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Abstract 
The Modelica language (www.modelica.org) has become 

a de facto standard for systems modeling and many tools 

exist. This paper describes certain modern enhancements 

and a static web app implementation called Modiator 

(Modelica Instant Simulator). It allows an improved 

immediate first-time user experience since the web app is 

available in seconds and simulations can be done directly 

in the browser. State of the art numerical solvers from the 

Sundials suite have been compiled into WebAssembly. 

The Modelica model is translated into Javascript code 

using techniques such as sorting, tearing, index reduction, 

state selection, etc. A subset of Modelica is supported with 

some extensions, for example, support for self-modifying 

models. This paper also presents the Stream and Model3D 

prototype libraries.  
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1 Introduction 
The Modelica language (Modelica Association 2023)

makes it easy to build large, complex models since 

instantiation of reusable component models is possible. 

However, current tools1 usually make full expansion of 

the equation sets including scalarization of arrays for all 

instances and transform the equations to C-Code that is 

compiled and linked. This means that translation time can 

be minutes. There is also a need for self-modifying 

models for example to support adaptable grid for finite 

volume models, variable model structures such as multi-

stage rockets or just turning on and off subsystems. This 

means that separate translation would be beneficial, i.e. 

only translating the parts of the model that has been 

changed. This will also speed up experiments involving 

variant selection by simulation when certain subsystems 

are redeclared to analyze alternative designs. 

Web technology allows an improved immediate first-

time user experience since the web app needs no 

installation (and also no administrator rights), is available 

in seconds and faster separate translation and simulations 

 
1 https://modelica.org/tools/ 
2 https://github.com/ModiaSim/Modia.jl 
3 https://julialang.org/ 

done directly in the browser means less waiting. This will 

also make object-oriented modeling and simulation more 

accessible to students, hopefully increasing the popularity 

of Modelica.  

Mobile phones are becoming more popular than 

computers and they have sufficient computing power for 

simulation. The drawback of mobile phones is the limited 

screen size (except for foldable phones). One possible 

solution is to use an infinite canvas and convenient and 

fast zooming, scrolling, and panning.   

For multi-simulations for variant selection or Monte 

Carlo simulations, cloud should be possible to utilize, for 

example by serverless lambda functions, and there are 

needs to visualize results in different ways than just trend 

plots, such as scatter diagrams and histograms. 

Many of the innovations and findings in this paper 

regarding translating models come from the experiences 

from the Modia project2, see, e.g., (Elmqvist et al. 2021). 

Modia is a language with many similarities to Modelica. 

However, the language is much simpler than the Modelica 

language, and implementation of the Modia environment 

is based on Julia3 (Bezanson et al. 2017). The effort is now 

moved from the Modia language to the Modelica 

language for three reasons: (1) It takes too long to get the 

first plot when using Modia (installing Julia and many 

used packages, as well as compiling generated Julia model 

code the first time). (2) There are many existing Modelica 

model libraries in wide-spread use and it is too much 

effort to develop and maintain a thorough translator from 

Modelica to Modia. (3) New technologies with 

WebAssembly 4  and fast just-in-time compilation of 

Javascript enables immediate and fast simulations. 

The paper introduces Modiator (Modelica Instant 

Simulator), a static web-app implemented with Javascript 

and WebAssembly providing support for a sub-set of the 

Modelica language with some extensions of Modelica 

based on experience with Modia/Julia and taking 

advantage of modern web technology.  

The commercial Modelica environment Modelon 

Impact5 (Elmqvist et al. 2018) also provides a browser 

GUI. However, compilation and simulation of models are 

not performed in the browser but via a cloud service that 

has to be paid for. The default behavior of Modiator is that 

models are compiled and simulated locally in the browser. 

4 https://webassembly.org/ 
5 https://modelon.com/modelon-impact/ 
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This requires different techniques, e.g., to generate model 

code directly in Javascript, instead of in C or C++ (as done 

by other Modelica tools). 

