Modiator - A Web App for Modelica Simulation

Hilding EImqvist*

Martin Otter?

1 Mogram AB, Sweden, hilding.elmgvist@mogram.net

2DLR, Institute of Vehicle Concepts, Germany, martin.otter@dlr.de

Abstract

The Modelica language (www.modelica.org) has become
a de facto standard for systems modeling and many tools
exist. This paper describes certain modern enhancements
and a static web app implementation called Modiator
(Modelica Instant Simulator). It allows an improved
immediate first-time user experience since the web app is
available in seconds and simulations can be done directly
in the browser. State of the art numerical solvers from the
Sundials suite have been compiled into WebAssembly.
The Modelica model is translated into Javascript code
using techniques such as sorting, tearing, index reduction,
state selection, etc. A subset of Modelica is supported with
some extensions, for example, support for self-modifying
models. This paper also presents the Stream and Model3D
prototype libraries.

Keywords: Modelica, Modia, Modia3D, compilation,
web app, WebAssembly, simulation in the browser, cloud
computing, serverless functions, Monte Carlo simulation

1 Introduction

The Modelica language (Modelica Association 2023)
makes it easy to build large, complex models since
instantiation of reusable component models is possible.
However, current tools® usually make full expansion of
the equation sets including scalarization of arrays for all
instances and transform the equations to C-Code that is
compiled and linked. This means that translation time can
be minutes. There is also a need for self-modifying
models for example to support adaptable grid for finite
volume models, variable model structures such as multi-
stage rockets or just turning on and off subsystems. This
means that separate translation would be beneficial, i.e.
only translating the parts of the model that has been
changed. This will also speed up experiments involving
variant selection by simulation when certain subsystems
are redeclared to analyze alternative designs.

Web technology allows an improved immediate first-
time user experience since the web app needs no
installation (and also no administrator rights), is available
in seconds and faster separate translation and simulations

! https://modelica.org/tools/
2 https://github.com/ModiaSim/Modia.jl
8 https://julialang.org/

done directly in the browser means less waiting. This will
also make object-oriented modeling and simulation more
accessible to students, hopefully increasing the popularity
of Modelica.

Mobile phones are becoming more popular than
computers and they have sufficient computing power for
simulation. The drawback of mobile phones is the limited
screen size (except for foldable phones). One possible
solution is to use an infinite canvas and convenient and
fast zooming, scrolling, and panning.

For multi-simulations for variant selection or Monte
Carlo simulations, cloud should be possible to utilize, for
example by serverless lambda functions, and there are
needs to visualize results in different ways than just trend
plots, such as scatter diagrams and histograms.

Many of the innovations and findings in this paper
regarding translating models come from the experiences
from the Modia project?, see, e.g., (EImgvist et al. 2021).
Modia is a language with many similarities to Modelica.
However, the language is much simpler than the Modelica
language, and implementation of the Modia environment
is based on Julia® (Bezanson et al. 2017). The effort is now
moved from the Modia language to the Modelica
language for three reasons: (1) It takes too long to get the
first plot when using Modia (installing Julia and many
used packages, as well as compiling generated Julia model
code the first time). (2) There are many existing Modelica
model libraries in wide-spread use and it is too much
effort to develop and maintain a thorough translator from
Modelica to Modia. (3) New technologies with
WebAssembly 4 and fast just-in-time compilation of
Javascript enables immediate and fast simulations.

The paper introduces Modiator (Modelica Instant
Simulator), a static web-app implemented with Javascript
and WebAssembly providing support for a sub-set of the
Modelica language with some extensions of Modelica
based on experience with Modia/Julia and taking
advantage of modern web technology.

The commercial Modelica environment Modelon
Impact® (Elmqvist et al. 2018) also provides a browser
GUI. However, compilation and simulation of models are
not performed in the browser but via a cloud service that
has to be paid for. The default behavior of Modiator is that
models are compiled and simulated locally in the browser.

4 https://webassembly.org/
5 https://modelon.com/modelon-impact/

DOI
10.3384/ecp218211

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

211

mailto:hilding.elmqvist@mogram.net
mailto:martin.otter@dlr.de
https://www.modelica.org/
https://modelica.org/tools/
https://github.com/ModiaSim/Modia.jl
https://julialang.org/
https://webassembly.org/
https://modelon.com/modelon-impact/

Modiator - A Web App for Modelica Simulation

This requires different techniques, e.g., to generate model
code directly in Javascript, instead of in C or C++ (as done
by other Modelica tools).

Compiling and simulating a Modelica model in a
web browser has been proposed by (Franke 2014) and
demonstrated with a tiny, very partial prototype. (Short
2014) demonstrates a tool chain to translate Modelica
models to Javascript based on the OpenModelica ®
compiler and Emscripten” and run the Javascript code
locally in the browser. (Kulhanek et al. 2023) provide the
Bodylight.js 2.0 toolchain to build in-browser web
simulators by translating a Modelica model into an FMU?
(Functional Mockup Unit), use Emscripten to transform
the C-source code inside the FMU into WebAssembly
format and embed this code in a web page with a specific
user-friendly GUI for this particular Modelica model.

2 A Modernized Modelica Syntax

There are trends concerning the syntax of new
programming languages (e.g. C#, Go, Julia, Python,
Swift) which have been adopted by Modia. The following
proposals for the Modelica language are inspired by
Modia, based on these new trends:

e Using Greek letters in identifiers is natural for
users making mathematical models.

e Semicolon is becoming optional which makes
models easier to read. Traditionally, semicolons
were used to enable resynchronization after the
first error in order to continue parsing. The speed
of parsing is now much faster, so it is better to
abort after the first error is found.

e Type and unit inference and checking can be
introduced if a notation is utilized to associate
units to numeric literals. In the example below,
units are appended to parameters and start values
enclosed in single quotes. Most type specifiers
are omitted since all parameters are Real and the
states must be Real.

e The class identifier after end is made optional.

