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Abstract 

The Modelica language (Modelica.org) makes it easy to 

build large, complex models by allowing the instantiation 

of reusable component models. Modelica tools typically 

expand arrays of variables, equations and components and 

perform symbolic transformations on the scalar elements. 

This reduces the efficiency of the translation process and 

makes it difficult to change array dimensions after 

translation. 

This paper describes modest enhancements of 

standard algorithms to avoid scalarization. As a result, 

arrays can be resized both after translation and during 

simulation. The new technique does, however, impose 

certain restrictions on the way models are written. It is 

also sketched how to provide more meaningful 

diagnostics for erroneous models. Several examples 

demonstrate the new algorithms using the Web App 

Modiator.  
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1 Introduction 
The Modelica language 1  makes it easy to build large, 

complex models by allowing the instantiation of reusable 

component models. Modelica tools typically expand 

arrays of variables, equations and components and 

perform symbolic transformations on the scalar elements. 

This reduces the efficiency of the translation process 

especially for models with fine discretization of partial 

differential equations or for handling arrays of parametric 

data. In many cases, this scalarization can be omitted, 

which will be explored in this paper. 

Furthermore, avoiding scalarization of arrays allows 

changing array sizes without recompilation. This is 

important since it's essential to check the fidelity of the 

discretization for partial differential equations to ensure 

sufficient accuracy, i.e. to allow quick comparison of 

simulation results without recompilation with different 

numbers of segments. The technique also enables 

changing array dimensions during simulation, i.e., a 

model modifies its discretization depending on the 

model’s behavior, for example increasing the number of 

segments when a transient occurs. 

This paper outlines the modest enhancements to 

standard algorithms required for this new approach. A tool 

                                                        
1 https://specification.modelica.org/maint/3.6/MLS.html 
2 https://openmodelica.org/ 

can verify whether the model complies with the required 

restrictions. If so, the new technique is employed, 

otherwise the current scalarization approach is used. The 

new approach imposes certain restrictions on models. 

These restrictions and how to rewrite the model equations 

to fulfill them are described. The alternative is to scalarize 

the equations internally, and then try to combine them into 

array equations and for-loops after the symbolic 

algorithms have been applied. Such an approach is much 

more involved. 

The new approach and all the examples in this article 

have been tested with the Web App Modiator which 

supports a subset of Modelica. The current features, 

restrictions and future plans of Modiator are discussed in 

the companion paper (Elmqvist and Otter 2025). 

Previous work on avoiding scalarization includes 

the following articles: (Otter and Elmqvist 2017) show 

that scalarization of array equations is needed for index 

reduction when using the standard algorithms, e.g., for 

multibody systems. They scalarize array equations 

internally and reconstruct arrays after sorting. (Pop et al. 

2019) describe a new high-performance frontend to 

OpenModelica2 (Fritzson et al. 2020) to convert arrays of 

component models to array equations and to keep arrays 

during flattening. (Zimmermann et al. 2020) propose set-

based graph algorithms to avoid unrolling of for-loop 

equations of Modelica models. (Abdelhak et al. 

2023,2025) map indices of array variables and equations, 

as well as iterator values of for-equations to unique scalar 

indices, apply standard algorithms for matching and 

sorting on these internally scalarized systems and 

reconstruct array equations and for-loops afterwards. 

They tested this approach with an extension to 

OpenModelica. (Marzorali et al. 2024) propose a 

matching algorithm for repetitive structures with for-

loops over vectors of unknowns and test the 

implementation as part of the ModelicaCC compiler3. 

2 Model Restrictions 

This section explores the restrictions that are needed to be 

imposed on Modelica authoring to avoid scalarization 

with the new method and achieve compile times that are 

independent of array sizes (O(1) rather than O(n) or 

worse). 

Restriction 1: The model must be balanced with regards 
to non-scalarized variables and equations. The equation 

3 https://github.com/CIFASIS/modelicacc 
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number of a for loop is the number of equations in the 

loop. 

This restriction is illustrated using the CascadedFirstOrder 

model from the ScalableTestSuite4 (Casella 2015): 

tau*der(x[1]) = u - x[1]; 

for i in 2:N loop 

   tau*der(x[i]) = x[i-1] - x[i]; 

end for; 

Equations for tau and u are provided elsewhere. This 

equation set violates Restriction 1 and needs to be 

modified since the number of unknowns is one (der(x)) but 

there are two equations. It can, for example, be rewritten 

as: 

for i in 1:N loop 

   tau*der(x[i]) = (if i == 1 then u else x[i-1]) - x[i]; 

end for; 

or more compactly using the concatenation operator cat: 

tau*der(x) = cat(1, {u}, x[1:N-1]) - x; 

The cat function concatenates the array arguments, in this 

case along the first dimension. It means that the x vector 

is shifted upwards (x[N] omitted) and u is inserted as first 

element. Yet another possibility is to use a reduction 

expression. 

tau*der(x) = {(if i == 1 then u else x[i-1]) - x[i] for i in 1:N} 

 

Restriction 2: All elements of an array must be of the 

same kind (algebraic or differentiated). 

This means that a model such as a variant of the 

CascadedFirstOrder model from above: 

x[1] = u; 

for i in 2:N loop 

   tau*der(x[i]) = x[i-1] - x[i]; 

end for; 

violates Restriction 2 because x[1] is an algebraic variable 

and variables x[2:N] are variables appearing differentiated. 

Such a model needs to be rewritten in one of the forms 

shown above. In similar cases, arrays need to be split in 

different pieces so that all elements of an array are either 

algebraic or states. 

An equivalent model to the CascadedFirstOrder 

model can be made with an array of components: 

model FiltersInSeries 

    model Filter 

        input Real u; 

        output Real x; 

        parameter Real tau = 0.1; 

    equation 

        tau*der(x) = u-x; 

    end Filter; 

    parameter Integer N = 10 "Number of filters"; 

    Filter f[N](each x(start=0, fixed=true), 

                      u=cat(1, {1}, f[1:N-1].x)); 

end FiltersInSeries; 

                                                        
4 https://github.com/casella/ScalableTestSuite 

If all components in an array of components have the same 

causality, all component equations can be sorted together, 

i.e. that each equation in an array of components can be 

translated to a for loop over that equation (it is not 

important in this simple case since there is only one 

equation in each component). 

The outputs f.x[1:N-1] are shifted to form the inputs f.u 

together with the input 1 to the first filter. Handling 

acausal connectors is somewhat more complex. See the 

Transmission Line example in section 4.3. 

 

In section 5 more restrictions are discussed and there 

might be still more. Modiator never performs 

scalarization (also not internally) and therefore valid 
Modelica models might be rejected. The user should be 

able to understand how to rewrite the model equations 

from the error messages. The benefit is that generated 

code never contains scalarized equations or enrolled for-

loops, translation is faster and error messages are more 

compact since the elements of an array are not shown. 

3 Assignment without Scalarization 

This section gives an overview how to symbolically 

process array equations so that arrays can be resized after 

compilation - both for translated Modelica models and 

Functional Mockup Units (≥ version 3.0)5. The details of 

the new algorithms are presented in Appendix A. 

