
Constant Time Causalization using Resizable Arrays

Karim Abdelhak1 Bernhard Bachmann1

1Institute for Data Science Solutions, Bielefeld University of Applied Sciences and Arts, Germany,
{karim.abdelhak, bernhard.bachmann}@hsbi.de

Abstract
Equation-based modeling that utilizes reusable compo-
nents to represent real-world systems can result in exces-
sively large models. This, in turn, significantly increases
compilation time and code size, even when employing
state-of-the-art scalarization and causalization techniques.
This paper presents an algorithm that leverages repeating
patterns and uniform causalization to enable array-size-
independent constant time processing. Allowing struc-
tural parameters that govern array sizes to remain resiz-
able during and after the causalization process enables the
formulation of an integer-valued nonlinear optimization
problem. This approach identifies the minimal model con-
figuration that preserves the required structural integrity,
which can subsequently be resized as needed for simu-
lation. The proposed method has been implemented in
OpenModelica and builds upon preliminary work aimed
at preserving array structures during causalization, while
still resolving the underlying problem in a scalarized man-
ner.
Keywords: Equation-based modelling, Array-preserving,
Causalization, Resizable, Nonlinear programming, Inte-
ger programming

1 Introduction
Current state-of-the-art approaches for compiling large-
scale models with scalable structures typically rely on
full scalarization. Although this method yields correct
results, it often incurs substantial compilation times and
leads to significantly larger code sizes. OpenModel-
ica’s (Fritzson, Pop, Abdelhak, et al. 2020) pseudo-array
compilation algorithm (Abdelhak, Casella, and Bach-
mann 2023) addresses the challenges of large code sizes
and prolonged compilation times by enabling array-size-
independent symbolic manipulation, while still perform-
ing causalization on scalarized graphs. Building on this
foundation, this paper presents an algorithm that systemat-
ically reduces scalable structures to a theoretical minimal
form, allowing causalization to be performed efficiently.
Following compilation, the resulting model can be resized
to any desired scale suitable for simulation.

Thematically related research exploring the exploita-
tion of resizable array structures includes the work pre-
sented in (Neumayr and Otter 2023), which introduces
predefined acausal components as a means of enabling
flexible array configurations. Additionally, an alterna-

tive to the pseudo-array compilation algorithm has been
proposed in (Marzorati, Fernández, and Kofman 2024),
where a set-based graph approach is employed. This
method is inherently designed to operate independently of
array sizes, representing a structurally distinct approach to
addressing the challenges associated with scalable model
compilation. Although the paper does not explicitly ad-
dress the resizability of set-based nodes within the set-
based graph, the algorithms presented in this paper for
determining the general resizability of for-loop equations
should be equally applicable, given that the underlying
model remains unchanged.

1.1 Resizable Parameters
First and foremost, structural parameters that determine
the array sizes within a model must be preserved and not
evaluated throughout the flattening process. These param-
eters are resizable but will be simply referred to as param-
eters in all subsequent discussions. While the concept of
minimizing model size may appear to align directly with
minimizing the values of these parameters, such a corre-
lation is not guaranteed. The modeling language Model-
ica permits array sizes to be defined by any expression
that yields a non-negative integer (Modelica Association
2023). As a result, the relationship between parameter
values and overall model size can even be nonlinearly cor-
related. Additionally, a single parameter may influence
multiple array sizes, and conversely, multiple parameters
may contribute to determining a single array size. Open-
Modelica offers two different ways to indicate that a pa-
rameter is resizable, which will be described in detail in
Section 3.3.

1.2 Resizable Equations
Any equation whose size is determined by a resizable
parameter is itself considered resizable. In the model-
ing language Modelica, there are two primary constructs
for expressing such equations: array equations and for-
equations. While array equations are a conventional
method for representing multidimensional relationships,
the latter are more specific to Modelica. For-equations
employ a surrounding for-loop construct—similar to those
used in algorithmic programming—to define a set of struc-
turally similar relationships using array variables indexed
by one or more iterator variables.

