The translation time is

independent of dimension N and N can be changed after

translation!

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 191
10.3384/ecp218189 September 8-10, 2025, Lucerne, Switzerland

3.3 Differentiation of Equations

In order to derive (2) from DAE (1), equations might need

to be differentiated. For scalarized variables and equations

several (standard) algorithms are available, see for

example (Otter, Elmqvist 2017, section 3.1). These

algorithms need to be extended to take the new

structurally assignable property 𝑮𝑎 into account. In

Appendix A.1, it is shown how to extend the algorithm of

Pantelides (1988) in this respect.

Consider the following simple yet non-trivial

example:

Model 1: Model that needs to be differentiated.
 Model ModelThatNeedsToBeDifferentiated

 Real n[3]; L, e[3]; r[3];

 Real s(start=1, fixed=true);

 equation

 L = sqrt(n*n);

 e = 2*n/L;

 r = e*s;

 e*der(r) = der(s) - s;

 n = {1, 2, sin(time)};

 end ModelThatNeedsToBeDifferentiated;

This model has the following structurally assignable

properties:

equations structurally assignable

L = sqrt(n*n);

e = 2*n/L;

r = e*s;

e*der(r) = der(s) - s;

n = {1, 2, sin(time)};

L

e, n

r, s

der(s)

n

With the enhanced Pantelides algorithm of Appendix A.1

the following complete assignment of differentiated

equations can be derived:

assigned highest derivative equations

der(L)

der(e)

der(r)

der(s)

der(n)

der(L) = 0.5*(n*n)^-0.5*(der(n)*n + n* der(n))

der(e) = (2* der(n)*L - 2*n* der(L))/L^2

der(r) = der(e)*s + e* der(s)

e*der(r) = der(s) - s

n = {0,0, cos(time)}

In section 4, several application examples are given that

demonstrate the usefulness of the new approach.

3.4 Improved Error Diagnostics

If a Modelica model is erroneous, in many cases tools

provide error messages that make it difficult to figure out

the reason for the problem. For example, Modelica tools

could provide an error message of the following kind

which is quite useless: The problem is structurally

singular. It has 2046 scalar unknowns and 2045 scalar
equations. The error messages have improved over time,

but they are often still not helpful enough. In Appendix

A.3, a new, simple algorithm is sketched to significantly

improve error diagnostics. Take for example the

following model which contains several errors:

Model 2. Model having several errors.

model SeveralErrors

 Real v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11;

equation

 der(v1) = -v1;

 der(v2) = -v3;

 v3 = -1;

 v3 = 3 + v2;

 der(v4) = -v4 + v1;

 der(v5) = -v5 - v4;

 v5 = 2;

 der(v6) = -v6 + v7;

 der(v7) = -v8 + v9;

 0 = v7 + v8 + v9;

end SeveralErrors;

Modiator provides the following error message.

Figure 1. Modiator error message for Model 2.

The first message states, that one equation is missing to

compute variable v9 and the equations are listed in which

this variable appears. All of these equations are already

assigned, so it is impossible to assign for v9. Most likely,

just an equation for v9 is missing and should be added.

Modiator lists these types of error messages first, because

little output is expected, since a variable typically only

appears in a few equations.

The second message states that two equation sets are

wrong. Since many equations might be involved, more

information is only given for the set with the smallest

number of equations. For this set, first the equation is

listed that makes the following set of equations

overdetermined. This equation cannot get an assignment

because there is one equation too many in this set.

Afterwards, all the other (already assigned) equations are

listed together with their assignment.

Note, the output of the error messages is not unique

and a different initial ordering of the equations can display

a different message (e.g. instead of v9, variable v8 could

be listed). However, the important point is that the error

message either points to one problematic variable or to
one problematic equation, to help the user identifying the

issue.

Resizable Arrays in Object-Oriented Modeling

192 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218189

4 Application Examples

4.1 Heat Exchanger

The ScalableTestSuite and LargeTestSuite6 of (Casella,

2015) contain cocurrent heat exchanger models with

different numbers of segments from 10 to 81920. The

compilation time in Modiator is essentially independent

of n: about 11 milliseconds. The simulation results for

n=10 are shown in Figure 1, and n can be changed after

compilation.

Figure 2. Simulation results for the cocurrent heat exchanger

model with 10 segments from the ScalableTestSuite.

A small modification of the model was needed. The

equations:

TA[1] = if time < 8 then 300 else 301;

TB[1] = 310;

for i in 2:N loop

 TA[i] = TAtilde[i - 1];

 TB[i] = TBtilde[i - 1];

end for;

were replaced by:

TA = cat(1, {if time < 8 then 300 else 301}, TAtilde)

TB = cat(1, {310}, TBtilde)

in order to comply with Restriction 1.

4.2 Shock Waves

Capturing shock waves typically needs a large number of

grid points, i.e. benefits substantially by using the

described array preserving technique. Consider the water

hammer model, Model 3, using only array equations. The

valve at the end of the pipe closes at time=0.01 inducing

a shock wave. The number of grid points n can be changed

after compilation.