3.1 Model Unification 

In order to make symbolic processing simpler, the 

Modelica model is transformed by a model unification 

process similar to what is done in OpenModelica (Pop et 

al. 2019): 

• For-equations with multiple equations in the 

body are converted to potentially nested for-

equations with one equation in the body: 
for index-expression, … loop 

    equation 

end for; 

• Non-constant variables of arrays of components 

are transformed to array variables with outer 

indices according to the component array indices. 

• Each equation of an array of components is 

transformed to a for-loop over the equation. 

3.2 Structurally Assignable Property 

Afterwards, standard symbolic algorithms are used that 

operate, with some modifications on variable symbols. 

The following notation is used: 

• All variable symbols 𝑣𝑗 are collected in a variable 

vector 𝒗. A symbol 𝑣𝑗  may represent a scalar or an 

array of one or more dimensions. The first variable 𝑣0 

has index 𝑗 = 0  (as it is common in programming 

languages such as C, C++, Javascript). 

5 https://fmi-standard.org/docs/3.0.2/ 
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• All equations 𝑒𝑖 are collected in an equation vector 𝒆. 

An equation 𝑒𝑖 may be a scalar or an array equation 

of one or more dimensions with potentially a for-loop 

around it, as sketched above. The first equation 𝑒0 has 

index 𝑖 = 0. 

• The relationship between the equations 𝑒𝑖  and the 

variables 𝑣𝑗 is defined by a sparse representation of 

the incidence matrix that is defined as vector G, where 

each entry 𝐺𝑖 is a vector consisting of the indices of 

the variable symbols appearing in equation 𝑒𝑖. G can 

also be interpreted as a representation of a bi-partite 

graph. 

• The relationship between variable symbols is defined 

by the variable association vector 𝑨:  

   𝐴𝑗 = 𝐢𝐟 𝑣̇𝑗 = 𝑣𝑘  𝐭𝐡𝐞𝐧 𝑘 𝐞𝐥𝐬𝐞 − 1.  

• The relationship between the equations is defined by 

the equation association vector 𝑩:  

   𝐵𝑖 = 𝐢𝐟 𝑒̇𝑖 = 𝑒𝑘  𝐭𝐡𝐞𝐧 𝑘 𝐞𝐥𝐬𝐞 − 1. 

Additionally, the following new property needs to be 

defined for every variable in every equation: 

Definition 1: A variable  𝑣𝑗  is called structurally 

assignable with respect to an equation 𝑒𝑖, if a complete 

assignment is possible for all (scalar) elements of 𝑣𝑗 with 

respect to all (scalar) elements of 𝑒𝑖, provided 𝑣𝑗 and 𝑒𝑖 

are expanded to scalars and this property holds, 

independently of the common dimensions and dimension 

sizes of 𝑣𝑗 and 𝑒𝑖.  

In general, Definition 2 is difficult to apply. The 

following sufficient condition is easier to use: 

Theorem 1: A variable 𝑣𝑗 is structurally assignable with 

respect to an equation 𝑒𝑖, if 

• 𝑣𝑗 is a scalar and 𝑒𝑖 a scalar equation, or if 

• 𝑣𝑗 is an array and 𝑒𝑖 can be expressed as  

0 = 𝑠 ∙ 𝑣𝑗 + 𝑤, where 𝑠 is a scalar expression and 𝑤 

is a vector expression and neither 𝑠  nor 𝑤  are a 

function of 𝑣𝑗. 

Proof: (a) A scalar variable/equation is already expanded 

and therefore the scalar variable can be assigned. (b) If 𝑒𝑖 

is expressed as 0 = 𝑠 ∙ 𝑣𝑗 + 𝑤, the k-th element of 𝑣𝑗 can 

be assigned to the k-th element of 𝑒𝑖. ∎ 

The (new) structural assignable property is defined with 

vector 𝑮𝑎 , a companion vector of G, such that 𝐺𝑎,𝑖,𝑗 =

true , if variable 𝑣𝐺𝑖,𝑗
 is structurally assignable with 

respect to equation 𝑒𝑖 and otherwise 𝐺𝑎,𝑖,𝑗 = false. Note, 

every vector 𝐺𝑎,𝑖 must have at least one true value, since 

otherwise no variable can be assigned for equation 𝑒𝑖. 

The underlying DAE (Differential Algebraic 

Equations) of a model is defined as: 

𝒆(𝒗(𝑡), 𝑡) (1) 

where 𝑡 is time, the independent variable.  

The central goal in this section is to provide an 

algorithm, so that by differentiating equations and 

variables, appending them to 𝒆  and 𝒗 , and updating 

𝑨, 𝑩, 𝑮, 𝑮𝒂 , a complete assignment of the structurally 

assignable highest derivative variables is provided for all 

highest derivative equations, that is, every highest 

derivative equation is uniquely assigned to a structurally 

assignable highest derivative variable: 

𝑒𝑖(𝑣𝑗 , 𝑡);   
𝜕𝑒𝑖

𝜕𝑣𝑘
 is structurally  regular  for  

                  (𝐵𝑖 = −1, 𝐴𝑘 = −1, 𝐺𝑎,𝑖,𝑣𝑘
= true) 

(2) 

 

The result of the assignment is reported in vector assign, 

such that 𝑎𝑠𝑠𝑖𝑔𝑛𝑘 = 𝑖, where 𝑖 is the index of a highest 

derivative equation, that is 𝐵𝑖 = −1 , and 𝑣𝑘  is a 

structurally assignable highest derivative variable, i.e., 

𝐴𝑘 = −1, and 𝐺𝑎,𝑖,𝑣𝑘
= true (,𝑣𝑘

 is the index of variable 

k in 𝐺𝑎,𝑖 ). If all variables and equations are scalarized, 

so 𝐺𝑎,𝑖,𝑣𝑘
= 𝑡𝑟𝑢𝑒  for all the scalarized variables and 

equations, then there are several (standard) algorithms to 

derive (2) from DAE (1), see for example (Otter, Elmqvist 

2017, section 3.1). 

The notation above is clarified with the cascaded first 

order model in vector notation from section 2, where the 

equation u = 1 is additionally added: 

Table 1: Notation for vectorized CascadedFirstOrder model 

(T means true, F means False). 

𝑒0 u = 1 

𝑒1 tau*der(x) = cat(1, {u}, x[1:N-1]) - x 

𝑩 [-1,-1]  // no equation appears differentiated 

𝑣0 u 

𝑣1 x 

𝑣2 der(x) 

𝑨 [-1,2,-1]  // the derivative of x is der(x) 

𝐺0 [0]        // 𝑒0 is a function of u 

𝐺1 [0,1,2]  // 𝑒1 is a function of u, x, der(x) 

𝐺𝑎,0 [T]        // 𝑒0 is structurally assignable for u 

𝐺𝑎,1 [F, F, T] // 𝑒1 is struct. assignable for der(x) 

Using the algorithm given in Appendix A.1, a complete 

assignment (2) for the problem formulation in Table 1 is 

derived, yielding the following result: 

assign = [0, -1, 1]   // 𝑣0 assigned to 𝑒0, 𝑣2 to 𝑒1 

This assignment holds for any valid dimension N (for 

N=1, the model is not valid due to x[1:N-1]). With the 

algorithms sketched in Appendix A.4, the following 

sorted and solved assignment statements can be derived:  

u := 1  

der(x) := (cat(1, {u}, x[1:N-1]) – x)/tau 

and corresponding code generated. The translation time is 

independent of dimension N and N can be changed after 

translation! 
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3.3 Differentiation of Equations 

In order to derive (2) from DAE (1), equations might need 

to be differentiated. For scalarized variables and equations 

several (standard) algorithms are available, see for 

example (Otter, Elmqvist 2017, section 3.1). These 

algorithms need to be extended to take the new 

structurally assignable property 𝑮𝑎  into account. In 

Appendix A.1, it is shown how to extend the algorithm of 

Pantelides (1988) in this respect.  