The primary advantage of identifying resizable equa-
tions lies in the ability to reduce their size as much as pos-

DOI Proceedings of the 16th International Modelica&FMI Conference 203
10.3384/ecp218203 September 8-10, 2025, Lucerne, Switzerland

RRR

sible during the process of causalization. This enables the
transformation of the flattened model into target code to
be performed independently of the resizable array sizes
defined within the model. It is important to note that in or-
der to keep the system structure parameters and equations
must satisfy specific conditions and cannot be resized ar-
bitrarily.

Assumption 1 The following discussion operates under
the assumption that the model remains balanced for ev-
ery feasible combination of parameter values. In other
words, each parameter is assumed to influence variable
dimensions and corresponding equation sizes in a consis-
tent manner.

Example 1 As an example of an invalid resizable param-
eter, consider the following model. While the original def-
inition with p = 2 yields a balanced and valid model, any
other value of p results in an invalid configuration.

model invalid_resizable
parameter Integer p = 2;
Real[p*p] x

equation
for i in 1:2*p loop
x[i] = sin(time) * i;

end for;
end invalid_resizable;

2 The Optimization Problem
The primary objective of the optimization is to minimize
the overall model size. Owing to Assumption 1, this ob-
jective can be simplified to minimizing either the total
number of variables or equations, as their sizes are as-
sumed to be proportionally aligned. In the following, the
optimization problem is formulated with a focus on min-
imizing the sizes of the equations. As will be demon-
strated in the following sections, the decision variables
are integer-valued, and the objective function is inherently
nonlinear. The constraint set includes both inequalities
and equalities, which—although infrequently—may also
exhibit nonlinear characteristics.

2.1 Objective Function
Let x ∈ Zn denote the vector of decision variables repre-
senting resizable parameters. The goal is to determine the
values of x that minimize the total number of equations,
subject to structural and semantic constraints.

argmin
x

F(x) = ∑
k

fk(x) (1)

where F(x) is the total model size and fk being the local
size objectives of equation k as product of their dimension
objective functions:

fk(x) = ∏
j

dk
j (x) (2)

The dimension objective function evaluates whether the
j-th dimension D satisfies condition (a j), namely, that it
is defined by an iterator within a for-loop whose range
Dstart : Dstep : Dstop is governed by one or more resizable
parameters. If (a j) holds, the objective is set to the num-
ber of elements traversed by the iterator. Otherwise, if the
size is not explicitly defined by an iterator, the equation
must be an array-based equation whose dimensions can
be inferred from the array variables it contains. This in-
ference is performed by the function dimk

j(x) which may
either yield a constant size or, in the case of parameterized
array equations, represent a function dependent on one or
more resizable parameters.

dk
j (x) =

{
(Dstop(x)−Dstart(x))/Dstep +1 if (a j)

dimk
j(x) else

(3)

2.2 Constraints
This optimization problem is subject to several con-
straints, which can be classified into three main categories:

equation dimension constraints. The first set of con-
straints arises from the requirement that each re-
sizable equation must have a size of at least one
to ensure its representation in the underlying bipar-
tite graph. Consequently, each dimension associated
with an equation must be of minimum size one. For
every iterator i with a range defined as Di

start : Di
step :

Di
stop, this requirement can be expressed through the

following constraint:

0≤ (Di
stop(x)−Di

start(x))/Di
step (g1)

Furthermore, the same condition must hold for each
j-th dimension of the k-th array equation that de-
pends on resizable parameters imposing the follow-
ing constraint:

1≤ dimk
j(x) (g2)

structural variable constraints. For each resizable pa-
rameter xp ∈ x the minimum and maximum value
constraints (if given by the underlying model) have
to be taken into account:

xp ≥ xmin
p (g3)

xp ≤ xmax
p (g4)

In addition to being box-constrained by their mini-
mum and maximum values, parameters may also im-
pose mutual restrictions. When a resizable variable
is indexed using a resizable parameter, it is essential
to ensure that this indexing operation does not result
in an out-of-range access.

Example 2 Let y be a resizable variable whose size
is determined by the parameter x1. Additionally, con-
sider a component reference to y in the model as

Constant Time Causalization using Resizable Arrays

204 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218203

y[x2], where x2 is another parameter. This imposes
a constraint on x2, requiring that x2 ≤ x1 to prevent
out-of-range access.