Below is shown a second order model utilizing the
simplified, more readable syntax in Modiator:

Listing 1. Modelica model with the proposed condensed
syntax and Greek identifiers.

model SecondOrder
t=10"'s" // instead of: parameter Real tau(unit="s") = 1.0;
{=05
input u
x1(start=0)
x2(start=0 '1/s") // instead of: Real x2(start=0, unit="1/s");
output y=x1
equation
der(x1) = x2
t*t*der(x2) + 2*C*t*x2 +x1 =u
end // instead of: end SecondOrder;

6 https://openmodelica.org/
7 https://emscripten.org/

3 Self-Modifying Models

A much-wanted Modelica feature is to be able to change
array dimensions without recompiling when, for example,
higher fidelity of discretization is needed. Other needs are
to be able to redeclare component classes or start and stop
subsystems. These scenarios can be achieved by scripting
repeated simulations where the start value for the next
simulation is set to the end value of the previous
simulation. At certain conditions, parameters can be
changed, redeclarations made and some transformation
algorithm is applied between final state and new state.
Writing such scripts is not object oriented though. To
make it reusable, the transformations should be made in
the model classes.

A similar situation exists when updating HTML
pages. The HTML DOM (Document Object Model) is a
tree of various kinds of nodes which can be modified by
Javascript functions which are called when different kinds
of events occur. The DOM tree can also be traversed and
a node id can be search for. Nodes can then be modified
either by changing attributes or making a new subtree by
providing an innerText definition. Nodes can also be
added or removed by built-in JavaScript function calls.

The ModelManagement.Structure.AST functions of
Dymola® can manipulate the AST (Abstract Syntax Tree)
from Modelica scripts (not from Modelica models). This
functionality can serve as inspiration for models
manipulating themselves.

For this feature, Modelica needs to have an event
detection mechanism (c.f. addEventListener in HTML).
Modelica already has a when-statement which can be
generalized. The model below shows some of the
functions which can be used to manipulate the ast
(reserved Modiator identifier for the Abstract Syntax
Tree) of a model.

Listing 2. Model that modifies its definition during simulation.

model TestSelfModifications
parameter Real T=1;
Real x(start=0);
equation
T*der(x) + x = 1;
when x>0.3 then
ast.setParameter('T', 0.1);
end when;
when time>0.5 then
ast.setStart('x’, 2);
end when;
when time>0.7 then
ast.addEquation('0.1*der(y) +y = 19;
end when;
end TestSelfModifications;

If a significant event occurs, the modified model ast is
translated to Javascript code which is just-in-time
compiled before the simulation continues.

8 https://fmi-standard.org/
9 https://www.3ds.com/products/catia/dymola

212

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218211

https://openmodelica.org/
https://emscripten.org/
https://fmi-standard.org/
https://www.3ds.com/products/catia/dymola

Session: New Translation Methods and Tools in Track for General Modelica

The semantics of the above function calls are
explained by the plot below.

04 06 08 1

Figure 1. Plot of model TestSelfModifications

Note, that when the equation was added, also a new
variable was introduced, y. By default, all state variables
are currently plotted, i.e. y was also plotted during its
existence. Adopted from Modia, Modiator does not
require declaration of variables and the start value is 0 by
default.

Array dimensions and the number of states can also
be changed at events which is illustrated by the following
model:

Listing 3. Model that modifies array dimensions and number
of states during simulation.

model VaryingDimensions
Integer n=2;
Real x(start=1:n, fixed=true);
equation
der(x) = -diagonal(1:n)*x;
when time > 0.1 then
ast.setParameter('n’, 3);
ast.setStart('’x[3]', (X[1]+x[2])/2);
end when;
when time > 0.2 then
ast.setParameter('n’, 2);
ast.setStart('x[1]', (x[1]+x[3]1)/2);
ast.setStart('x[2]', (x[2]+x[3])/2);
end when;
end VaryingDimensions;

Note, the new start values defined with ast.setStart(...) are
calculated before the model is evaluated at the event. This
gives a nice mechanism for transferring the state
information to a new state representation. See the results
below.

—x[1]

x(21

—x[3]

Figure 2. Plot of model VVaryingDimensions.

10 hitps://www.w3schools.com/jsref/-
prop_style transform.asp

In the companion paper on resizable arrays (Otter et al.
2025), this technique is used for adaptive grid modeling
of an insulated rod.

4 Web App for Immediate Results

Web technology allows an immediate first-time user
experience since a web app is available in seconds and
simulations can be done directly in the browser.

Mobile phones are becoming more popular and
powerful than laptop computers and they have sufficient
computing power for simulation. The drawback is the
limited screen size. One possible solution is to use an
infinite canvas (inspired by Apple Photos) and convenient
and fast zooming, scrolling, and panning. The DOM/CSS-
feature style.transform ° provides the fundamental
rendering functionality to implement infinite canvas in the
browser. Modiator uses two-finger touches on touch
screens to zoom and move around.

The Modiator User Interface is based on a set of
widgets (text editor, plots, 3D animator, model diagrams,
parameter dialog, etc.) which can be freely placed and
sized on the infinite model board, see Figure 3:

[

'~.~\.an' o
i -
o
i -
| =]
£
s ——§ |
o
'l-o,
i
= N
—'—/_{]
." =1
" ;F)
1]
==

Figure 3. Example of Modiators User Interface.

The model diagram rendering is inspired by the 2.5D look
of Playmola (EImgqvist et al. 2015), i.e., that icons have a
3D representation which are placed in a 2D diagram.

Multiple plot widgets can be used to visualize
simulation results in different ways such as line plots,
scatter diagrams, etc.

To enable Al techniques for Modelica authoring,
external text editors such as VS Code with Github Copilot
plug-in, can be used. When the external file is changed,
Modiator will load and simulate the updated model.

The Modiator web app is a PWA (Progressive Web
App), i.e., it can be installed on your device and by using
service workers it can be used offline without internet
connection.