Compiling and simulating a Modelica model in a 

web browser has been proposed by (Franke 2014) and 

demonstrated with a tiny, very partial prototype. (Short 

2014) demonstrates a tool chain to translate Modelica 

models to Javascript based on the OpenModelica 6 

compiler and Emscripten7  and run the Javascript code 

locally in the browser. (Kulhánek et al. 2023) provide the 

Bodylight.js 2.0 toolchain to build in-browser web 

simulators by translating a Modelica model into an FMU8 

(Functional Mockup Unit), use Emscripten to transform 

the C-source code inside the FMU into WebAssembly 

format and embed this code in a web page with a specific 

user-friendly GUI for this particular Modelica model. 

2 A Modernized Modelica Syntax 

There are trends concerning the syntax of new 

programming languages (e.g. C#, Go, Julia, Python, 

Swift) which have been adopted by Modia. The following 

proposals for the Modelica language are inspired by 

Modia, based on these new trends:  

• Using Greek letters in identifiers is natural for 

users making mathematical models.  

• Semicolon is becoming optional which makes 

models easier to read. Traditionally, semicolons 

were used to enable resynchronization after the 

first error in order to continue parsing. The speed 

of parsing is now much faster, so it is better to 

abort after the first error is found.  

• Type and unit inference and checking can be 

introduced if a notation is utilized to associate 

units to numeric literals. In the example below, 

units are appended to parameters and start values 

enclosed in single quotes. Most type specifiers 

are omitted since all parameters are Real and the 

states must be Real.  

• The class identifier after end is made optional. 

Below is shown a second order model utilizing the 

simplified, more readable syntax in Modiator: 

Listing 1. Modelica model with the proposed condensed 

syntax and Greek identifiers. 

model SecondOrder 

    τ = 1.0 's'  // instead of: parameter Real tau(unit=”s”) = 1.0; 

    ζ = 0.5 

    input u 

    x1(start=0) 

    x2(start=0 '1/s')   // instead of: Real x2(start=0, unit=”1/s”); 

    output y=x1 

equation 

    der(x1) = x2 

    τ*τ*der(x2) + 2*ζ*τ*x2 + x1 = u 

end   // instead of: end SecondOrder; 

 
6 https://openmodelica.org/ 
7 https://emscripten.org/ 

3 Self-Modifying Models 
A much-wanted Modelica feature is to be able to change 

array dimensions without recompiling when, for example, 

higher fidelity of discretization is needed. Other needs are 

to be able to redeclare component classes or start and stop 

subsystems. These scenarios can be achieved by scripting 

repeated simulations where the start value for the next 

simulation is set to the end value of the previous 

simulation. At certain conditions, parameters can be 

changed, redeclarations made and some transformation 

algorithm is applied between final state and new state. 

Writing such scripts is not object oriented though. To 

make it reusable, the transformations should be made in 

the model classes.  

A similar situation exists when updating HTML 

pages. The HTML DOM (Document Object Model) is a 

tree of various kinds of nodes which can be modified by 

Javascript functions which are called when different kinds 

of events occur. The DOM tree can also be traversed and 

a node id can be search for. Nodes can then be modified 

either by changing attributes or making a new subtree by 

providing an innerText definition. Nodes can also be 

added or removed by built-in JavaScript function calls. 

The ModelManagement.Structure.AST functions of 

Dymola9 can manipulate the AST (Abstract Syntax Tree) 

from Modelica scripts (not from Modelica models). This 

functionality can serve as inspiration for models 

manipulating themselves. 

For this feature, Modelica needs to have an event 

detection mechanism (c.f. addEventListener in HTML). 

Modelica already has a when-statement which can be 

generalized. The model below shows some of the 

functions which can be used to manipulate the ast 

(reserved Modiator identifier for the Abstract Syntax 

Tree) of a model. 

Listing 2. Model that modifies its definition during simulation. 

model TestSelfModifications 

    parameter Real T=1; 

    Real x(start=0); 

equation 

    T*der(x) + x = 1; 

    when x>0.3 then 

        ast.setParameter('T', 0.1); 

    end when; 

    when time>0.5 then 

        ast.setStart('x', 2); 

    end when; 

    when time>0.7 then 

        ast.addEquation('0.1*der(y) + y = 1'); 

    end when; 

end TestSelfModifications; 

If a significant event occurs, the modified model ast is 

translated to Javascript code which is just-in-time 

compiled before the simulation continues. 