Model 3: Modelica Water Hammer model capturing shock

waves from Clément Coïc.

model WaterHammer

 parameter Integer n=10;
 parameter Real L=100 "Length of the pipe (m)";

 parameter Real A=3.1415*D^2/4 "Cross-sect. area of pipe (m^2)";

 parameter Real rho=1000 "Density of water (kg/m^3)";
 parameter Real B=21e8 "Bulk modulus of water (Pa)";

 final parameter Real c=sqrt(B/rho) "Speed of sound in water (m/s)";

 parameter Real tClose=0.01 "Time at which the valve closes (s)";
 parameter Real Q0=0.0002 "Initial flow rate (m^3/s)";

6 https://github.com/casella/ScalableTestSuite

 final parameter Real dx=L / n "Length of each pipe segment (m)";

 final parameter Real dt=dx / c "Time step for stability (s)";

 parameter Real f=0.05 "Darcy-Weisbach friction factor (dim.less)";

 parameter Real D=0.05 "Pipe diameter (m)";
 Real p[n+1](start=fill(3e5, n+1), fixed=true) "Press. at each node (Pa)";

 Real Q[n] "Flow rate in each segment (m^3/s)";

 Real V[n](start=fill(0.1, n), fixed=true) "Speed of flow (m/s)";
 Real Qend "Flow rate at the end of the pipe (m^3/s)";

 Real QPlusEnds[n+2];

 Real valveOpen "1 if valve is open, 0 if closed";
equation

 Q = V*A;
 valveOpen = if time < tClose then 1 else 0;

 Qend = Q0 * valveOpen;

 der(V) = -(p[2:n+1] - p[1:n]) / (rho * dx) - (f / (2 * D)) .* V .* abs(V);
 QPlusEnds = cat(1, {Q[1]}, Q, {Qend});

 der(p) = B*(-(QPlusEnds[2:n+2] - QPlusEnds[1:n+1]) / (A * dx));

 annotation(experiment(StopTime=0.3));
end WaterHammer;

Figure 3 plots the pressures against time.

Figure 3. Pressures of WaterHammer model.

Such time plots do not convey the wave behavior very

well. It is better to show the pressure profile over the pipe

at different times, Figure 4. Spline interpolation is used

to smooth the curve over the 51 spatial points (n=50). The

pressure wave traverses from right to left. After about 72

milliseconds, the wave starts returning (green curve):

Figure 4. Spatial plot of pressures of WaterHammer model.

4.3 Transmission Line

Consider the transmission line element of Figure 5. It is a

regular structure of connected electrical components

(Resistor, Inductor, Conductor and Capacitor). Such a

device can be modeled in Modelica using arrays of

components and a for-loop for connections. A voltage

source is connected to the first segment and a resistance

load to the last segment:

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 193
10.3384/ecp218189 September 8-10, 2025, Lucerne, Switzerland

https://github.com/casella/ScalableTestSuite

Figure 5. Image of transmission line element from Wikimedia7

Model 4: TransmissionLine

modeled with arrays of components.
model TransmissionLine

 import Modelica.Electrical.Analog.Basic;

 model TransmissionLineSegment

 parameter Real dx = 1 "Length of the segment in meters";

 parameter Real resistancePerMeter = 0.01;

 parameter Real inductancePerMeter = 0.001;

 parameter Real capacitancePerMeter = 1e-9;

 parameter Real conductancePerMeter = 1e-6;

 Modelica.Electrical.Analog.Interfaces.Pin p;

 Modelica.Electrical.Analog.Interfaces.Pin n;

 Basic.Resistor r(R=resistancePerMeter*dx);

 Basic.Inductor l(L=inductancePerMeter*dx);

 Basic.Capacitor c(C=capacitancePerMeter*dx);

 Basic.Conductor g(G=conductancePerMeter*dx);

 Basic.Ground ground;

 equation

 connect(p, r.p);

 connect(l.n, g.p);

 connect(g.p, c.p);

 connect(c.p, n);

 connect(r.n, l.p);

 connect(g.n, c.n);

 connect(c.n, ground.p);

 end TransmissionLineSegment;

 parameter Integer N = 10 "Number of segments";

 parameter Real length = 1000 "Length of in meters";

 TransmissionLineSegment segments[N](dx=fill(length/N, N));

 Basic.Ground ground;

 Basic.Resistor load(R=100);

 Modelica.Electrical.Analog.Sources.ConstantVoltage

 source(V=10);

equation

 // Connect the segments in series

 for i in 1:N-1 loop

 connect(segments[i].n, segments[i+1].p);

 end for;

 // Connect the first segment to the source

 connect(source.p, segments[1].p);

 connect(source.n, ground.p);

 // Connect the last segment to the load

 connect(segments[N].n, load.p);

 connect(load.n, ground.p);

end TransmissionLine;

7

https://commons.wikimedia.org/wiki/File:Transmission_lin

e_element.svg

In order to avoid recompilation of this model when N is

changed, the connect statements are manually expanded.

Since segments[N].n is connected to a capacitor having a

state, the voltages are copied to the right (n to p) with the

first element coming from source.p via a node nSource

(since source.p needs to be connected, otherwise source.p.i

would be zero). The currents are copied from p to n with

the last current coming from load.p.i via the node nLoad.

segments.p.v = cat(1, {nSource.v}, segments.n.v[1:N-1]);

segments.n.i = -cat(1, segments.p.i[2:10], {nLoad.i});

nSource.i = segments.p.i[1];

nLoad.v = segments.n.v[N];

connect(source.p, nSource);

connect(source.n, ground.p);

connect(load.p, nLoad);

connect(load.n, ground.p);

The compilation time is about 50 milliseconds

independent of n. The resulting voltages over the

capacitors are shown in Figure 6.

Figure 6. Capacitor voltages.

It should be noted that enabling changes to the

discretization after compilation relied on certain specific

properties of the model. The capacitor to the right of the

TransmissionLineSegment enabled simultaneous copying

of all voltages to the right in one array equation.

Correspondingly due to the inductor to the left, all

currents could be copied simultaneously in one array

equation to the left.

4.4 Adaptive Grid

An important advantage of not recompiling when array

dimensions change is that a model can refine itself, as

shown in the example of this section.

An insulated rod model is shown below and a plot of

a simulation in Figure 7. It changes the number of

segments at time=2000 and time=4000. The changes

could also be triggered by detecting some transient

behavior.