DOI
10.3384/ecp218211

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

213

https://www.w3schools.com/jsref/prop_style_transform.asp
https://www.w3schools.com/jsref/prop_style_transform.asp

Modiator - A Web App for Modelica Simulation

5 Simulation in the Browser

Modiator uses a mixed execution model for simulation.
Modelica models are translated to JavaScript functions
which calculate the derivatives given time, states and
parameters. The integration of the differential equations is
performed by CVODE from the SUNDIALS suite 1
(Hindmarsh et al. 2005, Gardner et al. 2022). CVODE has
been translated from C to WebAssembly *2 utilizing
Emscripten ** and is called from Javascript when
simulation starts. When derivatives need to be calculated,
a Javascript callback function is called from CVODE.
Special considerations had to be taken especially
regarding allocation and transfer of arrays.

Modiator translates the model equations to a
JavaScript function by using the new Function()
concept4. The Function constructor takes two arguments.
The first one is a string of comma-separated arguments of
the function and the second is the body of the function as
a string, for example:

const func = new Function(‘a,b’, 'return a + b')
console.log(func(l, 2)) // 3

Such functions are usually Just-In-Time-compiled. Array
and matrix equations are not expanded (Otter et al. 2025),
but evaluated by calls to run-time functions and math.js®.

In order not to disturb user interactions, parsing,
translation and simulations are performed in concurrent
web workers.

6 Simulation on the Cloud

For multi-simulations for variant selection or Monte Carlo
simulations, it should be possible to utilize cloud
computations. So far, Netlify functions 6 have been
utilized. They are based on Amazon Web Services
Lambdas.

Essentially the same simulation code as for web
workers can be used. Instead of posting simulation data to
a web worker, fetch requests are made to a simulate API
function with a body of simulation data. The simulation
data contains parameters and the JavaScript function
string for calculating derivatives. To support multi-
simulations with redeclares or self-modifying models, the
Modelica translator module is also available in the
serverless functions.

So far, limited testing has been made. 10000
simulations have been performed on the cloud. The
startup time for each simulation was less than a second.

7 Monte Carlo Simulation

Model-based product design involves determining
product topology, component selection, component
sizing, and parameters (tuners) in such a way that the

11 https://webassembly.org/
12 hitps://webassembly.org/
13 https://emscripten.org/

product has good performance, low production cost and
low cost of ownership (objectives) while being robust
with regards to variations in its environment and
insensitive to variations in parameters (uncertainties).
Since topology, component selection and component
sizing are important, gradient based optimization tools
can’t be used.

Modiator uses Monte Carlo simulation and randomly
selects tuner values typically from uniform distributions
and selects uncertainties typically from truncated normal
distributions. Redeclarations to model design selections
or discrete environment variations have associated
discrete distributions.

A set of Modelica Obijective
blocks is available for inserting into
a model to define what are good
designs. A subset of these blocks is

'ﬁ‘v’\ IntegratedSquare

“ Overshoot

shown on the right. = SettiingTime
Since several possibly " RiseTime
conflicting objectives can be

defined, the Pareto frontier in scatter diagrams can help
with compromise decisions and the parallel axis
coordinates plot can help with assigning different weights
to the objectives.

Equality and inequality constraints are enforced by
including assert statements that cause simulations to fail
if the specified conditions are not met. Functions of the
following kind are provided for defining tuners and
uncertain parameters:

p=uniform(default, minimum, maximum, tuner)

Such expressions can be used in modifiers. The default
value is used for tools that do not provide Monte Carlo
simulation in this way. Minimum and maximum gives the
range and tuner is true for a tuner, otherwise an
uncertainty is defined. The user interface has built-in
menus for defining such function invocations (z button).

Parameters and Settings

Stop time 40

Simulations 100

pid *

k uniform +
default 1
minimum 0.1
maximum 1

tuner

Ti 1000 + @

Figure 4. Tuner and Uncertainty definitions.

14 https://javascript.info/new-function
15 https://mathjs.org/
16 https://www.netlify.com/platform/core/functions/

214

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218211

https://webassembly.org/
https://webassembly.org/
https://emscripten.org/
https://javascript.info/new-function
https://mathjs.org/
https://www.netlify.com/platform/core/functions/

Session: New Translation Methods and Tools in Track for General Modelica

7.1 Design Example — Servo

To illustrate the design method used by Modiator, a well-
known control problem will be employed: PID control of
a double integrator. The motor consists of an ideal torque
generator and an inertia and behaves like a double
integrator.

v W
step pid
I feedback 1 inenia1L
angleSensor
A
s/

Figure 5. Controlled double integrator.

Two integral square objectives are defined. In addition to
the usual objective of small control error, it is desired to
keep the control effort small to save energy. The gain, k,
and derivative time constant, Td, should be tuned, i.e.
uniform distributions are defined and tuner is set to true
for them:

pid(k=uniform(1, 0.1, 1, true), Td=uniform(2, 0.5, 5, true))

By running 100 simulations, the following spaghetti plot
is obtained if angleSensor.phi and step.y were plotted
during a previous single simulation:

angleSensor.phi
step.y

0 10 20 30

Figure 6. Spagetti plot for 100 simulations.

The time to make one thousand simulations is 2.24
seconds on a HP ZBook Ultra Gla laptop with an AMD
RYZEN Al MAX+ PRO 95 3.0 GHZ CPU with 16
cores/32 threads. The corresponding time for MacBook
Pro M4 is 1.56 seconds and for iPad Pro 11” M4 is 2.71
seconds. Amazingly, the same task takes only 4.32
seconds on a Samsung Galaxy Z Fold6 mobile phone.

In addition, Modiator presents a matrix of plots, see
Figure 7. The rows and columns represent the variables:
integratedSquareError.y, integratedSquareControl.y,
pid.k and pid.Td. The diagonal shows the histograms for
the variables (objectives: blue, tuners: green. Plot 1,2
shows the scatter plot for the objectives. The Pareto
frontier is marked in red. Plot 1,3 shows that increasing
gain is good for the first objective and plot 2,3 shows that
decreasing gain is good for the second objective. The plots

of the forth column shows that Td needs to be above 3.
This is consistent with the well-known fact that the
derivative term is needed for stabilization when

controlling a double integrator with a PD controller.