8 https://fmi-standard.org/ 
9 https://www.3ds.com/products/catia/dymola 
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The semantics of the above function calls are 

explained by the plot below. 

 

 

Figure 1. Plot of model TestSelfModifications 

Note, that when the equation was added, also a new 

variable was introduced, y. By default, all state variables 

are currently plotted, i.e. y was also plotted during its 

existence. Adopted from Modia, Modiator does not 

require declaration of variables and the start value is 0 by 

default.  

Array dimensions and the number of states can also 

be changed at events which is illustrated by the following 

model: 

Listing 3. Model that modifies array dimensions and number 

of states during simulation. 

model VaryingDimensions 

    Integer n=2; 

    Real x(start=1:n, fixed=true); 

equation 

    der(x) = -diagonal(1:n)*x; 

    when time > 0.1 then 

        ast.setParameter('n', 3); 

        ast.setStart('x[3]', (x[1]+x[2])/2); 

    end when; 

    when time > 0.2 then 

        ast.setParameter('n', 2); 

        ast.setStart('x[1]', (x[1]+x[3])/2); 

        ast.setStart('x[2]', (x[2]+x[3])/2); 

    end when; 

end VaryingDimensions; 

Note, the new start values defined with ast.setStart(…) are 

calculated before the model is evaluated at the event. This 

gives a nice mechanism for transferring the state 

information to a new state representation. See the results 

below. 

 
Figure 2. Plot of model VaryingDimensions. 

 
10 https://www.w3schools.com/jsref/-

prop_style_transform.asp 

In the companion paper on resizable arrays (Otter et al. 

2025), this technique is used for adaptive grid modeling 

of an insulated rod. 

4 Web App for Immediate Results 

Web technology allows an immediate first-time user 

experience since a web app is available in seconds and 

simulations can be done directly in the browser. 

Mobile phones are becoming more popular and 

powerful than laptop computers and they have sufficient 

computing power for simulation. The drawback is the 

limited screen size. One possible solution is to use an 

infinite canvas (inspired by Apple Photos) and convenient 

and fast zooming, scrolling, and panning. The DOM/CSS-

feature style.transform 10  provides the fundamental 

rendering functionality to implement infinite canvas in the 

browser. Modiator uses two-finger touches on touch 

screens to zoom and move around.  

The Modiator User Interface is based on a set of 

widgets (text editor, plots, 3D animator, model diagrams, 

parameter dialog, etc.) which can be freely placed and 

sized on the infinite model board, see Figure 3: 

 

Figure 3. Example of Modiators User Interface. 

The model diagram rendering is inspired by the 2.5D look 

of Playmola (Elmqvist et al. 2015), i.e., that icons have a 

3D representation which are placed in a 2D diagram. 

Multiple plot widgets can be used to visualize 

simulation results in different ways such as line plots, 

scatter diagrams, etc.  

To enable AI techniques for Modelica authoring, 

external text editors such as VS Code with Github Copilot 

plug-in, can be used. When the external file is changed, 

Modiator will load and simulate the updated model. 

The Modiator web app is a PWA (Progressive Web 

App), i.e., it can be installed on your device and by using 

service workers it can be used offline without internet 

connection. 
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5 Simulation in the Browser 
Modiator uses a mixed execution model for simulation. 

Modelica models are translated to JavaScript functions 

which calculate the derivatives given time, states and 

parameters. The integration of the differential equations is 

performed by CVODE from the SUNDIALS suite 11 

(Hindmarsh et al. 2005, Gardner et al. 2022). CVODE has 

been translated from C to WebAssembly 12  utilizing 

Emscripten 13  and is called from Javascript when 

simulation starts. When derivatives need to be calculated, 

a Javascript callback function is called from CVODE. 

Special considerations had to be taken especially 

regarding allocation and transfer of arrays. 

Modiator translates the model equations to a 

JavaScript function by using the new Function() 
concept14. The Function constructor takes two arguments. 