Resizable Arrays in Object-Oriented Modeling

194 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218189

https://commons.wikimedia.org/wiki/File:Transmission_line_element.svg
https://commons.wikimedia.org/wiki/File:Transmission_line_element.svg

Model 5: Insulated rod model with adaptive grid.

model InsulatedRod_gradient "Insulated rod with gradient"

 import SI = Modelica.Units.SI;

 parameter SI.Length L=1 "lenght of rod";

 parameter SI.Area A=0.0004 "area of rod";

 parameter SI.Density rho=7500 "density of rod material";

 parameter SI.ThermalConductivity lambda=74

 "thermal conductivity of material";

 parameter SI.SpecificHeatCapacity c=450

 "specifc heat capacity";

 parameter SI.Temperature T0=293 "initial temperature";

 parameter Integer nT(min=2)=4 "number of inner nodes";

 SI.Temperature T[nT](start={300, 297.5, 295, 292.5},

 each fixed=true) "temperatures at inner nodes";

 SI.HeatFlowRate Q_flow[nT+1];

 Real dx;

 Real k1;

 Real k2;

 Real k3;

 Real port_a_Q_flow;

 Real port_b_Q_flow;

 SI.Temperature port_a_T;

 SI.Temperature port_b_T;

equation

 dx = L/nT;

 k1 = lambda*A/dx;

 k2 = rho*c*A*dx;

 k3 = 2*k1;

 // Connection equations

 port_a_T = if time<2000 then 300 else 320;
 port_b_Q_flow = 0;

 // Acausal part (assignment depends on connection)

 port_a_Q_flow = k3*(port_a_T - T[1]);

 port_b_Q_flow = k3*(T[nT] - port_b_T);

 // Causal part (assignment does not depend on connection)

 Q_flow = cat(1, {port_a_Q_flow}, k1*(T[1:nT-1] - T[2:nT]),

 {port_b_Q_flow});

 der(T) = (Q_flow[1:nT] - Q_flow[2:nT+1])/k2;

 when time > 2000 then

 ast.setParameter("nT", 8);

 ast.setStart("T", interpolate(8, T));

 end when;

 when time > 4000 then

 ast.setParameter("nT", 6);

 ast.setStart("T", interpolate(6, T));

 end when;

 annotation(experiment(StopTime=5000));

end InsulatedRod_gradient;

A new function ast.setParameter is used to change the grid

resolution. Since the state vector changes, new start values

for the states are given using ast.setStart. A function

interpolate is interpolating the temperatures from 4 points

to 8 and back to 6. This function considers how the grid

points are distributed along the staggered grid. This

explains why the curves have discontinuities since T[i]

refers to different positions along the rod when nT

changes.

Figure 7. Simulation results of the temperature nodes along an

insulated rod. At time=2000 and time=4000 the number of

segments is changing from 4 to 8 to 6.

5 Reformulation of Array Equations

In this section, valid Modelica models are presented that

are rejected by the algorithm of Appendix A.1. It is

shown how to reformulate the equations in order that code

can be generated.

5.1 Linear Equation Systems

Consider the following valid Modelica model that

contains a linear system of equations

Model 6: Model with a linear system of equations.
 model ModelWithLinearSystemOfEquations

 parameter Real n[2] = {1,2};

 parameter Real A[2,2]= [1,2;3,4];

 Real y1[2];

 Real y2[2];

 equation

 y1 = n*time;

 A*y2 = y1;

 end ModelWithLinearSystemOfEquations;

Modiator prints the following error message:

The listed equation must be reformulated, since (a) an

equation is missing to compute variable y2, (b) variable

y2 appears only in this equation and no variable is

assigned to this equation. Note, that y2 is not structurally

assignable according to Theorem 1. The remedy is to

explicitly solve the linear equation system in the model:

 equation

 y1 = n*time;

 y2 = Modelica.Math.Matrices.solve(A,y1);

5.2 Models That Must Be Scalarized

There are various kinds of Modelica models that can only

be processed if array variables and equations are

scalarized in the generated code. A simple example is

shown in the following model:

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 195
10.3384/ecp218189 September 8-10, 2025, Lucerne, Switzerland

Model 7: Model where array variables and equations

need to be scalarized.

 model ModelThatRequiresScalarization

 parameter Real n[:]={1,2,3};

 Real s(start=1, fixed=true);

 Real r[3];

 equation

 r = n*s;

 der(r)*n = -s;

 end ModelThatRequiresScalarization;

Modiator prints the following error message:

So, the error message states that the listed equation is

differentiated too often and that the likely reason is that

array variables in this equation must be scalarized, which

is not done in Modiator. If the array variables and

equations are scalarized, the following assignment is

possible:

assigned highest derivative equations

der(s)

der(r[2])

der(r[3])

der(r[1])

der(r[1]) = n[1]*der(s)

der(r[2]) = n[2]*der(s)

der(r[3]) = n[3]*der(s)

der(r[1])*n[1]+der(r[2])*n[2]+der(r[3])*n[3]=-s

However, it is not possible to convert the scalarized

variables and equations back into array variables and

equations. One remedy is to split variable r1 and the first

equation in two pieces:

Model 8: Reformulation of Model 7 in order that array

variables and equations can be kept

without expansion in the generated code.

 model ChangedModelThatRequiredScalarization

 parameter Real n1 = 1;

 parameter Real n2[:] = {2,3};

 Real s(start=1, fixed=true);

 Real r1;

 Real r2[size(n2,1)];

 equation

 r1 = n1*s;

 r2 = n2*s;

 der(r1)*n1 + der(r2)*n2 = -s;

 end ChangedModelThatRequiredScalarization;