800

1 P

Figure 7. Multi-plot matrix with histogram and scatter plots.

By hovering over the plots, the actual values of
objectives and tuners are presented:

800 §
600

400 4

IntegratedSquareErrory

integratedSquareControl.y: 251

B Tuners:

=}

integratedSquareControl.y
Figure 8. Tool tips showing objectives and tuners.

By zooming in on the Pareto frontier, the corresponding
runs are plotted:

time: 4.65

— angleSensor.phi
step.y

angleSensor.phi: 10.89533
integratedSquareErmory: 585
10 B integratedSquareConirol.y: 1.27e+3 [

Figure 9. Selected responses.

If uncertainties are defined, for example, as a range of
loads:

inertial(J=uniform(1, 0.1, 1))

DOI
10.3384/ecp218211

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

215

Modiator - A Web App for Modelica Simulation

the plots include error bars and the tooltip shows the
variations:

45

I 3
40 .:k Objectives:
hjjigintegratedSquareEror.y: 33.0+1.11
35 +r ifintegratedSquareControl.y: 884+7.31
pid_k: 0.646+0.00160
30 pid.Td: 3.16+0.00915
Uncertainties:

integratedSquareError.y

inertia1.J: 0.638+0.0466

25

1000 2000 3000

integratedSquareControl.y

Figure 10. Scatter plot with error bars for uncertainties.

The error bars are obtained by defining bins for the tuner
values and for each bin, the mean and standard deviation
are presented. For accurate analysis of uncertainty
influences many simulations are needed. The use of
serverless functions on the cloud fits this use case.

8 Separate Translation of Models

The object-oriented modeling approach of Modelica
allows building large models with millions of equations.
However, the semantic specification is based on
flattening, i.e., recursive cloning of variables and
equations of each component instance. Typically,
Modelica tools also expand matrix equations to scalar
equations. Flattening means thata lot of memory is
needed for variables and equations during translation of
the Modelica code. It also means that translation time is
long sincethe same analysis (flattening, symbolic
processing, etc.) is performed repeatedly for each
instance. Furthermore, the C-code becomes large, and
compilation takes a long time. In addition, the execution
of the C-code gets slower since the code might be larger
than the size of the code cache.

However, parts of the equations of a component are
always executed in the same order and with the same
causality independently of how the component is
connected. Such sequences of equations can be put into
functions: less code gives shorter compilation time; less
machine code gives shorter simulation time.

Finding such sequences can be made once for each
model class. The technique is based on forming the most
general environment to a model class as illustrated in

Figure 11.

17 https://nodejs.org/api/esm.html
18 https://code.visualstudio.com/
19 https://pegayjs.org/

20 https://threejs.org/

Figure 11. Generic environment of a model.

The generic environment is constructed by adding a set of
dummy equations, env, which all depend on all connector
variables (cp: potential variables, cr. flow variables) All
inputs u are assumed to be known. The number of
equations of env is the number of flow variables.

The Block Lower Triangular (BLT) form obtained
during structural analysis of the model plus the generic
environment has the structure shown in Figure 12.

Cp, Cf

pre
env, equ

post

Figure 12. BLT structure of model plus generic environment.

The block in the middle contains the env equations since
they all have the same incidences. It also contains certain
equations, equ, which are related to the variables of the
environment.

An example is given in the Appendix which shows
how the equations are partitioned for a second order low
pass filter.

9 Technology and Development

Environment

The implementation of Modiator relies on ECMAScript
modules®’. Type inference and checking is done by Visual
Studio Code with TypeScript engine. Module
dependency diagrams are generated by a Visual Studio
Code plug-in, Dependency Cruiser.

The Modiator parser for Modelica is generated with
the PEG-parser generator Peggy *°. The handling of
extends and merging of modifiers is done by deep
merging of Javascript objects in a way inspired from
merging in Modia.

Modelica model diagrams and 3D animations are
created with three.js?°. Plotting is done with Plotly?.

Alias handling, tearing, index reduction, state-
selection, BLT, symbolic processing of expressions, etc.
have been ported from Modia (Julia code) to Javascript
and some parts significantly improved. This has in some
cases been done with a semi-automatic process using Al
techniques with tool Code Converter? and the ChatGPT-
4 tools Microsoft Copilot?® and Perplexity?*. Overall, the
automatic translation reduced significantly the work to
transform Modia functions to Javascript functions.

21 https://plotly.com/

22 https://codeconverter.com/
2 https://copilot.microsoft.com
24 https://www.perplexity.ai/

216

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218211

https://nodejs.org/api/esm.html
https://code.visualstudio.com/
https://peggyjs.org/
https://threejs.org/
https://plotly.com/
https://codeconverter.com/
https://copilot.microsoft.com/
https://www.perplexity.ai/

Session: New Translation Methods and Tools in Track for General Modelica

In order to enable building a full Modelica compiler
and simulator running in the browser, C-code must be
handled since Modelica has an interface to C-functions.
Successful experiments have been made to use clang
running under Wasmer? in the browser to compile C-
functions into WebAssembly.

Modeling and simulation workflows typically
involve scripting, for example with Python. For this
reason, successful experiments have been made to use
PyScript?® and Pyodide?” which enables running Python
in the browser together with Modiator.

10 Stream with Media Propagation

When simulating fluid systems, there is currently the
inherent drawback in Modelica that a medium has to be
defined at every component and that every change of the
Medium requires recompilation of the model. A prototype
Modelica package called Stream does no longer has these
drawbacks.

In this new approach, all media are defined with
external functions and the internal memory of the
functions by ExternalObjects?® (so pointers to memory
allocated inside the functions). An ExternalObject is
constructed at one component and then propagated
through connections. Below, first the principle of the
approach is explained based on media C-functions and
afterwards it is sketched how media Javascript-functions
are supported in current Modiator.