The same logic applies to non-parameter indexed
variables, constant valued restrictions have to be col-
lected as well. For each component reference that
references a resizable variable in the model, each di-
mension has to be checked if it imposes a constraint.

sub j
c(x)≤ cdim j

c(x) (g5)

where c refers to c-th component reference and j to
the j-th dimension cdim j

c(x) with sub j
c(x) being the

subscript of c in dimension j. If a constraint does not
involve any parameters or if the parameters cancel
out, its validity must be verified. If the constraint is
valid, it can be safely omitted; otherwise, an error
should be raised, as this indicates an issue with the
underlying model.

structural equation constraints. The final set of con-
straints is derived from array equations and, in con-
trast to the previous inequality constraints, consists
of equality constraints. For each array equation k,
the j-th dimension on the left-hand side, represented
by the function lhsk

j(x), must be equal to the corre-
sponding right-hand side dimension rhsk

j. This en-
sures consistency between both sides of the equation
and results in the following equality constraint:

lhsk
j(x) = rhsk

j(x) (h)

3 Solving the Problem
Solving the general integer-valued nonlinear optimization
problem is known to be NP-hard (Kannan and Monma
1981). However, for the majority of practical models,
the problem structure is predominantly linear and can
be efficiently addressed under typical conditions. More-
over, obtaining the global optimum is not strictly nec-
essary. Any method that consistently yields a feasible,
finite solution—while maintaining computational com-
plexity independent of the values of resizable parame-
ters—successfully achieves the objective of array-size-
independent compilation time. For the results presented
in Section 4, a simple greedy hill-climbing algorithm was
implemented as a proof of concept, using the original
model-defining parameter configuration as the initial start-
ing point.

3.1 Utilization of Optimization Results
Once a feasible parameter configuration has been identi-
fied—yielding a sufficiently small, array-size-independent
model—all affected model sizes must be updated accord-
ingly. In addition, auxiliary structures must be generated
and stored to enable recovery of the original array sizes.
The bipartite graph used for equation-variable matching,

as well as the directed graph used for equation sorting,
are both constructed based on these reduced model sizes.
This results in a causalization problem that is independent
of array sizes. After the causalization is completed, the
original array structures are reconstructed using the three-
step sorting procedure described in (Abdelhak, Casella,
and Bachmann 2023). Notably, the third sorting step dif-
fers for resizable equations, as these do not require resolu-
tion through the underlying graph. Instead, it is sufficient
to analyze the indexed variables they contain and their us-
age patterns.

resizable array-equation If a resizable array equation
is solved for the same variable instance in each of
its scalar sub-equations, it poses no additional chal-
lenge, as the equation body can be resolved using es-
tablished techniques. However, when explicit solv-
ing is not possible, or when different variable in-
stances are involved, the equation should be reformu-
lated in residual form and handled implicitly during
simulation.

resizable for-equation Let 0 = f (X ,Y, I) denote the for-
equation expressed in residual form, where x̂ ∈ X is
the component reference to be solved for, and X is
the set of all component references corresponding
to the same variable x as x̂. The set Y contains all
other component references appearing in the equa-
tion, and I represents the set of for-equation itera-
tors along with their respective ranges. To deter-
mine the execution order of the individual scalar sub-
equations within f , one examines the elements of X
and compares their positions relative to x̂, using the
indexing information provided by I. The component
references in Y do not influence the execution order
and can therefore be disregarded for this purpose. If
multiple variable instances are intended to be solved,
the current implementation does not support retain-
ing the equation in resizable form (see Section 3.2).
The complete method is presented in Algorithm 1,
which determines the execution order for each itera-
tor. The execution order for a given iterator can fall
into one of three categories:

a) in the original order (forwards)
b) reverse to the original order (backwards)
c) in any order (arbitrary)

Once determined, the inner equations do not need to
be sorted based on the underlying scalar dependency
graph, as their execution order is fully defined by the
enclosing structure. As shown in Algorithm 1, the
algorithm may revert the resizable status of variables
used to determine the size of the observed equa-
tion. In such cases, this behavior must either be re-
ported to the modeler via an error message—aborting
compilation to allow for appropriate model adapta-
tion—or issued as a warning, allowing compilation