Consider the following simple yet non-trivial 

example: 

Model 1: Model that needs to be differentiated. 
  Model ModelThatNeedsToBeDifferentiated 

    Real n[3]; L, e[3]; r[3]; 

    Real s(start=1, fixed=true); 

  equation 

      L = sqrt(n*n); 

      e = 2*n/L; 

      r = e*s; 

      e*der(r) = der(s) - s; 

      n = {1, 2, sin(time)}; 

  end ModelThatNeedsToBeDifferentiated; 

This model has the following structurally assignable 

properties: 

equations structurally assignable 

L = sqrt(n*n); 

e = 2*n/L; 

r = e*s; 

e*der(r) = der(s) - s; 

n = {1, 2, sin(time)}; 

L 

e, n 

r, s 

der(s)  

n 

With the enhanced Pantelides algorithm of Appendix A.1 

the following complete assignment of differentiated 

equations can be derived: 

assigned highest derivative equations 

der(L) 

der(e) 

der(r) 

der(s) 

der(n) 

der(L) = 0.5*(n*n)^-0.5*(der(n)*n + n* der(n)) 

der(e) = (2* der(n)*L - 2*n* der(L))/L^2 

der(r) = der(e)*s + e* der(s) 

e*der(r) = der(s) - s 

n = {0,0, cos(time)} 

In section 4, several application examples are given that 

demonstrate the usefulness of the new approach. 

3.4 Improved Error Diagnostics 

If a Modelica model is erroneous, in many cases tools 

provide error messages that make it difficult to figure out 

the reason for the problem. For example, Modelica tools 

could provide an error message of the following kind 

which is quite useless: The problem is structurally 

singular. It has 2046 scalar unknowns and 2045 scalar 
equations. The error messages have improved over time, 

but they are often still not helpful enough. In Appendix 

A.3, a new, simple algorithm is sketched to significantly 

improve error diagnostics. Take for example the 

following model which contains several errors:

 

Model 2. Model having several errors. 

model SeveralErrors 

  Real v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11; 

equation 

  der(v1) = -v1; 

  der(v2) = -v3; 

  v3 = -1; 

  v3 = 3 + v2; 

 

  der(v4) = -v4 + v1; 

  der(v5) = -v5 - v4; 

  v5 = 2; 

 

  der(v6) = -v6 + v7; 

  der(v7) = -v8 + v9; 

  0 = v7 + v8 + v9; 

end SeveralErrors; 

Modiator provides the following error message. 

 

Figure 1. Modiator error message for Model 2. 

The first message states, that one equation is missing to 

compute variable v9 and the equations are listed in which 

this variable appears. All of these equations are already 

assigned, so it is impossible to assign for v9. Most likely, 

just an equation for v9 is missing and should be added. 

Modiator lists these types of error messages first, because 

little output is expected, since a variable typically only 

appears in a few equations. 

The second message states that two equation sets are 

wrong. Since many equations might be involved, more 

information is only given for the set with the smallest 

number of equations. For this set, first the equation is 

listed that makes the following set of equations 

overdetermined. This equation cannot get an assignment 

because there is one equation too many in this set. 

Afterwards, all the other (already assigned) equations are 

listed together with their assignment. 

Note, the output of the error messages is not unique 

and a different initial ordering of the equations can display 

a different message (e.g. instead of v9, variable v8 could 

be listed). However, the important point is that the error 

message either points to one problematic variable or to 
one problematic equation, to help the user identifying the 

issue. 
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4 Application Examples 

4.1 Heat Exchanger 

The ScalableTestSuite and LargeTestSuite6 of (Casella, 

2015) contain cocurrent heat exchanger models with 

different numbers of segments from 10 to 81920. The 

compilation time in Modiator is essentially independent 

of n: about 11 milliseconds. The simulation results for 

n=10 are shown in Figure 1, and n can be changed after 

compilation. 

 

 

Figure 2. Simulation results for the cocurrent heat exchanger 

model with 10 segments from the ScalableTestSuite. 

A small modification of the model was needed. The 

equations: 

TA[1] = if time < 8 then 300 else 301; 

TB[1] = 310; 

for i in 2:N loop 

  TA[i] = TAtilde[i - 1]; 

  TB[i] = TBtilde[i - 1]; 

end for; 

were replaced by: 

TA = cat(1, {if time < 8 then 300 else 301}, TAtilde) 

TB = cat(1, {310}, TBtilde) 

in order to comply with Restriction 1. 

4.2 Shock Waves 

Capturing shock waves typically needs a large number of 

grid points, i.e. benefits substantially by using the 

described array preserving technique. Consider the water 

hammer model, Model 3, using only array equations. The 

valve at the end of the pipe closes at time=0.01 inducing 

a shock wave. The number of grid points n can be changed 

after compilation. 

 
Model 3: Modelica Water Hammer model capturing shock 

waves from Clément Coïc. 

model WaterHammer 

    parameter Integer n=10; 
    parameter Real L=100 "Length of the pipe (m)"; 

    parameter Real A=3.1415*D^2/4 "Cross-sect. area of pipe (m^2)"; 

    parameter Real rho=1000 "Density of water (kg/m^3)"; 
    parameter Real B=21e8 "Bulk modulus of water (Pa)"; 

    final parameter Real c=sqrt(B/rho) "Speed of sound in water (m/s)"; 

    parameter Real tClose=0.01 "Time at which the valve closes (s)"; 
    parameter Real Q0=0.0002 "Initial flow rate (m^3/s)"; 

                                                        
6 https://github.com/casella/ScalableTestSuite 

    final parameter Real dx=L / n "Length of each pipe segment (m)"; 

    final parameter Real dt=dx / c "Time step for stability (s)"; 

    parameter Real f=0.05 "Darcy-Weisbach friction factor (dim.less)"; 

    parameter Real D=0.05 "Pipe diameter (m)"; 
    Real p[n+1](start=fill(3e5, n+1), fixed=true) "Press. at each node (Pa)"; 

    Real Q[n] "Flow rate in each segment (m^3/s)"; 

    Real V[n](start=fill(0.1, n), fixed=true) "Speed of flow (m/s)"; 
    Real Qend "Flow rate at the end of the pipe (m^3/s)"; 

    Real QPlusEnds[n+2]; 

    Real valveOpen "1 if valve is open, 0 if closed"; 
equation 

    Q = V*A; 
    valveOpen = if time < tClose then 1 else 0; 

    Qend = Q0 * valveOpen; 

    der(V) = -(p[2:n+1] - p[1:n]) / (rho * dx) - (f / (2 * D)) .* V .* abs(V); 
    QPlusEnds = cat(1, {Q[1]}, Q, {Qend}); 

    der(p) = B*(-(QPlusEnds[2:n+2] - QPlusEnds[1:n+1]) / (A * dx)); 

  annotation(experiment(StopTime=0.3)); 
end WaterHammer; 

Figure 3 plots the pressures against time. 