Stream is a small subset of Modelica package
ThermofluidStream?® (Zimmer 2020, Zimmer et al. 2022)
but with (a) different handling of the media inspired by
(Otter et al. 2019) and (b) equations of the thermodynamic
state formulated with Linear Implicit Equilibrium
Dynamics (LIED) as proposed by Zimmer (2024, 2025).
The latter means that all states are fixed in the library and
no nonlinear equations appear in Modelica models due to
Stream (but might be present inside the external
functions). Separate translation, as proposed in section 8,
becomes particularly easy in this case. A simple example
of a system with boundaries, flow resistances and a
volume are shown in the next figure.

volume sink

-

source flowResistance 1
\ _}}\/o.\ - __ ,|

Figure 13. Simple Stream model in Modiator. The medium and
its variables are defined in the source and propagated through
the connections. The medium variables are changed in every
component. Media states are defined in the volume. Mass flow
rate states are defined in the source and in the volume.

flowResistance2
s

The core LIED equations of the volume are shown in the
next Listing.

25 https://wasmer.io/
% hitps://pyscript.net/

27 https://pyodide.org/

Listing 4. Stream model of a volume with fixed size.

model VVolume "Volume of fixed size"
Interfaces.Inlet inlet; Interfaces.Outlet outlet;
parameter SI.Volume V_par "Fixed volume";

Real xs[2](each fixed=false, each unit="1")
"Scaled pair (p,T), (p,h), ...";
Real Xi[size(Xi_start,1)](start=Xi_start, each fixed=true,
each unit="1") "Independent mass fractions";
protected
parameter Integer mediumID(fixed=false);
functions.Media.MediumAndState obj =
functions.Media.MediumAndState(mediumID);
Real obj_r "Dummy, for correct sorting of obj";
initial equation
mediumID = functions.Media.mediumID_from_obj(inlet.obj);
XS = functions.Media.get_xs(obj,p_start, T_start,...);
equation
[/l Update obj with xs, Xi
obj_r = functions.Media.update ThermodynamicState(obj, xs, Xi);
outlet.obj = obj; outlet.obj_r = obj_r;

I/l Mass balance
der_M = inlet. m_flow - outlet.m_flow ;
der_d = der_M/V_par;

[/l Energy balance

d_in = functions.Media.density(inlet.obj, inlet.obj_r);

h_in = functions.Media.specificEnthalpy(inlet.obj, inlet.obj_r);

u_out = functions.Media.specificInternalEnergy(
inlet.obj,inlet.obj_r);

d_out = functions.Media.density(obj, obj_r);

h_out = functions.Media.specificEnthalpy(obj, obj_r);

M =V_par*d_out;

der_u = (inlet.m_flow*h_in - outlet.m_flow*h_out -

der_M*u_out)/M;
der(xs) = functions.Media.get_der_xs(obj, obj_r,der_d, der_u);

/I Mass fraction balance
Xi_in = functions.Media.massFractions(obj, obj_r);
der(Xi) = (Xi_in*inlet.m_flow - Xi*(outlet.m_flow - der_M))/M;

I/l Mass flow rate and inertial pressure (as in ThermofluidStream)

end VVolume;

The state vector of a single substance compressible fluid
medium is defined by two intensive quantities. In
Modelica.Media, the state pairs (p,T), (p,h), (p.s), (d,T)
are used. The pair selected for a particular medium in
Stream is hidden and is implicitly defined by the medium
name. In Listing 4, vector xs[2] is defined as a scaled pair,
so that the two elements have magnitudes around 1 which
means no nominal values need to be set for xs. For
example, Modelica.Media.Air.SimpleAir uses the scaling
xs[1] = p/10°%, xs[2] = T/273.15.

For a multi-substance medium, additionally the
independent mass fractions Xi[:] are used as states. The
dimension of Xi is identical to the dimension of its start
value vector, i.e., Real Xi[size(Xi_start,1)].

28 https://specification.modelica.org/maint/3.6/functions.html,
section 12.9.7
2 https://github.com/DLR-SR/ThermofluidStream

DOI
10.3384/ecp218211

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

217

https://wasmer.io/
https://pyscript.net/
https://pyodide.org/
https://specification.modelica.org/maint/3.6/functions.html
https://github.com/DLR-SR/ThermofluidStream

Modiator - A Web App for Modelica Simulation

The internal medium states and the internal medium
equations are defined by the declaration of the
ExternalObject:

MediumAndState obj = MediumAndState(mediumlID);

The input argument to the constructor is the Integer
parameter mediumID — a unique identification of a
Medium. Itis deduced from the inlet input variable obj that
references the medium and the medium variables in the
connector:

parameter Integer mediumID(fixed=false);
initial equation
mediumID = functions.Media.mediumID_from_obj(inlet.obj);

Since inlet.obj is formally a time varying variable
propagated through connectors, the mediumID is
determined during initialization via the given initial
equation. This is not strictly Modelica compliant because
alias equations for an ExternalObject are present (such as
outlet.obj = obj). This tiny issue is not detected by
Dymola® and by Modiator. The implementation of the
ExternalObject constructor is (media.c contains the C-
functions of the media):

class MediumAndState

extends ExternalObject;

function constructor
input Integer mediumID "ID of medium";
output MediumAndState obj;
external "C" obj = MediumAndState_constructor(mediumID)

annotation(IncludeDirectory=
"modelica://Stream/Resources/C-Sources",

end constructor;

Since der(xs) and der(Xi) appear in the volume model, xs
and Xi are treated as known. With statement

obj_r = functions.Media.update ThermodynamicState(obj, xs, Xi);

the states xs and Xi are copied into obj. The function
returns the Real dummy variable obj_r (short for
obj_ready). Whenever, an access function is called with
obj, obj_r must be provided as well to guarantee that obj is
used after it was updated. The derivative of xs — der(xs) —
is computed with the external function call

der(xs) = get_der_xs(obj, obj_r, der_d, der_u);

which has obj, obj_r, der_d (derivative of density) and der_u
(derivative of specific internal energy) as arguments.
Modiator can currently not utilize C-functions.
Therefore, Javascript functions that are equivalent to the
functions in media.c are provided in file media-
functions.js. This file is included whenever Modiator is
started. During parsing of a Modelica model, all function
names that start with “functions.” are interpreted to be

30 https://www.3ds.com/products/catia/dymola

31 https://github.com/ModiaSim/Modia3D.jl

Javascript functions and the look-up is not done in the
Modelica model but internally in Modiator.