The first one is a string of comma-separated arguments of 

the function and the second is the body of the function as 

a string, for example:  

const func = new Function('a,b', 'return a + b') 

console.log(func(1, 2)) // 3 

Such functions are usually Just-In-Time-compiled. Array 

and matrix equations are not expanded (Otter et al. 2025), 

but evaluated by calls to run-time functions and math.js15. 

In order not to disturb user interactions, parsing, 

translation and simulations are performed in concurrent 

web workers.  

6 Simulation on the Cloud 
For multi-simulations for variant selection or Monte Carlo 

simulations, it should be possible to utilize cloud 

computations. So far, Netlify functions 16 have been 

utilized. They are based on Amazon Web Services 

Lambdas.  

Essentially the same simulation code as for web 

workers can be used. Instead of posting simulation data to 

a web worker, fetch requests are made to a simulate API 

function with a body of simulation data. The simulation 

data contains parameters and the JavaScript function 

string for calculating derivatives. To support multi-

simulations with redeclares or self-modifying models, the 

Modelica translator module is also available in the 

serverless functions. 

So far, limited testing has been made. 10000 

simulations have been performed on the cloud. The 

startup time for each simulation was less than a second.  

7 Monte Carlo Simulation 

Model-based product design involves determining 

product topology, component selection, component 

sizing, and parameters (tuners) in such a way that the 

 
11 https://webassembly.org/ 
12 https://webassembly.org/ 
13 https://emscripten.org/ 

product has good performance, low production cost and 

low cost of ownership (objectives) while being robust 

with regards to variations in its environment and 

insensitive to variations in parameters (uncertainties). 

Since topology, component selection and component 

sizing are important, gradient based optimization tools 

can’t be used.  

Modiator uses Monte Carlo simulation and randomly 

selects tuner values typically from uniform distributions 

and selects uncertainties typically from truncated normal 

distributions. Redeclarations to model design selections 

or discrete environment variations have associated 

discrete distributions. 

A set of Modelica Objective 

blocks is available for inserting into 

a model to define what are good 

designs. A subset of these blocks is 

shown on the right.  

Since several possibly 

conflicting objectives can be 

defined, the Pareto frontier in scatter diagrams can help 

with compromise decisions and the parallel axis 

coordinates plot can help with assigning different weights 

to the objectives. 

Equality and inequality constraints are enforced by 

including assert statements that cause simulations to fail 

if the specified conditions are not met. Functions of the 

following kind are provided for defining tuners and 

uncertain parameters: 

p=uniform(default, minimum, maximum, tuner) 

Such expressions can be used in modifiers. The default 

value is used for tools that do not provide Monte Carlo 

simulation in this way. Minimum and maximum gives the 

range and tuner is true for a tuner, otherwise an 

uncertainty is defined. The user interface has built-in 

menus for defining such function invocations (± button). 

 

 

Figure 4. Tuner and Uncertainty definitions. 

14 https://javascript.info/new-function 
15 https://mathjs.org/ 
16 https://www.netlify.com/platform/core/functions/ 
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7.1 Design Example – Servo 

To illustrate the design method used by Modiator, a well-

known control problem will be employed: PID control of 

a double integrator. The motor consists of an ideal torque 

generator and an inertia and behaves like a double 

integrator. 

 
Figure 5. Controlled double integrator. 

Two integral square objectives are defined. In addition to 

the usual objective of small control error, it is desired to 

keep the control effort small to save energy. The gain, k, 

and derivative time constant, Td, should be tuned, i.e. 

uniform distributions are defined and tuner is set to true 

for them: 

pid(k=uniform(1, 0.1, 1, true), Td=uniform(2, 0.5, 5, true)) 

 By running 100 simulations, the following spaghetti plot 

is obtained if angleSensor.phi and step.y were plotted 

during a previous single simulation: 

 

 
Figure 6. Spagetti plot for 100 simulations. 

 The time to make one thousand simulations is 2.24 

seconds on a HP ZBook Ultra G1a laptop with an AMD 

RYZEN AI MAX+ PRO 95 3.0 GHZ CPU with 16 

cores/32 threads. The corresponding time for MacBook 

Pro M4 is 1.56 seconds and for iPad Pro 11” M4 is 2.71 

seconds. Amazingly, the same task takes only 4.32 

seconds on a Samsung Galaxy Z Fold6 mobile phone. 