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 205
10.3384/ecp218203 September 8-10, 2025, Lucerne, Switzerland

Algorithm 1 Execution Order
Input: component reference to solve for x̂
Input: set of component reference of the same variable X
Input/Output: set of iterators, their ranges and markings I
if there is only one component reference X = {x̂} then

Mark all iterators in I with arbitrary
else

for each dimension d in x do
Find the set O of all subscripts in dimension d for all elements of X
Let I be the set of all iterators occuring in O
if there is only one iterator I = {i} then

compute the set of partial derivatives D←{δo/δ i|o ∈ O}
if |D|= 1 then

compute the set of all offsets F for the elements of O
let f̂ ∈ F be the offset for the occurence of x̂
if f̂ ≤ f ∀ f ∈ F and i is not marked forwards then

Mark i with backwards
else if f̂ ≥ f ∀ f ∈ F and i is not marked backwards then

Mark i with forwards
else

Mark i with arbitrary
else

The equation is not resizable
return

else
The equation is not resizable
return

to proceed. In the latter case, the resizable status of
the affected variables is reverted, the modified opti-
mization problem is resolved, and the causalization
pipeline is subsequently executed again.

Example 3 In the trivial case where a for-equation
is solved for a variable and no other instances of that
variable appear within the equation, the execution
order is arbitrary. The following example illustrates
a non-trivial case involving two possible scenarios.
The equation may be solved either for x[i] or for x[i+
1]:

for i in 1:p loop
x[i+1] = x[i]*2;

end for;

If x̂ ≡ x[i+1], the structure of the equation body re-
mains unchanged after solving, and the iterator i can
be traversed in its original forward order, since each
computed element depends only on a previously com-
puted one. Conversely, if x̂ ≡ x[i], the iterator range
must be traversed in reverse order, as each element
otherwise would depend on a value that is computed
in a later iteration.

Expanding the idea by adding a third indexed
instance of x leads to following examplary for-
equation:

for i in 1:p loop
x[i] = x[i+1]*2 + x[i+2]*3;

end for;

If x̂ ≡ x[i+2], the execution order is forward, and if
x̂≡ x[i], it is backward—consistent with the behavior
described previously. However, if x̂ ≡ x[i + 1], the
computation would depend on both a preceding and
a subsequent value, resulting in an algebraic loop.
In such cases, since residual equations in an implicit
system do not require a specific execution order, the
iterator traversal is considered arbitrary.

3.2 Limitations and Future Work
Although this approach is designed to be broadly applica-
ble to general Modelica models, certain limitations in its
current implementation remain, warranting further inves-
tigation and development.

connect equations The modeling language Modelica al-
lows the construction of complex models through hi-
erarchical composition, using sub-components inter-
connected via specialized connectors. These connec-
tors implicitly define a set of equations that are in-
corporated into the model during the flattening pro-
cess, which transforms the component-based struc-
ture into a single mathematical representation suit-
able for symbolic manipulation and simulation. A

Constant Time Causalization using Resizable Arrays

206 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218203

graph-based algorithm has been developed to de-
termine these connection equations. As with other
Modelica equations, connect-equations can be en-
closed within for-equation constructs, potentially de-
pending on resizable parameters. To enable array-
size-independent compilation of such models using
the optimization approach presented in this paper, the
graph-based connection algorithm must be extended
to handle undetermined array sizes during compila-
tion.

split equations If a multi-dimensional equation must be
solved for multiple distinct variable instances, it is
partitioned into several slices, with each slice being
solved for one of the targeted variables. The current
implementation of the optimization does not guaran-
tee that the original equation is of sufficient size to
ensure that all resulting slices are fully represented
in the minimal version of the model. In principle,
additional constraints could be incorporated into the
optimization problem to guarantee slice-safety; how-
ever, doing so would likely require a comprehensive
prior analysis to anticipate all potential slicing oper-
ations.