11 Model3D with 3D Geometries

The prototype Modelica package Model3D enables
incorporation of 3D geometries into Modelica models.
Currently, this capability is applied only to 3D mechanical
systems but is intended to extend to other domains in the
future. The design of Model3D is inspired by Modia3D3!
(Neumayr and Otter 2018, Neumayr 2025) and
Modelica.Mechanics.MultiBody3? (Otter et al. 2003). It
utilizes the new approach “Dialectic Mechanics”
introduced in (Zimmer and Oldemeyer 2023) and further
developed in (Zimmer 2024, 2025). In particular, the
states of a multibody system are fixed in the library and
are the generalized joint coordinates of the spanning tree.
Kinematic loops can be optionally modelled with elastic
cut-joints. By introducing “kinetic velocities” which are
filtered position derivatives, very stiff elastic joints can be
reasonably simulated. The analytic handling of many
kinematic loop types supported by the MultiBody library,
will be ported to Model3D.
Primitive geometries, such as
box, sphere etc. as well as meshes
(.stl, .obj/mtl, .dae, .glb format) can
be used in a model both for
visualization and to compute
properties such as mass and inertia,
similarly as it is done in Modia3D. A
screenshot from Modiators

‘ Body

Solid

Visual

¥ BaseClasses (20)
¥ \VisualShapes (8)

NoShape
parameter menu of the basic parts of :
Model3D are shown at the right side.) Sphere
BaseClasses are replaceable models) Ellpsoid
that can be utilized in Body and
Visual (VisualShapes) as well as in Box
Solid (SolidShapes, SolidMaterials). —
An example of a double pendulum cvincer
with object diagram and animation is Pipe

shown in Figure 14.

Model3D stores layout and
settings parameters no longer in the
World and other models, but in an
external hierarchical JSON file.
Standard Modelica tools read this
file and extract content via Modelica package
ExternData®® (Beutlich and Winkler 2021).

Modiator accesses the settings JSON file directly
from Javascript. In order that both approaches work
seamlessly together, a few access routines of ExternData
are replicated in Model3D as functions.getJISONxxx. If
the Modiator parser recognizes function names starting
with “functions”, it utilizes its Javascript implementation.

. Cone
A FileMesh

» SolidShapes (5)
» SolidMaterials (4)

32
https://doc.modelica.org/Modelica%204.0.0/Resources/help

Dymola/Modelica_Mechanics MultiBody.html
33 https://github.com/modelica-3rdparty/ExternData

218

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218211

https://www.3ds.com/products/catia/dymola
https://github.com/ModiaSim/Modia3D.jl
https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/Modelica_Mechanics_MultiBody.html
https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/Modelica_Mechanics_MultiBody.html
https://github.com/modelica-3rdparty/ExternData

Session: New Translation Methods and Tools in Track for General Modelica

translation2
—

glass

world
body 1 2
body2

M & & L e

revolute1 revolute2
translation1
S —

o -

Figure 14. Model of a double pendulum in the diagram and
animation widget of Modiator: bodyl is a “Solid” (here: Box)
where mass properties are computed from the geometry and
from the selected material, body2 is a “Body” defined by mass,
inertia and center of mass together with a “Visual” object
(default: Cylinder) and optional marking of the center of mass
with a sphere; glass is a “Visual” object (here: FileMesh).

As an example, part of the layout parameterization of a
Revolute joint is shown in the next Listing.

Listing 5. Layout parametrization of Revolute joint.

constant String resource = Modelica.Utilities.Files.loadResource(
"modelica://Model3D/Resources/settings.json");
constant Real length = functions.getJSONReal(resource,
"shape_in_m.jointLength",0.1);
constant Real diameter = functions.getJSONReal(resource,
"shape_in_m.jointWidth",0.05);
constant Integer color[3] = functions.getJSONIntegerArray1D(
resource,"color.Revolute",3,{255,0,03});

/1 settings.json file
{"shape_in_m" : {
"jointLength™: 0.1,
"jointWidth" : 0.05,
"forceLength": 0.1,
"forceWidth" : 0.05,
"bodyDiameter": 0.11},
"color": {
"Revolute" : [255,0,0],
..}

The functions.getJSONxxx act as a thin layer over the
ExternData API. They have an additional default
argument which is used if the settings file is unavailable.
This technique results in much cleaner menus. Notably,
all the many parameters of the World object are removed,
except for the gravity definition which remains in the
World object and is propagated via the connections.
Consequently, global data is no longer present, so the
inner prefix of World is removed.

12 Limitations and Future Work

The status of Modiator can be categorized as a Proof-Of-
Concept for a complete Modelica compiler and simulator
running in a web browser. So far, the focus has been to
investigate an entire tool chain for the fundamental
semantics of Modelica: model classes, component
declarations with modifiers and redeclare, and
connections.

It is sometimes assumed that the Modelica model is
correct since many checks are not performed in the
interest of translation speed. Scalability has not been in
focus yet, i.e. only models with less than 1000 states and
5000 variables have been tested. The translator can be
optimized in many ways, for example, by introducing
caching and the separate translation technique outlined in
section 8.