In addition, Modiator presents a matrix of plots, see 

Figure 7. The rows and columns represent the variables: 

integratedSquareError.y, integratedSquareControl.y, 

pid.k and pid.Td. The diagonal shows the histograms for 

the variables (objectives: blue, tuners: green. Plot 1,2 

shows the scatter plot for the objectives. The Pareto 

frontier is marked in red. Plot 1,3 shows that increasing 

gain is good for the first objective and plot 2,3 shows that 

decreasing gain is good for the second objective. The plots 

of the forth column shows that Td needs to be above 3. 

This is consistent with the well-known fact that the 

derivative term is needed for stabilization when 

controlling a double integrator with a PD controller. 

 
Figure 7. Multi-plot matrix with histogram and scatter plots. 

By hovering over the plots, the actual values of 

objectives and tuners are presented: 

 
Figure 8. Tool tips showing objectives and tuners. 

By zooming in on the Pareto frontier, the corresponding 

runs are plotted: 

 

 
Figure 9. Selected responses. 

If uncertainties are defined, for example, as a range of 

loads: 

inertia1(J=uniform(1, 0.1, 1)) 
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the plots include error bars and the tooltip shows the 

variations: 

 

 
Figure 10. Scatter plot with error bars for uncertainties. 

The error bars are obtained by defining bins for the tuner 

values and for each bin, the mean and standard deviation 

are presented. For accurate analysis of uncertainty 

influences many simulations are needed. The use of 

serverless functions on the cloud fits this use case. 

8 Separate Translation of Models 
The object-oriented modeling approach of Modelica 

allows building large models with millions of equations. 

However, the semantic specification is based on 

flattening, i.e., recursive cloning of variables and 

equations of each component instance. Typically, 

Modelica tools also expand matrix equations to scalar 

equations. Flattening means that a lot of memory is 

needed for variables and equations during translation of 

the Modelica code. It also means that translation time is 

long since the same analysis (flattening, symbolic 

processing, etc.) is performed repeatedly for each 

instance. Furthermore, the C-code becomes large, and 

compilation takes a long time. In addition, the execution 

of the C-code gets slower since the code might be larger 

than the size of the code cache.  

However, parts of the equations of a component are 

always executed in the same order and with the same 

causality independently of how the component is 

connected. Such sequences of equations can be put into 

functions: less code gives shorter compilation time; less 

machine code gives shorter simulation time. 

Finding such sequences can be made once for each 

model class. The technique is based on forming the most 

general environment to a model class as illustrated in 
Figure 11. 

 

 
17 https://nodejs.org/api/esm.html 
18 https://code.visualstudio.com/ 
19 https://peggyjs.org/ 
20 https://threejs.org/ 

Figure 11. Generic environment of a model. 

The generic environment is constructed by adding a set of 

dummy equations, env, which all depend on all connector 

variables (cp: potential variables, cf: flow variables) All 

inputs u are assumed to be known. The number of 

equations of env is the number of flow variables. 

The Block Lower Triangular (BLT) form obtained 

during structural analysis of the model plus the generic 

environment has the structure shown in Figure 12. 

 
 

Figure 12.  BLT structure of model plus generic environment. 

The block in the middle contains the env equations since 

they all have the same incidences. It also contains certain 

equations, equ, which are related to the variables of the 

environment. 

An example is given in the Appendix which shows 

how the equations are partitioned for a second order low 

pass filter.  

9 Technology and Development 

Environment 
The implementation of Modiator relies on ECMAScript 

modules17. Type inference and checking is done by Visual 

Studio Code 18  with TypeScript engine. Module 

dependency diagrams are generated by a Visual Studio 

Code plug-in, Dependency Cruiser. 

The Modiator parser for Modelica is generated with 

the PEG-parser generator Peggy 19 . The handling of 

extends and merging of modifiers is done by deep 

merging of Javascript objects in a way inspired from 

merging in Modia.  