An assignment is now possible without expanding array

variables and equations:

assigned highest derivative equations

der(s)

der(r2)

der(r1)

der(r1) = n1*der(s)

der(r2) = n2*der(s)

der(r1)*n1+der(r2)*n2 = -s

8

https://doc.modelica.org/Modelica%204.0.0/Resources/help

Dymola/Modelica_Mechanics_MultiBody.html

5.3 Mechanical Systems

In the following simple model, a mass is sliding along a

given direction in 3D space:

Model 9: 3D sliding mass model that requires scalarization.

model SlidingMass3DrequiringScalarization

 parameter Real m=1 "Mass of body";

 parameter Real n[3] = {1,0,1}/sqrt(2) "Sliding direction";

 parameter Real g[3] = {0,0,-9.81} "Gravity acceleration";

 Real r[3] "Position";

 Real v[3] "Velocity";

 Real f[3] "Constraint force of prismatic joint";

 Real s "Generalized coordinate of prismatic joint";

equation

 r = n*s;

 v = der(r);

 m*(der(v)-g) = f;

 0 = n*f;

end SlidingMass3DrequiringScalarization;

Modiator prints the following error message:

The reason is that the scalar equation 0 = n*f contains only

array variables and therefore none of these variables is

structurally assignable.

In (Elmqvist and Otter 2017, section 3), it is shown

that array variables and equations of mechanical systems

must be at least internally expanded in order that

processing is possible. After symbolic processing, it is

usually possible to recover the non-expanded forms. Since

the algorithm in Appendix A.1 does not expand array

variables and equations, existing 3D mechanical models,

such as those from the Modelica.Mechanics.MultiBody8

library, cannot be processed by Modiator. For tree-

structured mechanical systems it is easy to fix this issue in

the following way:

A tree-structured mechanical system with 𝒒 the

vector of generalized minimal coordinates (= generalized

coordinates in the joints) and 𝒖 the generalized forces (=

generalized forces in the joints) is described by the

following equation:

𝑴(𝒒)𝒒̈ + 𝒉(𝒒, 𝒒̇) = 𝒖; 𝑴 = 𝑴𝑇 ≥ 0 (3)

In object-oriented modeling, where bodies, joints and

other objects can be connected together in a nearly

arbitrary fashion, it is easy to define a system where the

symmetric mass matrix 𝑴 is positive semi-definite (that

is, it is singular) instead of positive definite as postulated

by mechanical principles. Examples:

• A non-zero mass and a zero inertia-matrix is defined

for a body, and the connection structure allows

rotations of the body.

Resizable Arrays in Object-Oriented Modeling

196 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218189

https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/Modelica_Mechanics_MultiBody.html
https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/Modelica_Mechanics_MultiBody.html

• A chain of mechanical objects ends with a joint and

not with a body.

• More as 3 revolute joints are connected directly

together, without having a body between the joints.

Let's subtract a small term 𝜀𝑚𝒒̈ from the generalized

forces 𝒖, where the scalar 𝜀𝑚 ≥ 0:

𝑴(𝒒)𝒒̈ + 𝒉(𝒒, 𝒒̇) = 𝒖 − 𝜀𝑚𝒒̈ (4)

or

(𝜀𝑚𝑰 + 𝑴(𝒒))𝒒̈ + 𝒉(𝒒, 𝒒̇) = 𝒖 (5)

where 𝑰 is the unit-matrix. The new mass matrix is

positive definite (that is, regular) if 𝜀𝑚 > 0. This follows

from its positive quadratic form:

𝒙𝑇(𝜀𝑚𝑰 + 𝑴)𝒙 = 𝜀𝑚𝒙𝑇𝒙 + 𝒙𝑇𝑴𝒙 > 𝟎, if |𝒙| > 𝟎 (6)

since 𝜀𝑚𝒙𝑇𝒙 > 𝟎 and 𝒙𝑇𝑴𝒙 ≥ 𝟎 . Therefore, the

mentioned issues can no longer occur if 𝜀𝑚 > 0 and a

mechanical model in Modelica becomes more reliable

against user errors. Note, the original multibody system is

unchanged, if 𝜀𝑚 = 0 . Processing with unexpanded

arrays becomes possible by adding a corresponding term

to the joints of a Modelica model, as shown exemplarily

by the following modified version of the sliding mass

model:

Model 10: Changed Model 9 in order that assignment is

possible without expanding arrays.

model SlidingMass3D

 ...

 parameter Real eps_m(min=0) = 0 "Small mass in joint";

equation

 r = n*s;

 v = der(r);

 f = m*(der(v)-g);

 sd = der(s);

 0 = n*f + eps_m*der(sd); // der(sd) structurally assignable

end SlidingMass3D;

The last (scalar) equation is now structurally assignable

for the scalar der(sd). With the algorithm of Appendix A.1

the following assignment can be derived:

assigned highest derivative equations

der(der(r))

der(v)

f

der(der(s))

der(sd)

der(der(r)) = n* der(der(s))

der(v) = der(der(r))

f = m*(der(v)-g)

der(sd) = der(der(s))

0 = n*f + eps_m*der(sd)

When sorting these highest derivative equations, an

algebraic loop is identified that corresponds to (5). The

equations can be, for example, transformed in the

following linear equation in one unknown:

input: der(sd) // tearing variable

output: residue

der(der(s)) := der(sd)

der(der(r)) := n*der(der(s))

der(v) = der(der(r))

9 https://itea4.org/project/openscaling.html

f := m*(der(v)-g)

residue := n*f + eps_m*der(sd)

Inserting all terms in the last equation and setting

residue=0, results in one linear equation with der(sd) as

unknown:

(eps_m + m*(n*n))*der(sd) = m*(n*g)

Note, if arrays are no longer expanded for mechanical

systems, the number of modes of analytically described
elastic bodies, such as beams or plates, can be changed

after translation!