Only models which don’t have nonlinear algebraic
equation systems or mixed simultaneous equations with
Real and Boolean unknowns can currently be simulated.
Only very limited event handling is currently available.
Other features not supported yet are:

e Modelica functions and external C-functions
inner/outer
complete set of matrix expressions
algorithms
initial equations/algorithms
stream connectors (not planned)
overconstrained connections (not planned)

[]
There are no plans to support the following parts of the
Modelica Standard Library because they shall be replaced
by better approaches:
(1) Modelica.Media shall be replaced by the Stream

library sketched in section 10.
(2) Modelica.Fluid shall not be supported but instead the
Stream library shall be used, and/or a future version
of the ThermofluidStream library based on the Stream
media handling and on LIED equations.
Modelica.Mechanics.MultiBody shall be replaced by
Model3D. Potentially, a nearly MultiBody compliant
library will be provided as thin layer over Model3D
to allow reasonable conversion of the many libraries
and models that are based on the MultiBody library.
Since the current version of Modiator already (a) is
useable on any device, (b) can be utilized just with the
Modiator URL within a few seconds without installation,
and (c) can translate and simulate smaller Modelica
models locally in the browser nearly instantaneously,
Modiator is well suited for tutorials and university courses
on Modelica and for dedicated web apps with a special
user-oriented Web GUI where the Modiator engine is
running in the background.

®3)

DOI
10.3384/ecp218211

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

219

Modiator - A Web App for Modelica Simulation

13 Conclusions

Modiator is the next phase of experimentation and
evolution of object-oriented modelling conducted by the
authors after the Modia project. New web technologies
provide the means to enable quick and easy access to
object-oriented modeling and cloud simulation by
Modelica Instant Simulation.

Furthermore, Modiator provides a platform for
further investigations of new modeling capabilities to
meet more and more demanding modelling needs.

Acknowledgements

The authors want to thank Johan Furuhjelm (Lund
Institute of Technology) for the implementation of the
infinite canvas user interface, Andreas Pfeiffer (DLR-FK)
for valuable help regarding WebAssembly and Sundials
and Dirk Zimmer (DLR-RM) for useful discussions
regarding LIED and dialectic mechanics.

References

Bezanson, Jeff, Alan Edelman, Stefan Karpinski and Viral B.
Shah (2017). “Julia: A fresh approach to numerical
computing”. In: SIAM review 59.1, pp. 65-98.

DOI: 10.1137/141000671

Beutlich, Thomas and Dietmar Winkler (2021): ,Efficient
Parameterization of Modelica Models”. In: Proceedings of
the 14" International Modelica Conference.

DOI: 10.3384/ecp21181141

Elmgqvist, Hilding, Alexander D. Baldwin and Simon Dahlberg
(2015): “3D Schematics of Modelica Models and
Gamification”. In: Proceedings of 11" International
Modelica Conference, pp. 527-536.

DOI: 10.3384/ecp15118527

Elmgqvist, Hilding, Martin Malmheden and Johan Andreasson
(2018). “A Web Architecture for Modeling and Simulation”,
In: Proceedings of the 2nd Japanese Modelica Conference,
Tokyo, Japan, May 17-18, 2018

Elmaqvist, Hilding, Martin Otter, Andrea Neumayr and Gerhard
Hippmann (2021). “Modia - Equation Based Modeling and
Domain Specific Algorithms”. In: Proceedings of
14" International Modelica Conference, pp. 73-86.

DOI: 10.3384/ecp2118173.

Franke, Riidiger (2014): “Client-side Modelica powered by
Python or Javascript”. In: Proceedings of 10" International
Modelica Conference, pp. 1105-1112.

DOI: 10.3384/ecp140961105

Gardner, David J. et al. (2022): “Enabling new flexibility in the
SUNDIALS suite of nonlinear and differential/algebraic
equation solvers”. In: ACM Transactions on Mathematical
Software (TOMS). 48.3, pp. 1-24, DOI: 10.1145/3539801

Hindmarsh, Alan C. et. al. (2005): “SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers”. In:
ACM Transactions on Mathematical Software (TOMS), 31.3,
pp. 363-396. DOI: 10.1145/1089014.1089020

Kulhanek Tomas, Arnost Mladek, Filip Jezek and Jiri Kofranek
(2023): “Bodylight.js 2.0 - Web components for FMU
simulation, visualisation and animation in standard web

browser”. In: Proceedings of 15" International Modelica
Conference, pp. 443-451. DOI: 10.3384/ecp204443

Modelica Association (2023). Modelica — A Unified Object-
Oriented Language for Systems Modeling, Language
Specification, Version 3.6. URL:
https://specification.modelica.org/maint/3.6/MLS.html.

Neumayr, Andrea and Martin Otter (2018): “Component-Based
3D Modeling of Dynamic Systems”. In: Proceedings of the
1%t American Modelica Conference.

DOI: 10.3384/ECP18154175

Neumayr, Andrea (2025): Modeling and Simulation of Physical
Systems with Variable Structure. Doctoral Dissertation,
Technical University of Munich.

Otter, Martin, Hilding EImqvist and Sven Erik Mattsson (2003):
“The New Modelica MultiBody Library”. In: Proceedings of
the 3™ International Modelica Conference. URL:
http://www.Modelica.org/Conference2003/papers.shtml

Otter, Martin, Hilding EImqvist, Dirk Zimmer and Christopher
Laughman (2019), “Thermodynamic Property and Fluid
Modeling with Modern Programming Language Constructs”.
In: Proceedings of the 13" International Modelica
Conference, pp. 589-598. DOI: 10.3384/ecp19157589.

Otter, Martin and Hilding Elmqvist (2025), “Resizable Arrays in
Object-Oriented Modeling”, In: Proceedings of the 16"
International Modelica and FMI Conference.

Short, Tom (2014): OpenModelica models in Javascript. URL:
https://github.com/tshort/openmodelica-javascript

Zimmer, Dirk (2020): “Robust object-oriented formulation of
directed thermofluid stream networks”. In: Mathematical and
Computer Modelling of Dynamical Systems”, Taylor &
Francis. DOI: 10.1080/13873954.2020.1757726

Zimmer, Dirk, Michael MeiRner and Niels Weber (2022): The
DLR ThermoFluid Stream Library. Electronics, Vol. 11, nr.
22, DOI: 2079-9292/11/22/3790

Zimmer, Dirk and Carsten Oldemeyer (2023): “Introducing
Dialectic Mechanics”. In: Proceedings of the 15"
International Modelica Conference 2023, pp. 167-176. DOI:
10.3384/ecp204167.