Modelica model diagrams and 3D animations are 

created with three.js20. Plotting is done with Plotly21. 

Alias handling, tearing, index reduction, state-

selection, BLT, symbolic processing of expressions, etc. 

have been ported from Modia (Julia code) to Javascript 

and some parts significantly improved. This has in some 

cases been done with a semi-automatic process using AI 

techniques with tool Code Converter22 and the ChatGPT-

4 tools Microsoft Copilot23 and Perplexity24. Overall, the 

automatic translation reduced significantly the work to 

transform Modia functions to Javascript functions. 

21 https://plotly.com/ 
22 https://codeconverter.com/ 
23 https://copilot.microsoft.com 
24 https://www.perplexity.ai/ 
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In order to enable building a full Modelica compiler 

and simulator running in the browser, C-code must be 

handled since Modelica has an interface to C-functions. 

Successful experiments have been made to use clang 

running under Wasmer25 in the browser to compile C-

functions into WebAssembly. 

Modeling and simulation workflows typically 

involve scripting, for example with Python. For this 

reason, successful experiments have been made to use 

PyScript26 and Pyodide27 which enables running Python 

in the browser together with Modiator. 

10 Stream with Media Propagation 

When simulating fluid systems, there is currently the 

inherent drawback in Modelica that a medium has to be 

defined at every component and that every change of the 

Medium requires recompilation of the model. A prototype 

Modelica package called Stream does no longer has these 

drawbacks. 

In this new approach, all media are defined with 

external functions and the internal memory of the 

functions by ExternalObjects28 (so pointers to memory 

allocated inside the functions). An ExternalObject is 

constructed at one component and then propagated 

through connections. Below, first the principle of the 

approach is explained based on media C-functions and 

afterwards it is sketched how media Javascript-functions 

are supported in current Modiator. 

Stream is a small subset of Modelica package 

ThermofluidStream29 (Zimmer 2020, Zimmer et al. 2022) 

but with (a) different handling of the media inspired by 

(Otter et al. 2019) and (b) equations of the thermodynamic 

state formulated with Linear Implicit Equilibrium 
Dynamics (LIED) as proposed by Zimmer (2024, 2025). 

The latter means that all states are fixed in the library and 

no nonlinear equations appear in Modelica models due to 

Stream (but might be present inside the external 

functions). Separate translation, as proposed in section 8, 

becomes particularly easy in this case. A simple example 

of a system with boundaries, flow resistances and a 

volume are shown in the next figure. 

 
Figure 13.  Simple Stream model in Modiator. The medium and 

its variables are defined in the source and propagated through 

the connections. The medium variables are changed in every 

component. Media states are defined in the volume. Mass flow 

rate states are defined in the source and in the volume. 

The core LIED equations of the volume are shown in the 

next Listing. 

 
25 https://wasmer.io/ 
26 https://pyscript.net/ 
27 https://pyodide.org/ 

Listing 4. Stream model of a volume with fixed size. 

model Volume "Volume of fixed size" 

  Interfaces.Inlet  inlet; Interfaces.Outlet outlet; 

  parameter SI.Volume V_par "Fixed volume"; 

    ... 

  Real xs[2](each fixed=false, each unit="1")  

                                                            "Scaled pair (p,T), (p,h), ..."; 

  Real Xi[size(Xi_start,1)](start=Xi_start, each fixed=true, 

                                 each unit="1") "Independent mass fractions"; 
protected 

  parameter Integer mediumID(fixed=false); 

  functions.Media.MediumAndState obj = 

                             functions.Media.MediumAndState(mediumID); 

  Real obj_r "Dummy, for correct sorting of obj"; 

initial equation 

  mediumID = functions.Media.mediumID_from_obj(inlet.obj); 

  xs               = functions.Media.get_xs(obj,p_start,T_start,...); 

equation 

  // Update obj with xs, Xi 

  obj_r = functions.Media.updateThermodynamicState(obj, xs, Xi); 

  outlet.obj = obj;  outlet.obj_r = obj_r; 

 

  // Mass balance 

  der_M = inlet.m_flow - outlet.m_flow ; 

  der_d = der_M/V_par; 