 

Figure 3. Pressures of WaterHammer model. 

Such time plots do not convey the wave behavior very 

well. It is better to show the pressure profile over the pipe 

at different times, Figure 4. Spline interpolation is used 

to smooth the curve over the 51 spatial points (n=50). The 

pressure wave traverses from right to left. After about 72 

milliseconds, the wave starts returning (green curve): 

 

Figure 4. Spatial plot of pressures of WaterHammer model. 

4.3 Transmission Line 

Consider the transmission line element of Figure 5. It is a 

regular structure of connected electrical components 

(Resistor, Inductor, Conductor and Capacitor). Such a 

device can be modeled in Modelica using arrays of 

components and a for-loop for connections. A voltage 

source is connected to the first segment and a resistance 

load to the last segment: 
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Figure 5. Image of transmission line element from Wikimedia7 

Model 4: TransmissionLine 

modeled with arrays of components. 
model TransmissionLine 

    import Modelica.Electrical.Analog.Basic; 

    model TransmissionLineSegment 

        parameter Real dx = 1 "Length of the segment in meters"; 

        parameter Real resistancePerMeter = 0.01; 

        parameter Real inductancePerMeter = 0.001; 

        parameter Real capacitancePerMeter = 1e-9; 

        parameter Real conductancePerMeter = 1e-6; 

 

        Modelica.Electrical.Analog.Interfaces.Pin p; 

        Modelica.Electrical.Analog.Interfaces.Pin n; 

 

        Basic.Resistor r(R=resistancePerMeter*dx); 

        Basic.Inductor l(L=inductancePerMeter*dx); 

        Basic.Capacitor c(C=capacitancePerMeter*dx); 

        Basic.Conductor g(G=conductancePerMeter*dx); 

        Basic.Ground ground; 

    equation 

        connect(p, r.p); 

        connect(l.n, g.p); 

        connect(g.p, c.p); 

        connect(c.p, n); 

        connect(r.n, l.p); 

        connect(g.n, c.n); 

        connect(c.n, ground.p); 

    end TransmissionLineSegment; 

 

    parameter Integer N = 10 "Number of segments"; 

    parameter Real length = 1000 "Length of in meters"; 

 

    TransmissionLineSegment segments[N](dx=fill(length/N, N)); 

 

    Basic.Ground ground; 

    Basic.Resistor load(R=100); 

    Modelica.Electrical.Analog.Sources.ConstantVoltage 

         source(V=10); 

equation 

    // Connect the segments in series 

    for i in 1:N-1 loop 

        connect(segments[i].n, segments[i+1].p); 

    end for; 

 

    // Connect the first segment to the source 

    connect(source.p, segments[1].p); 

    connect(source.n, ground.p); 

 

    // Connect the last segment to the load 

    connect(segments[N].n, load.p); 

    connect(load.n, ground.p); 

end TransmissionLine; 

 

                                                        
7 

https://commons.wikimedia.org/wiki/File:Transmission_lin

e_element.svg 

In order to avoid recompilation of this model when N is 

changed, the connect statements are manually expanded. 

Since segments[N].n is connected to a capacitor having a 

state, the voltages are copied to the right (n to p) with the 

first element coming from source.p via a node nSource 

(since source.p needs to be connected, otherwise source.p.i 

would be zero). The currents are copied from p to n with 

the last current coming from load.p.i via the node nLoad. 

segments.p.v = cat(1, {nSource.v}, segments.n.v[1:N-1]); 

segments.n.i = -cat(1, segments.p.i[2:10], {nLoad.i}); 

 

nSource.i = segments.p.i[1]; 

nLoad.v = segments.n.v[N]; 

 

connect(source.p, nSource); 

connect(source.n, ground.p); 

 

connect(load.p, nLoad); 

connect(load.n, ground.p); 

The compilation time is about 50 milliseconds 

independent of n. The resulting voltages over the 

capacitors are shown in Figure 6. 

 

Figure 6. Capacitor voltages. 

It should be noted that enabling changes to the 

discretization after compilation relied on certain specific 

properties of the model. The capacitor to the right of the 

TransmissionLineSegment enabled simultaneous copying 

of all voltages to the right in one array equation. 

Correspondingly due to the inductor to the left, all 

currents could be copied simultaneously in one array 

equation to the left. 

4.4 Adaptive Grid 

An important advantage of not recompiling when array 

dimensions change is that a model can refine itself, as 

shown in the example of this section. 

An insulated rod model is shown below and a plot of 

a simulation in Figure 7. It changes the number of 

segments at time=2000 and time=4000. The changes 

could also be triggered by detecting some transient 

behavior.  
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Model 5: Insulated rod model with adaptive grid. 

model InsulatedRod_gradient "Insulated rod with gradient" 

    import SI = Modelica.Units.SI; 

    parameter SI.Length L=1 "lenght of rod"; 

    parameter SI.Area A=0.0004 "area of rod"; 

    parameter SI.Density rho=7500 "density of rod material"; 

    parameter SI.ThermalConductivity lambda=74  

                                          "thermal conductivity of material"; 

    parameter SI.SpecificHeatCapacity c=450  

                                          "specifc heat capacity"; 

    parameter SI.Temperature T0=293 "initial temperature"; 

    parameter Integer nT(min=2)=4 "number of inner nodes"; 

    SI.Temperature T[nT](start={300, 297.5, 295, 292.5},  

                      each fixed=true) "temperatures at inner nodes"; 

    SI.HeatFlowRate Q_flow[nT+1]; 

    Real dx; 

    Real k1; 

    Real k2; 

    Real k3; 

    Real port_a_Q_flow; 

    Real port_b_Q_flow; 

    SI.Temperature port_a_T; 

    SI.Temperature port_b_T; 

equation 

    dx = L/nT; 

    k1 = lambda*A/dx; 

    k2 = rho*c*A*dx; 

    k3 = 2*k1; 

    // Connection equations 

    port_a_T = if time<2000 then 300 else 320; 
    port_b_Q_flow = 0; 

    // Acausal part (assignment depends on connection) 

    port_a_Q_flow = k3*(port_a_T - T[1]); 

    port_b_Q_flow = k3*(T[nT] - port_b_T); 

    // Causal part (assignment does not depend on connection) 

    Q_flow = cat(1, {port_a_Q_flow}, k1*(T[1:nT-1] - T[2:nT]), 

                               {port_b_Q_flow}); 

    der(T) = (Q_flow[1:nT] - Q_flow[2:nT+1])/k2; 

    when time > 2000 then 

        ast.setParameter("nT", 8); 

        ast.setStart("T", interpolate(8, T)); 

    end when; 

    when time > 4000 then 

        ast.setParameter("nT", 6); 

        ast.setStart("T", interpolate(6, T)); 

    end when; 

    annotation(experiment(StopTime=5000)); 

end InsulatedRod_gradient; 

A new function ast.setParameter is used to change the grid 

resolution. Since the state vector changes, new start values 

for the states are given using ast.setStart. A function 

interpolate is interpolating the temperatures from 4 points 

to 8 and back to 6. This function considers how the grid 

points are distributed along the staggered grid. This 

explains why the curves have discontinuities since T[i] 

refers to different positions along the rod when nT 

changes.  