entwined equations The concept of entwined equations
refers to the evaluation of two or more, potentially
multi-dimensional, equations in an alternating se-
quence (as detailed in (Abdelhak, Casella, and Bach-
mann 2023)). While, in principle, it is feasible for
one or more of these equations to be resizable, the
current implementation requires structural enhance-
ments to support the generation of correct and effi-
cient code.

non-trivial index accessing The proposed method sup-
ports only linear index access, requiring a consistent
multiplicative factor for all accesses to solved vari-
ables and their occurrences within resizable equa-
tions. This constraint is necessary to ensure a clear
and strict dependency structure, which is essential
for classification into one of the defined execution
order categories. While the algorithm could be ex-
tended to handle certain fringe cases, such enhance-
ments are generally unnecessary, as the majority of
practical Modelica models do not demand a more
comprehensive approach.

3.3 Implementation in OpenModelica
As previously mentioned, the proposed approach has been
integrated into the OpenModelica compiler and can be ac-
tivated using the --newBackend compiler flag. Resiz-
able array-defining parameters can be specified individu-
ally by applying the annotation
__OpenModelica_resizable=true.

Alternatively, all array-defining parameters can be treated
as resizable by enabling the --resizableArrays
compiler flag.

4 Results
All experiments were conducted on a laptop with a 12th
Gen Intel® Core™ i7-12800H x 20 @ 4.80GHz, 31 GB
RAM and a 1TB NVMe SSD, running Ubuntu 20.04.6
LTS. The evaluation was conducted using OpenModelica
version 1.24.5-dev, compiled from source.
The --newBackend and --resizableArrays
compiler flags were enabled for the relevant tests.

The presented proof-of-concept implementation was
evaluated on several scalable models and consistently pro-
duced satisfactory results. The model illustrated in Fig-
ure 1, originally developed by Martin Otter, is a simpli-
fied variant of the model presented in (Neumayr and Ot-
ter 2023). It represents an insulated rod discretized into
an array of segments, with the level of discretization con-
trolled by a single parameter, nT , which can be designated
as resizable. Specifically, nT determines the sizes of the
variables T and Qflow, and also defines the bounds for two
for-equations, with iterators i in 2 : nT and i in 1 : nT , re-
spectively. As illustrated, Assumption 1 holds, since the
resizable parameter nT uniformly influences both variable
and equation sizes. The objective function can be derived
from Equations 1, 2, and 3, based on the two iterators that
define the sizes of the corresponding for-equations. The
sizes of all other equations are omitted from the formula-
tion, as they remain constant.

argmin
nT

F(nT) = 2 ·nT −1 (4)

The equations and variables impose a variety of con-
straints on the optimization problem, the majority of
which can be omitted due to being trivially satisfied. How-
ever, they are presented in the following as illustrative ex-
amples of the method. The resizable parameter nT is re-
stricted by a minimal size, therefore a constraint g3 can be
formulated:

nT ≥ 1 (5)

which is not the only variable constraint in this model. The
equation

port_a.Q_flow = 2*k1*(port_a.T-T[1]);

does not pose a restriction itself, but the indexed variable
T [1] results in a constraint g5:

1≤ nT (6)

The same holds for all remaining equations, which involve
indexed variables but can be evaluated as trivially satis-
fied. As such, they do not provide additional illustrative
value for the purposes of this example. Each of the two
for-equations introduces one constraint, both derived from
Equation g1:

0≤ nT −2 (7)
0≤ nT −1 (8)

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 207
10.3384/ecp218203 September 8-10, 2025, Lucerne, Switzerland

model InsulatedRod_equations
"Standard implementaton of an insulated rod with equations"
import Modelica.Units.SI;
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a port_a;
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_b port_b;
parameter SI.Length L=1 "lenght of rod";
parameter SI.Area A=0.0004 "area of rod";
parameter SI.Density rho=7500 "density of rod material";
parameter SI.ThermalConductivity lambda=74 "thermal conductivity of material";
parameter SI.SpecificHeatCapacity c=450 "specifc heat capacity";
parameter SI.Temperature T0=293.15 "initial temperature";
parameter Integer nT(min=1)=1000 "number of inner nodes";
SI.Temperature T[nT](each start=T0, each fixed=true) "temperatures at inner nodes";
SI.HeatFlowRate Q_flow[nT+1];

protected
parameter Real dx = L/nT;
parameter Real k1 = lambda*A/dx;
parameter Real k2 = rho*c*A*dx;

equation
port_a.Q_flow = 2*k1*(port_a.T - T[1]);
port_b.Q_flow = 2*k1*(T[nT] - port_b.T);