6 Conclusions

The Modelica Web-App Modiator (Elmqvist and Otter,

2025) does not expand arrays of equations, for loops or

arrays of components in order to speed up translation and

avoid recompilation when array changes are made. The

needed restrictions have been described, translation

techniques have been outlined, and several presented

model examples show the benefits of this new method. As

a result, the Modiator Web-App has compilation times

independent of array sizes (O(1) instead of O(n) or worse)

and arrays can be resized after compilation.

Special emphasis has been put on enabling index

reduction without scalarization for models described by

array equations. The developed extensions of the

Pantelides algorithm are utilized in Modiator and allow

index reduction directly on array equations without

expanding arrays (also not internally). The algorithm is

described and the proofs of its properties are given. The

needed changes to the symbolic processing of a Modelica

tool are modest and reasonable diagnostics can be given

if index reduction and/or assignment fails by pointing to

the equations and arrays that need to be changed, in order

that processing is possible without expanding array

equations and arrays.

The enhanced algorithms presented in the Appendix,

together with tests for some of the models in this paper,

are also provided in Javascript format in file assign-

highest-derivatives-test.html in the accompanying zip-

file. Dragging this file into a web browser will execute the
tests and display the test results in the web browser

window.

Acknowledgements

The authors want to thank Clément Coïc for providing the

water hammer model in Section 4.2.

This work was partially funded for the first author by

the German Federal Ministry of Education and Research

(BMBF, grant number 01IS23062C) within the European

ITEA4 research project OpenSCALING9.

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 197
10.3384/ecp218189 September 8-10, 2025, Lucerne, Switzerland

https://itea4.org/project/openscaling.html

References

Abdelhak, Karim, Francesco Casella and Bernhard Bachmann

(2023). “Pseudo Array Causalization”. In: Proceedings of the

15th International Modelica Conference,

DOI: 10.3384/ecp204177.

Abdelhak, Karim, and Bernhard Bachmann (2025). “Constant

Time Causalization using Resizeable Arrays”. In:

Proceedings of the 16th International Modelica Conference,

Lucerne, Switzerland.

Casella, Francesco (2015). “Simulation of Large-Scale Models

in Modelica: State of the Art and Future Perspectives”. In:

Proceedings of the 11th International Modelica Conference,

DOI: 10.3384/ecp15118459.

Elmqvist, Hilding and Martin Otter (2025): “Modiator, a Web

App for Modelica Simulation“. In: Proceedings of the 16th

International Modelica & FMI Conference, Lucerne.

Fritzson, Peter et al. (2020). “The OpenModelica Integrated

Environment for Modeling, Simulation, and Model-Based

Development”. In: Modeling, Identification and Control.

41(4), pp. 241-285. DOI 10.4173/mic.2020.4.1

Marzorati, Denise, Joaquin Fernandez and Ernesto Kofmann

(2024): “Efficient Matching in Large DAE Models”. In:

ACM Transactions on Mathematical Software, Volume 50,

Issue 4, Article No. 18, pp. 1-25. DOI: 10.1145/3674831

Mattsson, Sven-Erik and Gustaf Söderlind (1993). “Index

Reduction in Differential-Algebraic Equations using Dummy

Derivatives”. In: SIAM Journal of Scientific Computing.

14(3), pp. 677-692.

Modelica Association (2023). Modelica – A Unified Object-

Oriented Language for Systems Modeling, Language

Specification, Version 3.6. URL:

https://specification.modelica.org/maint/3.6/MLS.html.

Otter Martin and Hilding Elmqvist (2017): “Transformation of

Differential Algebraic Array Equations to Index One Form”.

In: Proceedings of the 12th International Modelica

Conference, Prag. DOI: 10.3384/ecp17132565

Pantelides, Constantinos C. (1988). “The Consistent

Initialization of Differential-Algebraic Systems”. In: SIAM

Journal on Scientific and Statistical Computing 9.2, pp. 213–

231. DOI: 10.1137/0909014

Pop, Adrian et al. (2019). “A New OpenModelica Compiler

High Performance Frontend”. In: Proceedings of the 13th

International Modelica Conference, pp. 689–698.

DOI: 10.3384/ecp19157689

Tarjan, Robert (1972): "Depth-First Search and Linear Graph

Algorithms". In: SIAM Journal on Computing 1(2), pp. 146-

160. DOI: 10.1137/0201010

Zimmermann, Pablo, Joaquín Fernández, and Ernesto Kofman

(2020). “Set-Based Graph Methods for Fast Equation Sorting

in Large DAE Systems”. In: Proceedings of the 9th

International Workshop on Equation-Based Object-Oriented

Modeling Languages and Tools. EOOLT’2019. Berlin, Ger-

many, Association for Computing Machinery.

DOI: 10.1145/3365984.3365991

Appendix A

In this appendix, the enhancements of standard algorithms

are sketched to find a complete assignment (2) for a DAE

(1) without expanding array variables and equations.

A.1 Assign Highest Derivatives

Starting point is the algorithm of Pantelides (1988). The

modified algorithm is provided in Javascript format

(which is nearly the same as C/C++ format here) in the

following listing. The yellow parts are deviations from

(Pantelides, 1988) and are discussed below:

Listing 1: Function assignHighestDerivatives in Javascript

format to determine highest derivative equations that have a

complete assignment with respect to structurally assignable

highest derivative variables. Yellow parts are deviations from

(Pantelides, 1988).

a1 function assignEquation(i,

 G,Ga,assign,vColor,eColor,vInspect){

 const Gi = G[i]

 const Gai = Ga[i]

 eColor[i] = true

 for (let j=0; j<Gi.length; j++) {

 const v = Gi[j]

 if(vInspect[v] === -1 && assign[v] === -1 && Gai[j]){

 assign[v] = i;

 return true}}

 for (let j=0; j<Gi.length; j++) {

 const v = Gi[j]

 if (vInspect[v] === -1 && assign[v] > -1 && !vColor[v]