 

Figure 7. Simulation results of the temperature nodes along an 

insulated rod. At time=2000 and time=4000 the number of 

segments is changing from 4 to 8 to 6. 

5 Reformulation of Array Equations 

In this section, valid Modelica models are presented that 

are rejected by the algorithm of Appendix A.1. It is 

shown how to reformulate the equations in order that code 

can be generated. 

5.1 Linear Equation Systems 

Consider the following valid Modelica model that 

contains a linear system of equations 

Model 6: Model with a linear system of equations. 
  model ModelWithLinearSystemOfEquations 

    parameter Real n[2] = {1,2}; 

    parameter Real A[2,2]= [1,2;3,4]; 

   Real y1[2]; 

   Real y2[2]; 

  equation 

    y1 = n*time; 

    A*y2 = y1; 

  end ModelWithLinearSystemOfEquations; 

Modiator prints the following error message: 

 

The listed equation must be reformulated, since (a) an 

equation is missing to compute variable y2, (b) variable 

y2 appears only in this equation and no variable is 

assigned to this equation. Note, that y2 is not structurally 

assignable according to Theorem 1. The remedy is to 

explicitly solve the linear equation system in the model: 

  equation 

    y1 = n*time; 

    y2 = Modelica.Math.Matrices.solve(A,y1); 

5.2 Models That Must Be Scalarized 

There are various kinds of Modelica models that can only 

be processed if array variables and equations are 

scalarized in the generated code. A simple example is 

shown in the following model: 
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Model 7: Model where array variables and equations 

need to be scalarized. 

  model ModelThatRequiresScalarization 

    parameter Real n[:]={1,2,3}; 

    Real s(start=1, fixed=true); 

    Real r[3]; 

  equation 

      r = n*s; 

      der(r)*n = -s; 

  end ModelThatRequiresScalarization; 

Modiator prints the following error message: 

 

So, the error message states that the listed equation is 

differentiated too often and that the likely reason is that 

array variables in this equation must be scalarized, which 

is not done in Modiator. If the array variables and 

equations are scalarized, the following assignment is 

possible: 

assigned highest derivative equations 

der(s) 

der(r[2]) 

der(r[3]) 

der(r[1]) 

der(r[1]) = n[1]*der(s) 

der(r[2]) = n[2]*der(s) 

der(r[3]) = n[3]*der(s) 

der(r[1])*n[1]+der(r[2])*n[2]+der(r[3])*n[3]=-s 

However, it is not possible to convert the scalarized 

variables and equations back into array variables and 

equations. One remedy is to split variable r1 and the first 

equation in two pieces: 

Model 8: Reformulation of Model 7 in order that array 

variables and equations can be kept 

without expansion in the generated code.  

  model ChangedModelThatRequiredScalarization 

    parameter Real n1 = 1; 

    parameter Real n2[:] = {2,3}; 

    Real s(start=1, fixed=true); 

    Real r1; 

    Real r2[size(n2,1)]; 

  equation 

      r1 = n1*s; 

      r2 = n2*s; 

      der(r1)*n1 + der(r2)*n2 = -s; 

  end ChangedModelThatRequiredScalarization; 

An assignment is now possible without expanding array 

variables and equations: 

assigned highest derivative equations 

der(s) 

der(r2) 

der(r1) 

der(r1) = n1*der(s) 

der(r2) = n2*der(s) 

der(r1)*n1+der(r2)*n2 = -s 
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5.3 Mechanical Systems 

In the following simple model, a mass is sliding along a 

given direction in 3D space: 

Model 9: 3D sliding mass model that requires scalarization. 

model SlidingMass3DrequiringScalarization 

  parameter Real m=1 "Mass of body"; 

  parameter Real n[3] = {1,0,1}/sqrt(2) "Sliding direction"; 

  parameter Real g[3] = {0,0,-9.81} "Gravity acceleration"; 

  Real r[3] "Position"; 

  Real v[3] "Velocity"; 

  Real f[3] "Constraint force of prismatic joint"; 

  Real s "Generalized coordinate of prismatic joint"; 

equation 

  r = n*s; 

  v = der(r); 

  m*(der(v)-g) = f; 

  0 = n*f; 

end SlidingMass3DrequiringScalarization; 

Modiator prints the following error message: 

 

The reason is that the scalar equation 0 = n*f contains only 

array variables and therefore none of these variables is 

structurally assignable. 

In (Elmqvist and Otter 2017, section 3), it is shown 

that array variables and equations of mechanical systems 

must be at least internally expanded in order that 

processing is possible. After symbolic processing, it is 

usually possible to recover the non-expanded forms. Since 

the algorithm in Appendix A.1 does not expand array 

variables and equations, existing 3D mechanical models, 

such as those from the Modelica.Mechanics.MultiBody8 

library, cannot be processed by Modiator. For tree-

structured mechanical systems it is easy to fix this issue in 

the following way: 

A tree-structured mechanical system with 𝒒  the 

vector of generalized minimal coordinates (= generalized 

coordinates in the joints) and 𝒖 the generalized forces (= 

generalized forces in the joints) is described by the 

following equation: 

𝑴(𝒒)𝒒̈ + 𝒉(𝒒, 𝒒̇) = 𝒖;     𝑴 = 𝑴𝑇 ≥ 0 (3) 

In object-oriented modeling, where bodies, joints and 

other objects can be connected together in a nearly 

arbitrary fashion, it is easy to define a system where the 

symmetric mass matrix 𝑴 is positive semi-definite (that 

is, it is singular) instead of positive definite as postulated 

by mechanical principles. Examples: 

• A non-zero mass and a zero inertia-matrix is defined 

for a body, and the connection structure allows 

rotations of the body. 
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• A chain of mechanical objects ends with a joint and 

not with a body. 

• More as 3 revolute joints are connected directly 

together, without having a body between the joints. 

Let's subtract a small term 𝜀𝑚𝒒̈  from the generalized 

forces 𝒖, where the scalar 𝜀𝑚 ≥ 0: 

𝑴(𝒒)𝒒̈ + 𝒉(𝒒, 𝒒̇) = 𝒖 − 𝜀𝑚𝒒̈ (4) 

or 

(𝜀𝑚𝑰 + 𝑴(𝒒))𝒒̈ + 𝒉(𝒒, 𝒒̇) = 𝒖 (5) 

where 𝑰  is the unit-matrix. The new mass matrix is 

positive definite (that is, regular) if 𝜀𝑚 > 0. This follows 

from its positive quadratic form:  

𝒙𝑇(𝜀𝑚𝑰 + 𝑴)𝒙 = 𝜀𝑚𝒙𝑇𝒙 + 𝒙𝑇𝑴𝒙 > 𝟎, if |𝒙| > 𝟎 (6) 

since 𝜀𝑚𝒙𝑇𝒙 > 𝟎  and 𝒙𝑇𝑴𝒙 ≥ 𝟎 . Therefore, the 

mentioned issues can no longer occur if 𝜀𝑚 > 0 and a 

mechanical model in Modelica becomes more reliable 

against user errors. Note, the original multibody system is 

unchanged, if 𝜀𝑚 = 0 . Processing with unexpanded 

arrays becomes possible by adding a corresponding term 

to the joints of a Modelica model, as shown exemplarily 

by the following modified version of the sliding mass 

model: 