Q_flow[1] =port_a.Q_flow;
for i in 2:nT loop
Q_flow[i] = k1*(T[i-1] - T[i]);

end for;
Q_flow[nT+1] =-port_b.Q_flow;

for i in 1:nT loop
der(T[i]) =(Q_flow[i] - Q_flow[i + 1])/k2;

end for;
end InsulatedRod_equations;

Figure 1. Scalable Modelica model representing an insulated rod being heated.

0 0.2 0.4 0.6 0.8 1 1.2

·105

0

2

4

6

8

10

number of equations

ti
m
e
in

se
co
n
d
s

Old
New - Non Resized

(a) Linear Comparison

101 102 103 104 105

10−3

10−2

10−1

100

number of equations

ti
m
e
in

se
co
n
d
s

Old
New - Non Resized

New - Resized

(b) Logarithmic Comparison

Figure 2. Comparison of causalization times across three configurations: the old backend, the new backend, and the new backend
with support for resizable variables. Nodes marked with a strikethrough indicate that causalization was successfully performed and
timed; however, subsequent model building or simulation failed.

Constant Time Causalization using Resizable Arrays

208 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218203

Since the model does not contain any array equations,
no constraints of the form described in Equation h are
present. After omitting all trivially satisfied conditions,
the resulting optimization problem can be formulated as
follows:

argmin
nT

F(nT) = 2 ·nT −1 (9)

0≤ nT −2 (10)

The minimal solution to this optimization problem, nT =
2, is straightforward to derive and is effectively identified
and applied by the OpenModelica implementation.

The model presented in Figure 1 has been compiled us-
ing different versions of OpenModelica to highlight the
improvements introduced by the research in this paper.
Three configurations are compared: the old backend, the
new backend, and the new backend with support for re-
sizable variables. The results of this comparison are pre-
sented in Figures 2a and 2b. Figure 2a illustrates the im-
pact of the new backend implementation on causalization
time using a linear scale, showing an improvement by a
factor of nearly three. Additionally, the updated backend
enabled the compilation of larger models, overcoming the
scalability limitations of the old backend, which failed to
generate code for large models due to memory exhaustion
(indicated by ’x’ markers in the plots).

While these improvements appear significant, a log-
arithmic comparison (Figure 2b) reveals that scalability
challenges persist: causalization time still increases with
array size, despite the reduction of overhead1. How-
ever, with the introduction of resizable variable support,
a fully array-size independent causalization process was
achieved, as demonstrated in Figure 2b.

5 Conclusions
This work presents an extension to the OpenModelica
compiler backend, introducing enhanced support for resiz-
able equations and improving causalization performance
for complex array-based models by ensuring that compi-
lation time no longer depends on array sizes. This is ac-
complished by formulating and solving an integer-based
nonlinear optimization problem to determine the minimal
feasible model size, which is then treated as resizable prior
to simulation, allowing the final model to adapt to arbi-
trary sizes before runtime.

The method has four key limitations: first, the graph-
based connection algorithm needs extension to handle un-
determined array sizes during flattening. Second, the op-
timization may not fully represent all slices when parti-
tioning multi-dimensional equations, requiring additional
constraints. Third, entwined equations need structural
improvements for efficient code generation. Finally, the
method currently supports only linear index access, which
is sufficient for most practical Modelica models but could

1All other methods in the new backend were already array-size in-
dependent, as detailed in (Abdelhak, Casella, and Bachmann 2023)

be extended for more complex patterns. Despite these, the
current implementation is robust enough for most feasible
Modelica models.