 

  // Energy balance 

  d_in  = functions.Media.density(inlet.obj, inlet.obj_r ); 

  h_in  = functions.Media.specificEnthalpy(inlet.obj, inlet.obj_r ); 

  u_out = functions.Media.specificInternalEnergy( 

                                                                      inlet.obj,inlet.obj_r ); 

  d_out = functions.Media.density(obj, obj_r); 

  h_out = functions.Media.specificEnthalpy(obj, obj_r); 

  M     = V_par*d_out; 

  der_u = (inlet.m_flow*h_in - outlet.m_flow*h_out - 

                                                                          der_M*u_out)/M; 

  der(xs) = functions.Media.get_der_xs(obj, obj_r,der_d, der_u); 

 

  // Mass fraction balance 

  Xi_in   = functions.Media.massFractions(obj, obj_r); 

  der(Xi) = (Xi_in*inlet.m_flow - Xi*(outlet.m_flow - der_M))/M; 

 

  // Mass flow rate and inertial pressure (as in ThermofluidStream) 

  ... 

end Volume; 

The state vector of a single substance compressible fluid 

medium is defined by two intensive quantities. In 

Modelica.Media, the state pairs (p,T), (p,h), (p,s), (d,T) 

are used. The pair selected for a particular medium in 

Stream is hidden and is implicitly defined by the medium 

name. In Listing 4, vector xs[2] is defined as a scaled pair, 

so that the two elements have magnitudes around 1 which 

means no nominal values need to be set for xs. For 

example, Modelica.Media.Air.SimpleAir uses the scaling 

xs[1] = p/105, xs[2] = T/273.15. 

For a multi-substance medium, additionally the 

independent mass fractions Xi[:] are used as states. The 

dimension of Xi is identical to the dimension of its start 

value vector, i.e., Real Xi[size(Xi_start,1)]. 

28 https://specification.modelica.org/maint/3.6/functions.html, 

section 12.9.7 
29 https://github.com/DLR-SR/ThermofluidStream 
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The internal medium states and the internal medium 

equations are defined by the declaration of the 

ExternalObject: 

MediumAndState obj = MediumAndState(mediumID); 

The input argument to the constructor is the Integer 

parameter mediumID – a unique identification of a 

Medium. It is deduced from the inlet input variable obj that 

references the medium and the medium variables in the 

connector: 

  parameter Integer mediumID(fixed=false); 

initial equation 

  mediumID = functions.Media.mediumID_from_obj(inlet.obj); 

Since inlet.obj is formally a time varying variable 

propagated through connectors, the mediumID is 

determined during initialization via the given initial 

equation. This is not strictly Modelica compliant because 

alias equations for an ExternalObject are present (such as 

outlet.obj = obj). This tiny issue is not detected by 

Dymola30 and by Modiator. The implementation of the 

ExternalObject constructor is (media.c contains the C-

functions of the media): 

   class MediumAndState  

       extends ExternalObject; 

      function constructor 

        input Integer mediumID "ID of medium"; 

        output MediumAndState obj; 

        external "C" obj = MediumAndState_constructor(mediumID) 

          annotation(IncludeDirectory= 

                                   "modelica://Stream/Resources/C-Sources", 

               Include="#include \"media.c\""); 

      end constructor; 

Since der(xs) and der(Xi) appear in the volume model, xs 

and Xi are treated as known. With statement 

obj_r = functions.Media.updateThermodynamicState(obj, xs, Xi); 

the states xs and Xi are copied into obj. The function 

returns the Real dummy variable obj_r (short for 

obj_ready). Whenever, an access function is called with 

obj, obj_r must be provided as well to guarantee that obj is 

used after it was updated. The derivative of xs – der(xs)  – 

is computed with the external function call 

der(xs) = get_der_xs(obj, obj_r, der_d, der_u); 

which has obj, obj_r, der_d (derivative of density) and der_u 

(derivative of specific internal energy) as arguments. 

Modiator can currently not utilize C-functions. 