 && Gai[j]) {

 vColor[v] = true

 if (assignEquation(assign[v],

 G,Ga,assign,vColor,eColor,vInspect)) {

 assign[v] = i;

 return true}}

 }

 return false

}

a2 export function assignHighestDerivatives(G,Ga,A) {

 let nA = A.length
 let nB = G.length

 const assign = Array(nA).fill(-1)

 const B = Array(nB).fill(-1)

 const eColor = Array(nB)

 const vColor = Array(nA)

a3 function colorEquation(i) {

 eColor[i] = true

 for (const v of G[i]) {

 if (A[v] === -1 && assign[v] > -1 && !vColor[v]

 && B[assign[v]] === -1) {

 vColor[v] = true

 colorEquation(assign[v])}

 } // end for

 }

a4 const nB_initial = nB

 for (let k = 0; k < nB_initial; k++) {

 let i = k

 while (true) {

 eColor.fill(false)

Resizable Arrays in Object-Oriented Modeling

198 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218189

https://dx.doi.org/10.3384/ecp204177
https://dx.doi.org/10.3384/ecp15118
https://dx.doi.org/10.4173/mic.2020.4.1
https://dx.doi.org/10.1145/3674831
https://specification.modelica.org/maint/3.6/MLS.html
https://doi.org/10.3384/ecp17132565
https://dx.doi.org/10.1137/0909014
https://dx.doi.org/10.3384/ecp19157689
https://doi.org/10.1137/0201010
https://dx.doi.org/10.1145/3365984.3365991

 vColor.fill(false)

 if (assignEquation(i,G,Ga,assign,vColor,eColor,A)) break

a5 for (let j=0; j<nB; j++) {

 if (eColor[j] && Ga[j].some(val=>val===false)){

 colorEquation(j)}}}

a6 for (let j=0; j<nB; j++) {

 if (eColor[j]) {

 nB++; B.push(-1); B[j]=nB-1;

 for (const v of G[j]) {

 if (A[v] === -1) {

 nA++; A.push(-1); A[v]=nA-1; assign.push(-1)}}

 G.push(Gj.map(m => A[m]))

 Ga.push(Ga[j])}}

 for (let j = 0; j < nA; j++) {

 if (vColor[j]) assign[A[j]] = B[assign[j]]}

a7 i = B[i]

 eColor.length = nB

 vColor.length = nA

 } // end while

a8 } // end for

 return [assign,B]}

Utility function assignEquation(i,...), see code block (a1), is

basically function AUGMENTPATH of (Pantelides,

1988). The function inspects all variables v of equation i

that are structurally assignable and have vInspect[v] = -1. It

returns true if a v is assigned to equation i and otherwise it

returns false. If false is returned, the following property

holds:

Theorem 2: If assignEquation returns with false, the
equations with eColor[k] = true are minimally structurally

singular with respect to the variables with vColor[k] = true

(these variables are structurally assignable with respect
to the assigned equations).

Proof: Follows from the proof of Lemma 3.3 of

(Pantelides, 1988), with the only difference that a subset

of the variables is inspected (variables that are structurally

assignable and have vInspect[v] = -1, i.e. are highest

derivative variables since A is passed to the function as

vInspect). ∎

This property means that the colored equations are the

smallest subset that need to be differentiated. This subset

has more equations than variables and therefore

differentiating this subset will introduce more new

equations as it will introduce more new variables.

The core function assignHighestDerivatives, see code

blocks (a2-a9), inspects all equations in sequence. For

every equation, function assignEquation is called with

vInspect = A, that is only highest derivative variables are

inspected, see last statement in code block (a4). If the

function returns true, the next equation is inspected.

Otherwise, a while loop iterates over the function call,

until an assignment is found. If assignEquation returns false,

the colored set of equations needs to be differentiated.

Colored equations that have at least one highest

derivative variable that is not structurally assignable are

inspected by calling the function colorEquation on them, see

code blocks (a5,a3). This function colors additional

equations that need to be differentiated. Assume for

example, that equation j colored by assignEquation has a

highest derivative variable v that is not structurally

assignable with respect to equation j, is already assigned,

is not colored and the equation to which v is assigned is a

highest derivative equation. If equation j is differentiated,

then v is also differentiated, but without differentiating the

highest derivative equation assign[v], because this equation

was not colored by assignEquation. The construction of

code blocks (a5,a3) ensures, that these assigned equations

are also colored and are thus differentiated. Note, this

additional equation coloring appears, for example, in

Model 1 from section 3.3.

In code block (a6), the data structures G,Ga,A,B,assign

are appended with new entries that include the incidences

of the equations and the highest derivative variables that

will appear when the equations are differentiated. This

part is nearly identical to code block (3b-5) of

ALGORITHM 4.1 of (Pantelides, 1988). The essential

difference is that in (3b-5) of (Pantelides, 1988) first all

colored variables are appended to A before G,B are

updated. However, this is not possible here, because a

colored equation j may have a variable v that is not

structurally assignable and that is not assigned. When

differentiating equation j, v is differentiated as well, but

the differentiated v may not yet exist because it was not

colored. For this reason, A is updated when the incidence

of the differentiated equation j is appended to G. The

remaining part of the code is identical to ALGORITHM

4.1 of (Pantelides, 1988). Function assignHighestDerivatives

returns the newly constructed arrays assign,B via the return

statement, and the updated arrays G,Ga,A via the argument

list.