Zimmer, Dirk (2024): “Object-Oriented Implementation of a
Simulator for Linear Implicit Equilibrium Dynamics”. In:
ASIM 2024 Tagungsband. DOI: 10.11128/arep.47.a4735.

Zimmer, Dirk (2025): “The Value of Enforcing a Strict
Modeling Methodology within Modelica”. In: Proceedings of
the 16" International Modelica & FMI Conference.

220

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218211

https://doi.org/10.1137/141000671
https://doi.org/10.3384/ecp21181141
https://doi.org/10.3384/ecp15118527
https://ep.liu.se/en/conference-issue.aspx?series=&issue=148
https://ep.liu.se/en/conference-issue.aspx?series=&issue=148
https://doi.org/10.3384/ecp2118173
https://doi.org/10.3384/ecp140961105
https://doi.org/10.1145/3539801
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.3384/ecp204443
https://specification.modelica.org/maint/3.6/MLS.html
https://doi.org/10.3384/ECP18154175
http://www.modelica.org/Conference2003/papers.shtml
https://doi.org/10.3384/ecp19157589
https://github.com/tshort/openmodelica-javascript
https://doi.org/10.1080/13873954.2020.1757726
https://www.mdpi.com/2079-9292/11/22/3790
https://doi.org/10.3384/ecp204167
https://doi.org/10.11128/arep.47.a4735

Session: New Translation Methods and Tools in Track for General Modelica

Appendix
Example for Separate Translation

This appendix shows an example of separate translation
of models as sketched in section 8. Consider the second
order low pass filter®* in Figure 15

ground

Figure 15. Second order low pass filter.
A corresponding Modelica model is shown below.

Listing 6. Modelica model of Figure 15.

model LowPass2nd
Modelica.Electrical. Analog.Basic.Resistor R1(R=1);
Modelica.Electrical. Analog.Basic.Resistor R2(R=1);
Modelica.Electrical.Analog.ldeal.IdealOpAmp3Pin op;
Modelica.Electrical. Analog.Basic.Ground ground,;
Modelica.Electrical. Analog.Basic.Capacitor C1(C=1);
Modelica.Electrical. Analog.Basic.Capacitor C2(C=1);
Modelica.Electrical. Analog.Basic.Resistor RA(R=1);
Modelica.Electrical. Analog.Basic.Resistor RB(R=1);
Modelica.Electrical. Analog.Interfaces.Pin inp;
Modelica.Electrical. Analog.Interfaces.Pin out;
equation
connect(R1.n, R2.p);
connect(R2.n, C2.n);
connect(ground.p, C2.p);
connect(op.out, RA.n);
connect(ground.p, RB.p);
connect(R1.n, Cl.p);
connect(C1.n, op.out);
connect(R2.n, op.in_p);
connect(RB.n, op.in_n);
connect(RA.p, RB.n);
connect(R1.p, inp);
connect(op.out, out);
end LowPass2nd;

If a voltage source is connected between ground and
connector inp, the translated model with alias elimination
applied will consist of a sequence of 10 solved equations.

If the filter is separately translated according to the
algorithm outlined in section 8, an equivalent Modelica
model is created (parameter handling simplified):

34

https://electronics.stackexchange.com/questions/271857/sec
ond-order-low-pass-filter-configuration

Listing 7. Modelica model of Listing 6 transformed into a mix
of acausal equations and causal functions.

model LowPass2nd
Modelica.Electrical.Analog.Interfaces.Pin inp;
Modelica.Electrical.Analog.Interfaces.Pin out;
equation
LowPass2nd_init = ast.newFunction("C1_v, C2_v",
"return {
RA: {R: 1, p:{}, n:{3},
RB: {R: 1, p:{}, n:{}},
R1: {R: 1, p:{}, n: {3},
R2: {R: 1, p:{}, n:{3},
CL:{C:1,v:Cl_v, p:{}, n:{3},
C2:{C:1,v:C2_v, p:{}, n: {3},
op: {in_p: {}, in_n: {}, out: {}},
ground:{p:{}},
out: {}}")

LowPass2nd_pre = ast.newFunction("M", "
M.RB.i = M.C2.v/ M.RB.R;
M.RA.v = M.RA.R * (-M.RB.i);
M.RA.n.v = -((M.RA.v - M.C2.v));
M.Clp.v=M.CLv - (-M.RA.n.v);
return [M.RA.n.v, M.C1.p.v];"™);

LowPass2nd_post = ast.newFunction("M, R1_p_i", "
M.R2.v = M.Cl.p.v - M.C2.v;
M.R2.i = M.R2.v/ M.R2.R;
M.Cl.p.i = -((-R1_p_i + M.R2.i));
M.Cl.der_ v=M.Cl.p.i/ M.C1.C,;
M.C2.der_v = M.R2.i/ M.C2.C;
return [M.Cl.der_v, M.C2.der_v];");

M = LowPass2nd_init(C1_v, C2_v);
(out.v, R1_n_v) = LowPass2nd_pre(M);

R1.R=1;
R1_R*inp.i=R1_v;
R1_v=inpv-R1l_n_v;

(der(C1_v), der(C2_v)) = LowPass2nd_post(M, inp.i);
end LowPass2nd;

The equations are then partitioned into

e function LowPass2nd_pre with 4 assignments,
e function LowPass2nd_post with 5 assignments,
e and 2 remaining model equations.

If many instances of LowPass2nd are created, the 9
equations of the functions LowPass2nd pre and
LowPass2nd_post need to be compiled one time.

The functions LowPass2nd_... were defined using a
built-in function ast.newFunction with the same
semantics as the Javascript constructor Function().

DOI
10.3384/ecp218211

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

221

https://electronics.stackexchange.com/questions/271857/second-order-low-pass-filter-configuration
https://electronics.stackexchange.com/questions/271857/second-order-low-pass-filter-configuration