Model 10: Changed Model 9 in order that assignment is 

possible without expanding arrays. 

model SlidingMass3D 

  ... 

  parameter Real eps_m(min=0) = 0 "Small mass in joint"; 

equation 

  r = n*s; 

  v = der(r); 

  f = m*(der(v)-g); 

  sd = der(s);  

  0 = n*f + eps_m*der(sd); // der(sd) structurally assignable 

end SlidingMass3D; 

The last (scalar) equation is now structurally assignable 

for the scalar der(sd). With the algorithm of Appendix A.1 

the following assignment can be derived: 

assigned highest derivative equations 

der(der(r)) 

der(v) 

f 

der(der(s)) 

der(sd) 

der(der(r)) = n* der(der(s)) 

der(v) = der(der(r)) 

f = m*(der(v)-g) 

der(sd) = der(der(s)) 

0 = n*f + eps_m*der(sd) 

When sorting these highest derivative equations, an 

algebraic loop is identified that corresponds to (5). The 

equations can be, for example, transformed in the 

following linear equation in one unknown: 

input: der(sd)  // tearing variable 

output: residue 

der(der(s)) := der(sd) 

der(der(r)) := n*der(der(s)) 

der(v) = der(der(r)) 
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f := m*(der(v)-g) 

residue := n*f + eps_m*der(sd) 

Inserting all terms in the last equation and setting 

residue=0, results in one linear equation with der(sd) as 

unknown: 

(eps_m + m*(n*n))*der(sd) = m*(n*g) 

Note, if arrays are no longer expanded for mechanical 

systems, the number of modes of analytically described 
elastic bodies, such as beams or plates, can be changed 

after translation! 

6 Conclusions 

The Modelica Web-App Modiator (Elmqvist and Otter, 

2025) does not expand arrays of equations, for loops or 

arrays of components in order to speed up translation and 

avoid recompilation when array changes are made. The 

needed restrictions have been described, translation 

techniques have been outlined, and several presented 

model examples show the benefits of this new method. As 

a result, the Modiator Web-App has compilation times 

independent of array sizes (O(1) instead of O(n) or worse) 

and arrays can be resized after compilation. 

Special emphasis has been put on enabling index 

reduction without scalarization for models described by 

array equations. The developed extensions of the 

Pantelides algorithm are utilized in Modiator and allow 

index reduction directly on array equations without 

expanding arrays (also not internally). The algorithm is 

described and the proofs of its properties are given. The 

needed changes to the symbolic processing of a Modelica 

tool are modest and reasonable diagnostics can be given 

if index reduction and/or assignment fails by pointing to 

the equations and arrays that need to be changed, in order 

that processing is possible without expanding array 

equations and arrays. 

The enhanced algorithms presented in the Appendix, 

together with tests for some of the models in this paper, 

are also provided in Javascript format in file assign-

highest-derivatives-test.html in the accompanying zip-

file. Dragging this file into a web browser will execute the 
tests and display the test results in the web browser 

window. 
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Appendix A  

In this appendix, the enhancements of standard algorithms 

are sketched to find a complete assignment (2) for a DAE 

(1) without expanding array variables and equations. 

A.1 Assign Highest Derivatives 

Starting point is the algorithm of Pantelides (1988). The 

modified algorithm is provided in Javascript format 

(which is nearly the same as C/C++ format here) in the 

following listing. The yellow parts are deviations from 

(Pantelides, 1988) and are discussed below: 

Listing 1: Function assignHighestDerivatives in Javascript 

format to determine highest derivative equations that have a 

complete assignment with respect to structurally assignable 

highest derivative variables. Yellow parts are deviations from 

(Pantelides, 1988). 

a1 function assignEquation(i, 

                                   G,Ga,assign,vColor,eColor,vInspect){ 

  const Gi = G[i] 

  const Gai = Ga[i] 

  eColor[i] = true 

  for (let j=0; j<Gi.length; j++) { 

     const v = Gi[j] 

     if(vInspect[v] === -1 && assign[v] === -1 && Gai[j]){ 

        assign[v] = i; 

        return true}} 

  for (let j=0; j<Gi.length; j++) { 

     const v = Gi[j] 

     if (vInspect[v] === -1 && assign[v] > -1 && !vColor[v] 

                                                                        && Gai[j])  { 

        vColor[v] = true 

        if (assignEquation(assign[v], 

                                  G,Ga,assign,vColor,eColor,vInspect)) { 

           assign[v] = i; 

           return true}} 

  } 

  return false 

} 

a2 export function assignHighestDerivatives(G,Ga,A) { 

  let nA  = A.length 
  let nB  = G.length 

  const assign = Array(nA).fill(-1) 

  const B         = Array(nB).fill(-1) 

  const eColor = Array(nB) 

  const vColor = Array(nA) 

a3   function colorEquation(i) { 

     eColor[i] = true 

     for (const v of G[i]) { 

        if (A[v] === -1 && assign[v] > -1 && !vColor[v] 

                                 && B[assign[v]] === -1) { 

           vColor[v] = true 

           colorEquation(assign[v])} 

     } // end for 

  } 

a4   const nB_initial = nB 

  for (let k = 0; k < nB_initial; k++) { 

     let i = k 

     while (true) { 

        eColor.fill(false) 
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        vColor.fill(false) 

        if (assignEquation(i,G,Ga,assign,vColor,eColor,A)) break 

a5         for (let j=0; j<nB; j++) { 

           if (eColor[j] && Ga[j].some(val=>val===false)){ 

             colorEquation(j)}}} 
 

a6         for (let j=0; j<nB; j++) { 

           if (eColor[j]) { 

              nB++; B.push(-1); B[j]=nB-1; 

              for (const v of G[j]) { 

                 if (A[v] === -1) { 

                   nA++; A.push(-1); A[v]=nA-1; assign.push(-1)}} 

              G.push( Gj.map(m => A[m]) ) 

              Ga.push( Ga[j] )}} 

        for (let j = 0; j < nA; j++) { 

           if (vColor[j]) assign[A[j]] = B[assign[j]]} 

a7         i = B[i] 

        eColor.length = nB 

        vColor.length = nA 

     } // end while 

a8   } // end for 

  return [assign,B]} 

Utility function assignEquation(i,...), see code block (a1), is 

basically function AUGMENTPATH of (Pantelides, 

1988). The function inspects all variables v of equation i 

that are structurally assignable and have vInspect[v] = -1. It 

returns true if a v is assigned to equation i and otherwise it 

returns false. If false is returned, the following property 

holds: 

Theorem 2: If assignEquation returns with false, the 
equations with eColor[k] = true are minimally structurally 

singular with respect to the variables with vColor[k] = true 

(these variables are structurally assignable with respect 
to the assigned equations). 