A.2 Assign Extended System

Since assignHighestDerivatives has a while loop, the question

arises whether this loop will terminate for all inspected

equations. In (Pantelides, 1988) an extended system 𝑬𝑮 =

[
𝑮

𝑮ℎ
] is analyzed consisting of 𝑮 and of the incidence

matrix 𝑮ℎ of additional equations 0 = ℎ𝑖(𝑣𝑖 , 𝑣̇𝑖) for

every variable 𝑣𝑖 appearing differentiated. A

corresponding matrix 𝑬𝑮𝒂 = [
𝑮𝑎

𝑮ℎ,𝑎
] defines whether the

elements of 𝑬𝑮 are structurally assignable or not. Hereby,

all elements of 𝑮ℎ,𝑎 representing the new equations ℎ𝑖 are

true.

Theorem 3: If 𝑮𝑎 has only 𝑡𝑟𝑢𝑒 values then the while loop

in function assignHighestDerivatives terminates for all

inspected equations after a finite number of iterations if

and only if the extended system 𝑬𝑮 is structurally

nonsingular. In such a case, the highest derivative

equations of 𝑮 have a complete assignment with respect

to the highest derivative variables. If 𝑬𝑮 is structurally

singular, then the underlying DAE (1) has no solution

since it is impossible to find a set of consistent initial

conditions.

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 199
10.3384/ecp218189 September 8-10, 2025, Lucerne, Switzerland

Proof: This is Theorem 4.2 of (Pantelides, 1988)

formulated with the notation of this paper. ∎

Unfortunately, this strong property does no longer hold, if

one or more elements of 𝑮𝑎 are false , that is, not all

variables are structurally assignable. This is demonstrated

with the simple example of Model 7 of section 3.3. A

complete assignment of the extended system 𝑬𝑮 with

respect to all structurally assignable variables is possible:

assigned equations of extended system

r

s

der(r)

r = n*s

der(r)*n = -s

0 = h(r, der(r))

Analyzing the equations of Model 7 with function

assignHighestDerivatives results in the following sequence of

assignments: Function assignEquation returns false for r = n*s

because r is not a highest derivative variable and s is not

structurally assignable. Therefore, this equation is

differentiated leading to the new highest derivative

equations:

assigned highest derivative equations

der(r)

der(r) = n*der(s)

der(r)*n = -s

Function assignEquation returns false for der(r)*n = -s because

der(r) is not structurally assignable and s is no highest

derivative variable. Differentiating this equation and

additionally the first equation due to code block (a5),

results in the following new highest derivative equations:

assigned highest derivative equations

der(der(r))

der(der(r)) = n*der(der(s))

der(der(r))*n = - der(s)

A similar situation as in the previous step occurs: The

second equation needs to be differentiated, because

der(der(r)) is not structurally assignable and der(s) is no

highest derivative variables. Also, the first equation is

differentiated due to code block (a5). As a result, an

infinite number of differentiations occurs.

If instead, variables r and n are expanded, the highest

derivative equations are identified and assigned as shown

in section 3.3. As can be seen, it is not possible for this

model to have an assignment of structurally assignable

variables without expanding array variables and array

equations. ∎

The consequence is that the number of iterations of the

while loop in function assignHighestDerivatives must be

explicitly limited and when this limit is reached, the

function either returns with an error or the model is

processed again with all arrays expanded. Assume that the

following assumption holds (which is checked before

function assignHighestDerivatives is called):

Assumption 1: The number of equations 𝑒𝑖 of the

underlying DAE (1) is identical to the number of highest

derivative variables, so variables 𝑣𝑗 that have 𝐴𝑗 = −1.

then the following theorem states the property of the

return result of function assignHighestDerivative:

Theorem 4: The highest derivative equations of 𝑮 have a
complete assignment with respect to their structurally

assignable highest derivative variables, if Assumption 1

holds and the while-loop in function assignHighestDerivatives
terminates after a finite number of iterations for all

inspected equations.

Proof: If the function returns successfully, then all

underlying equations have been inspected once, due to the

for-loop of code block (a4). Since every equation gets an

assignment for a structurally assignable highest derivative

variable that is not yet assigned, due to code block (a1), all

equations are assigned for highest derivative variables

that are structurally assignable. This assignment does not

influence already assigned equations, because otherwise

these equations would have been colored and then

differentiated together with the not-yet assigned equation

and their assigned variables would have been

differentiated correspondingly. Due to Assumption 1, all

highest derivative variables or derivatives of them are

assigned because the same number of equations get an

assignment.∎

If the while-loop does not terminate, then either the DAE

(1) has no unique solution, or a complete assignment with

respect to expanded arrays is possible.

In order that meaningful diagnostics can be given, the

following theorem is utilized:

Theorem 5: If the extended System 𝑬𝑮 is structurally

singular with respect to the structurally assignable

variables, the while-loop does not terminate for at least

one of the inspected equations.

Proof: Follows from the proof of Theorem 4.2 in

(Pantelides, 1988), Part B until "the algorithm will keep

differentiating until infinitum".∎

Note, if the extended System 𝐄𝐆 is structurally singular

with respect to the structurally assignable variables, it is

still possible that the DAE is solvable if the array variables

and array equations are expanded. This can be easily seen

from Model 6 in section 5.1. The extended System EG

assigned equations of extended system

y1

--

y1 = n*time

A*y2 = y1

is structurally singular with respect to the structurally

assignable variables because the first equation can be

assigned to y1 and the second equation can be also

assigned to y1 but not to y2, because y2 is not structurally

assignable according to Theorem 1. Therefore, the while

loop does not terminate, but this can be detected

beforehand. If arrays are expanded, the elements of the

second equation can be assigned to the elements of y2 and

the extended system is structurally regular.∎

Resizable Arrays in Object-Oriented Modeling

200 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218189

Listing 2 shows the code for function assignExtendedSystem

that builds and checks the extended system for structurally

assignable variables.