Although the presented algorithm remains in a proof-
of-concept stage—with potential improvements in the
choice of optimization strategy and possible relaxation of
the underlying problem formulation—the results obtained
are highly promising. The algorithm has been evaluated
on a wide variety of representative Modelica models, in-
cluding both synthetic benchmarks and simplified real-
world industrial examples. In the case of synthetic bench-
marks, full resizability was assumed to stress-test the algo-
rithm’s capabilities, while for real-world industrial mod-
els, only selected array sizes were treated as resizable to
reflect practical usage scenarios.

The development of the new OpenModelica backend
has led to substantial performance enhancements. Experi-
mental evaluations demonstrate an almost threefold reduc-
tion in causalization time, alongside improved scalabil-
ity that enables the successful compilation of significantly
larger models. The principal contribution of this work,
however, lies in the introduction of an optimization-based
approach for handling resizable variables. This method
effectively decouples compilation time from array sizes,
yielding additional performance benefits and paving the
way for more efficient large-scale model compilation.

In summary, the integration of resizable variable sup-
port marks a significant step forward in improving both
the robustness and efficiency of the OpenModelica com-
pilation pipeline. Future work may explore more general-
ized access patterns, improved diagnostic capabilities, and
broader support for dynamic model structures.

Acknowledgements
This work was conducted as part of the OpenSCALING
project (Grant No. 01IS23062E) at the University of Ap-
plied Sciences and Arts Bielefeld, in collaboration with
Linköping University. The authors would like to ex-
press their sincere appreciation to both the OpenSCAL-
ING project and the Open Source Modelica Consortium
(OSMC) for their support, collaboration, and shared com-
mitment to advancing open-source modeling and simula-
tion technologies.

References
Abdelhak, Karim, Francesco Casella, and Bernhard Bachmann

(2023-12). “Pseudo Array Causalization”. In: Modelica Con-
ferences, pp. 177–188. DOI: 10.3384/ecp204177.

Fritzson, Peter, Adrian Pop, Karim Abdelhak, et al. (2020-10).
“The OpenModelica Integrated Environment for Modeling,
Simulation, and Model-Based Development”. In: Modeling,
Identification and Control: A Norwegian Research Bulletin
41, pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Kannan, Ravindran and Clyde L. Monma (1981). “On the Com-
putational Complexity of Integer Programming Problems”.
In: Optimization and Operations Research. Vol. 157. Lecture
Notes in Economics and Mathematical Systems. Springer,

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 209
10.3384/ecp218203 September 8-10, 2025, Lucerne, Switzerland

https://doi.org/10.3384/ecp204177
https://doi.org/10.4173/mic.2020.4.1

pp. 161–172. DOI: 10.1007/978-3-642-95322-4_17. URL:
https://doi.org/10.1007/978-3-642-95322-4_17.

Marzorati, Denise, Joaquín Fernández, and Ernesto Kofman
(2024-06). “Efficient Matching in Large DAE Models”. In:
ACM Transactions on Mathematical Software 50. DOI: 10 .
1145/3674831.

Modelica Association (2023). Modelica® Language Specifica-
tion, Version 3.6. https://specification.modelica.org/maint/3.
6/MLS.pdf. Accessed: 2025-04-18.

Neumayr, Andrea and Martin Otter (2023-12). “Variable Struc-
ture System Simulation via Predefined Acausal Compo-
nents”. In: Modelica Conferences, pp. 511–520. DOI: 10 .
3384/ecp204511.

Constant Time Causalization using Resizable Arrays

210 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218203

https://doi.org/10.1007/978-3-642-95322-4_17
https://doi.org/10.1007/978-3-642-95322-4_17
https://doi.org/10.1145/3674831
https://doi.org/10.1145/3674831
https://specification.modelica.org/maint/3.6/MLS.pdf
https://specification.modelica.org/maint/3.6/MLS.pdf
https://doi.org/10.3384/ecp204511
https://doi.org/10.3384/ecp204511

	Introduction
	Resizable Parameters
	Resizable Equations

	The Optimization Problem
	Objective Function
	Constraints

	Solving the Problem
	Utilization of Optimization Results
	Limitations and Future Work
	Implementation in OpenModelica

	Results
	Conclusions