Proof: Follows from the proof of Lemma 3.3 of 

(Pantelides, 1988), with the only difference that a subset 

of the variables is inspected (variables that are structurally 

assignable and have vInspect[v] = -1, i.e. are highest 

derivative variables since A is passed to the function as 

vInspect). ∎ 

This property means that the colored equations are the 

smallest subset that need to be differentiated. This subset 

has more equations than variables and therefore 

differentiating this subset will introduce more new 

equations as it will introduce more new variables. 

The core function assignHighestDerivatives, see code 

blocks (a2-a9), inspects all equations in sequence. For 

every equation, function assignEquation is called with 

vInspect = A, that is only highest derivative variables are 

inspected, see last statement in code block (a4). If the 

function returns true, the next equation is inspected. 

Otherwise, a while loop iterates over the function call, 

until an assignment is found. If assignEquation returns false, 

the colored set of equations needs to be differentiated. 

Colored equations that have at least one highest 

derivative variable that is not structurally assignable are 

inspected by calling the function colorEquation on them, see 

code blocks (a5,a3). This function colors additional 

equations that need to be differentiated. Assume for 

example, that equation j colored by assignEquation has a 

highest derivative variable v that is not structurally 

assignable with respect to equation j, is already assigned, 

is not colored and the equation to which v is assigned is a 

highest derivative equation. If equation j is differentiated, 

then v is also differentiated, but without differentiating the 

highest derivative equation assign[v], because this equation 

was not colored by assignEquation. The construction of 

code blocks (a5,a3) ensures, that these assigned equations 

are also colored and are thus differentiated. Note, this 

additional equation coloring appears, for example, in 

Model 1 from section 3.3. 

In code block (a6), the data structures G,Ga,A,B,assign 

are appended with new entries that include the incidences 

of the equations and the highest derivative variables that 

will appear when the equations are differentiated. This 

part is nearly identical to code block (3b-5) of 

ALGORITHM 4.1 of (Pantelides, 1988). The essential 

difference is that in (3b-5) of (Pantelides, 1988) first all 

colored variables are appended to A before G,B are 

updated. However, this is not possible here, because a 

colored equation j may have a variable v that is not 

structurally assignable and that is not assigned. When 

differentiating equation j, v is differentiated as well, but 

the differentiated v may not yet exist because it was not 

colored. For this reason, A is updated when the incidence 

of the differentiated equation j is appended to G. The 

remaining part of the code is identical to ALGORITHM 

4.1 of (Pantelides, 1988). Function assignHighestDerivatives 

returns the newly constructed arrays assign,B via the return 

statement, and the updated arrays G,Ga,A via the argument 

list.  

A.2 Assign Extended System 

Since assignHighestDerivatives has a while loop, the question 

arises whether this loop will terminate for all inspected 

equations. In (Pantelides, 1988) an extended system 𝑬𝑮 =

[
𝑮

𝑮ℎ
]  is analyzed consisting of 𝑮  and of the incidence 

matrix 𝑮ℎ  of additional equations 0 = ℎ𝑖(𝑣𝑖 , 𝑣̇𝑖)  for 

every variable 𝑣𝑖  appearing differentiated. A 

corresponding matrix 𝑬𝑮𝒂 = [
𝑮𝑎

𝑮ℎ,𝑎
] defines whether the 

elements of 𝑬𝑮 are structurally assignable or not. Hereby, 

all elements of 𝑮ℎ,𝑎 representing the new equations ℎ𝑖 are 

true. 

Theorem 3: If 𝑮𝑎 has only 𝑡𝑟𝑢𝑒 values then the while loop 

in function assignHighestDerivatives terminates for all 

inspected equations after a finite number of iterations if 

and only if the extended system 𝑬𝑮  is structurally 

nonsingular. In such a case, the highest derivative 

equations of 𝑮 have a complete assignment with respect 

to the highest derivative variables. If 𝑬𝑮 is structurally 

singular, then the underlying DAE (1) has no solution 

since it is impossible to find a set of consistent initial 

conditions. 
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Proof: This is Theorem 4.2 of (Pantelides, 1988) 

formulated with the notation of this paper. ∎ 

Unfortunately, this strong property does no longer hold, if 

one or more elements of 𝑮𝑎  are false , that is, not all 

variables are structurally assignable. This is demonstrated 

with the simple example of Model 7 of section 3.3. A 

complete assignment of the extended system 𝑬𝑮  with 

respect to all structurally assignable variables is possible: 

assigned equations of extended system 

r  

s 

der(r) 

r = n*s 

der(r)*n = -s 

0 = h(r, der(r)) 

Analyzing the equations of Model 7 with function 

assignHighestDerivatives results in the following sequence of 

assignments: Function assignEquation returns false for r = n*s 

because r is not a highest derivative variable and s is not 

structurally assignable. Therefore, this equation is 

differentiated leading to the new highest derivative 

equations: 

assigned highest derivative equations 

der(r)  

 --- 

der(r) = n*der(s) 

der(r)*n = -s 

Function assignEquation returns false for der(r)*n = -s because 

der(r) is not structurally assignable and s is no highest 

derivative variable. Differentiating this equation and 

additionally the first equation due to code block (a5), 

results in the following new highest derivative equations: 

 

assigned highest derivative equations 

der(der(r)) 

--- 

der(der(r)) = n*der(der(s)) 

der(der(r))*n = - der(s) 

A similar situation as in the previous step occurs: The 

second equation needs to be differentiated, because 

der(der(r)) is not structurally assignable and der(s) is no 

highest derivative variables. Also, the first equation is 

differentiated due to code block (a5). As a result, an 

infinite number of differentiations occurs.  

If instead, variables r and n are expanded, the highest 

derivative equations are identified and assigned as shown 

in section 3.3. As can be seen, it is not possible for this 

model to have an assignment of structurally assignable 

variables without expanding array variables and array 

equations. ∎ 

The consequence is that the number of iterations of the 

while loop in function assignHighestDerivatives must be 

explicitly limited and when this limit is reached, the 

function either returns with an error or the model is 

processed again with all arrays expanded. Assume that the 

following assumption holds (which is checked before 

function assignHighestDerivatives is called): 

Assumption 1: The number of equations 𝑒𝑖  of the 

underlying DAE (1) is identical to the number of highest 

derivative variables, so variables 𝑣𝑗 that have 𝐴𝑗 = −1. 

then the following theorem states the property of the 

return result of function assignHighestDerivative: 

Theorem 4: The highest derivative equations of 𝑮 have a 
complete assignment with respect to their structurally 

assignable highest derivative variables, if Assumption 1 

holds and the while-loop in function assignHighestDerivatives 
terminates after a finite number of iterations for all 

inspected equations. 

Proof: If the function returns successfully, then all 

underlying equations have been inspected once, due to the 

for-loop of code block (a4). Since every equation gets an 

assignment for a structurally assignable highest derivative 

variable that is not yet assigned, due to code block (a1), all 

equations are assigned for highest derivative variables 

that are structurally assignable. This assignment does not 

influence already assigned equations, because otherwise 

these equations would have been colored and then 

differentiated together with the not-yet assigned equation 

and their assigned variables would have been 

differentiated correspondingly. Due to Assumption 1, all 

highest derivative variables or derivatives of them are 

assigned because the same number of equations get an 

assignment.∎ 

If the while-loop does not terminate, then either the DAE 

(1) has no unique solution, or a complete assignment with 

respect to expanded arrays is possible.  