Listing 2: Function assignExtendedSystem in Javascript format

to determine a complete assignment of the extended system

with respect to the structurally assignable variables. Yellow

parts are deviations from (Pantelides, 1988).

b1 export function assignExtendedSystem(G,Ga,A) {

 // Build extended system

 const EG = [...G]

 const EGa = [...Ga]

 const nA = A.length

 for (let i=0; i<nA; i++) {

 const Ai = A[i];

 if (A[i] > -1) {

 EG.push([i, A[i]]); // h-equation

 EGa.push([true, true])}

 }

b2 // Assignment of extended system

 const assign = Array(nA).fill(-1)

 const vColor = Array(nA)

 const eColor = Array(EG.length)

 const vInspect = Array(nA).fill(-1) // inspect all variab.

 const unassignedEquations = []

 for (let i=0; i<nA; i++){

 eColor.fill(false)

 vColor.fill(false)

 if (!assignEquation(i,EG,EGa,

 assign,vColor,eColor,vInspect) && i<G.length){

 unassignedEquations.push(i)}

 }

b3 // Collect unassigned variables

 const unassignedVariables = []

 for (let j=0; j<assign.length; j++) {

 if (assign[j] === -1) unassignedVariables.push(j)

 }

 return [unassignedEquations, unassignedVariables]

}

In code block (b1) the extended system for G and Ga is

constructed. In code block (b2), function assignEquation is

called for all equations of the extended system and for all
of its variables (due to vInspect = Array(nA).fill(-1)). If

assignEquation returns false, and the inspected equation is

no h-equation, it is pushed on stack unassignedEquations.

(beause h-equations should not be reported to the user and

if a h-equation is not assigned, there is also an unassigned

variable). In code block (b3) the unassigned variables are

collected in stack unassignedVariables. Both stacks are

returned. If one of them is not empty, the complete

assignment of the extended system failed and the

unassigned equations and unassigned variables are

returned and reported to the user.

The practical application of the theorems requires

additionally the following small extension:

Function assignHighestDerivatives(G, Ga, A, maxDer =-1)

gets an additional optional argument that defines the

maximum number of allowed differentiations for an

equation (if maxDer =-1, the number of differentiations

is not limited) . If this limit is reached, the function

terminates. It returns [assign,B,eqDiffTooMuch]. If the

maximum number of differentiations is reached,

eqDiffTooMuch is the equation of the underlying DAE

that was differentiated too often. This equation can be

reported in the error message.

A.3 Improved Error Diagnostics

The information for the error messages presented in

section 3.4, is deduced from assignExtendedSystem(…) of

Listing 2 by extending this function a bit:

• The function already collects all unassigned

variables. For every unassigned variable, all

equations are inspected where this variable appears

and then these equations are printed together with

their assignments.

• The function also collects all unassigned equations

which is not very useful. Instead, when no assignment

can be found, all colored equations are collected

together because they constitute the set of equations

that, together with the unassigned equation, creates an

overdetermined system. This combined set is stored.

If more overdetermined sets of equations appear, only

the one with the smallest number of equations is kept.

A.4 Further Symbolic Processing

A tool could call the presented functions in the following

order:

1. Call assignExtendedSystem. If the function returns with

unassigned equations and/or unassigned variables

either print an error message showing the unassigned

equations/variables ("Either DAE is not solvable or

processing not possible without expanding arrays,

which is not supported") or expand all arrays and

equations and perform the standard processing of the

tool for expanded equations/arrays.

2. If assignExtendedSystem returns successfully, call

assignHighestDerivatives. If the function terminates

because the maximum number of differentiations

reached, either print an error message showing the

equation that was differentiated too often ("Equation

eqDiffTooMuch differentiated until the limit of
maxDer differentiations reached. Either DAE is not

solvable or processing is not possible without
expanding arrays, which is not supported.") or

expand all arrays and equations and perform the

standard processing of the tool for expanded

equations/arrays.

3. If assignHighestDerivatives returns successfully, a full

assignment of the highest derivative equations with

respect to the structurally assignable highest

derivative variables was found and standard

processing continues with only symbol information

(so with unexpanded equations/arrays).

After the complete assignment of the highest derivative
equations with respect to the structurally assignable

highest derivative variables is determined with function

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 201
10.3384/ecp218189 September 8-10, 2025, Lucerne, Switzerland

assignHighestDerivatives the standard approach of object-

oriented modeling can be used for further processing and

code generation by using basically only the symbol

information (without expanding arrays):

1. Analytically differentiating the equations

The equations are analytically differentiated based on

the information provided in 𝑮, 𝑨, 𝑩, 𝒂𝒔𝒔𝒊𝒈𝒏.

2. Equation sorting

𝑮 and assign of the highest derivative variables 𝑨

with 𝐴𝑘 = −1 define a directed graph where the

nodes are the highest derivative equations together

with the assigned highest derivative variables. The

edges are defined by the rows of the incidence matrix

𝑮 that correspond to the highest derivative equations.

With the algorithm of (Tarjan, 1972) the strong

components (algebraic loops) in the directed graph

are determined and the equations are sorted.

3. State selection

From the sorted highest derivative equations, the

constraint equations are determined by the algorithm

of (Mattsson and Söderlind, 1993) based on the

highest derivative equation systems determined in

step 2. From this information states are statically

and/or dynamically selected.

4. Code generation

Code is generated. Arrays with small, fixed

dimensions and corresponding array equations with

small, fixed dimensions might be expanded. If arrays

are kept unexpanded, then the generated code must

support array operations where dimension sizes might

be only known at run-time and can be changed after

translation to object code. Typically, Modelica tools

support this already, because code generation for

Modelica functions need a similar infrastructure to

operate on arrays.

Resizable Arrays in Object-Oriented Modeling

202 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218189