In order that meaningful diagnostics can be given, the 

following theorem is utilized: 

Theorem 5: If the extended System 𝑬𝑮  is structurally 

singular with respect to the structurally assignable 

variables, the while-loop does not terminate for at least 

one of the inspected equations. 

Proof: Follows from the proof of Theorem 4.2 in 

(Pantelides, 1988), Part B until "the algorithm will keep 

differentiating until infinitum".∎ 

Note, if the extended System 𝐄𝐆 is structurally singular 

with respect to the structurally assignable variables, it is 

still possible that the DAE is solvable if the array variables 

and array equations are expanded. This can be easily seen 

from Model 6 in section 5.1. The extended System EG  

assigned equations of extended system 

y1 

-- 

y1 = n*time   

A*y2 = y1 

is structurally singular with respect to the structurally 

assignable variables because the first equation can be 

assigned to y1 and the second equation can be also 

assigned to y1 but not to y2, because y2 is not structurally 

assignable according to Theorem 1. Therefore, the while 

loop does not terminate, but this can be detected 

beforehand. If arrays are expanded, the elements of the 

second equation can be assigned to the elements of y2 and 

the extended system is structurally regular.∎ 
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Listing 2 shows the code for function assignExtendedSystem 

that builds and checks the extended system for structurally 

assignable variables.  

Listing 2: Function assignExtendedSystem in Javascript format 

to determine a complete assignment of the extended system 

with respect to the structurally assignable variables. Yellow 

parts are deviations from (Pantelides, 1988). 

b1 export function assignExtendedSystem(G,Ga,A) { 

  // Build extended system 

  const EG  = [...G] 

  const EGa = [...Ga] 

  const nA  = A.length 

  for (let i=0; i<nA; i++) { 

      const Ai = A[i]; 

      if (A[i] > -1) { 

          EG.push([i, A[i]]); // h-equation 

          EGa.push([true, true])} 

  } 

b2   // Assignment of extended system 

  const assign   = Array(nA).fill(-1) 

  const vColor   = Array(nA) 

  const eColor   = Array(EG.length) 

  const vInspect = Array(nA).fill(-1)  // inspect all variab. 

  const unassignedEquations = [] 

  for (let i=0; i<nA; i++){ 

      eColor.fill(false) 

      vColor.fill(false) 

      if ( !assignEquation(i,EG,EGa, 

          assign,vColor,eColor,vInspect) && i<G.length){ 

         unassignedEquations.push(i)} 

  } 

b3   // Collect unassigned variables 

  const unassignedVariables = [] 

  for (let j=0; j<assign.length; j++) { 

      if (assign[j] === -1) unassignedVariables.push(j) 

  } 

  return [unassignedEquations, unassignedVariables] 

} 

In code block (b1) the extended system for G and Ga is 

constructed. In code block (b2), function assignEquation is 

called for all equations of the extended system and for all 
of its variables (due to vInspect = Array(nA).fill(-1)). If 

assignEquation returns false, and the inspected equation is 

no h-equation, it is pushed on stack unassignedEquations. 

(beause h-equations should not be reported to the user and 

if a h-equation is not assigned, there is also an unassigned 

variable). In code block (b3) the unassigned variables are 

collected in stack unassignedVariables. Both stacks are 

returned. If one of them is not empty, the complete 

assignment of the extended system failed and the 

unassigned equations and unassigned variables are 

returned and reported to the user.  

The practical application of the theorems requires 

additionally the following small extension: 

Function assignHighestDerivatives(G, Ga, A, maxDer =-1) 

gets an additional optional argument that defines the 

maximum number of allowed differentiations for an 

equation (if maxDer =-1, the number of differentiations 

is not limited) . If this limit is reached, the function 

terminates. It returns [assign,B,eqDiffTooMuch]. If the 

maximum number of differentiations is reached, 

eqDiffTooMuch is the equation of the underlying DAE 

that was differentiated too often. This equation can be 

reported in the error message. 

A.3 Improved Error Diagnostics 

The information for the error messages presented in 

section 3.4, is deduced from assignExtendedSystem(…) of 

Listing 2 by extending this function a bit: 

• The function already collects all unassigned 

variables. For every unassigned variable, all 

equations are inspected where this variable appears 

and then these equations are printed together with 

their assignments. 

• The function also collects all unassigned equations 

which is not very useful. Instead, when no assignment 

can be found, all colored equations are collected 

together because they constitute the set of equations 

that, together with the unassigned equation, creates an 

overdetermined system. This combined set is stored. 

If more overdetermined sets of equations appear, only 

the one with the smallest number of equations is kept. 

A.4 Further Symbolic Processing 

A tool could call the presented functions in the following 

order: 

1. Call assignExtendedSystem. If the function returns with 

unassigned equations and/or unassigned variables 

either print an error message showing the unassigned 

equations/variables ("Either DAE is not solvable or 

processing not possible without expanding arrays, 

which is not supported") or expand all arrays and 

equations and perform the standard processing of the 

tool for expanded equations/arrays. 

2. If assignExtendedSystem returns successfully, call 

assignHighestDerivatives. If the function terminates 

because the maximum number of differentiations 

reached, either print an error message showing the 

equation that was differentiated too often ("Equation 

eqDiffTooMuch differentiated until the limit of 
maxDer differentiations reached. Either DAE is not 

solvable or processing is not possible without 
expanding arrays, which is not supported.") or 

expand all arrays and equations and perform the 

standard processing of the tool for expanded 

equations/arrays. 

3. If assignHighestDerivatives returns successfully, a full 

assignment of the highest derivative equations with 

respect to the structurally assignable highest 

derivative variables was found and standard 

processing continues with only symbol information 

(so with unexpanded equations/arrays). 

After the complete assignment of the highest derivative 
equations with respect to the structurally assignable 

highest derivative variables is determined with function 
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assignHighestDerivatives the standard approach of object-

oriented modeling can be used for further processing and 

code generation by using basically only the symbol 

information (without expanding arrays): 

1. Analytically differentiating the equations  

The equations are analytically differentiated based on 

the information provided in 𝑮, 𝑨, 𝑩, 𝒂𝒔𝒔𝒊𝒈𝒏. 

2. Equation sorting  

𝑮  and assign of the highest derivative variables 𝑨 

with 𝐴𝑘 = −1  define a directed graph where the 

nodes are the highest derivative equations together 

with the assigned highest derivative variables. The 

edges are defined by the rows of the incidence matrix 

𝑮 that correspond to the highest derivative equations. 

With the algorithm of (Tarjan, 1972) the strong 

components (algebraic loops) in the directed graph 

are determined and the equations are sorted. 

3. State selection  

From the sorted highest derivative equations, the 

constraint equations are determined by the algorithm 

of (Mattsson and Söderlind, 1993) based on the 

highest derivative equation systems determined in 

step 2. From this information states are statically 

and/or dynamically selected. 

4. Code generation  

Code is generated. Arrays with small, fixed 

dimensions and corresponding array equations with 

small, fixed dimensions might be expanded. If arrays 

are kept unexpanded, then the generated code must 

support array operations where dimension sizes might 

be only known at run-time and can be changed after 

translation to object code. Typically, Modelica tools 

support this already, because code generation for 

Modelica functions need a similar infrastructure to 

operate on arrays. 
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