Therefore, Javascript functions that are equivalent to the 

functions in media.c are provided in file media-

functions.js. This file is included whenever Modiator is 

started. During parsing of a Modelica model, all function 

names that start with “functions.” are interpreted to be 

 
30 https://www.3ds.com/products/catia/dymola 

 
31 https://github.com/ModiaSim/Modia3D.jl 

Javascript functions and the look-up is not done in the 

Modelica model but internally in Modiator. 

11 Model3D with 3D Geometries 
The prototype Modelica package Model3D enables 

incorporation of 3D geometries into Modelica models. 

Currently, this capability is applied only to 3D mechanical 

systems but is intended to extend to other domains in the 

future. The design of Model3D is inspired by Modia3D31 

(Neumayr and Otter 2018, Neumayr 2025) and 

Modelica.Mechanics.MultiBody32 (Otter et al. 2003). It 

utilizes the new approach “Dialectic Mechanics” 

introduced in (Zimmer and Oldemeyer 2023) and further 

developed in (Zimmer 2024, 2025). In particular, the 

states of a multibody system are fixed in the library and 

are the generalized joint coordinates of the spanning tree. 

Kinematic loops can be optionally modelled with elastic 

cut-joints. By introducing “kinetic velocities” which are 

filtered position derivatives, very stiff elastic joints can be 

reasonably simulated. The analytic handling of many 

kinematic loop types supported by the MultiBody library, 

will be ported to Model3D. 

Primitive geometries, such as 

box, sphere etc. as well as meshes 

(.stl, .obj/mtl, .dae, .glb format) can 

be used in a model both for 

visualization and to compute 

properties such as mass and inertia, 

similarly as it is done in Modia3D. A 

screenshot from Modiators 

parameter menu of the basic parts of 

Model3D are shown at the right side. 

BaseClasses are replaceable models 

that can be utilized in Body and 

Visual (VisualShapes) as well as in 

Solid (SolidShapes, SolidMaterials). 

An example of a double pendulum 

with object diagram and animation is 

shown in Figure 14. 

Model3D stores layout and 

settings parameters no longer in the 

World and other models, but in an 

external hierarchical JSON file. 

Standard Modelica tools read this 

file and extract content via Modelica package 

ExternData33 (Beutlich and Winkler 2021). 

Modiator accesses the settings JSON file directly 

from Javascript. In order that both approaches work 

seamlessly together, a few access routines of ExternData 

are replicated in Model3D as functions.getJSONxxx. If 

the Modiator parser recognizes function names starting 

with “functions”, it utilizes its Javascript implementation.  

32 

https://doc.modelica.org/Modelica%204.0.0/Resources/help

Dymola/Modelica_Mechanics_MultiBody.html 
33 https://github.com/modelica-3rdparty/ExternData 
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Figure 14.  Model of a double pendulum in the diagram and 

animation widget of Modiator: body1 is a “Solid” (here: Box) 

where mass properties are computed from the geometry and 

from the selected material, body2 is a “Body” defined by mass, 

inertia and center of mass together with a “Visual” object 

(default: Cylinder) and optional marking of the center of mass 

with a sphere; glass is a “Visual” object (here: FileMesh). 

As an example, part of the layout parameterization of a 

Revolute joint is shown in the next Listing. 

Listing 5. Layout parametrization of Revolute joint. 

constant String resource = Modelica.Utilities.Files.loadResource( 

                           "modelica://Model3D/Resources/settings.json"); 

constant Real length = functions.getJSONReal(resource, 

                                                        "shape_in_m.jointLength",0.1); 

constant Real diameter = functions.getJSONReal(resource, 

                                                       "shape_in_m.jointWidth",0.05); 

constant Integer color[3] = functions.getJSONIntegerArray1D( 

                                         resource,"color.Revolute",3,{255,0,0}); 

  … 

// settings.json file 

  {"shape_in_m" : { 

         "jointLength": 0.1, 

         "jointWidth" : 0.05, 

         "forceLength": 0.1, 

         "forceWidth" : 0.05, 

         "bodyDiameter": 0.11},  

    "color": { 

         "Revolute" : [255,0,0], 

           …} 

The functions.getJSONxxx act as a thin layer over the 

ExternData API. They have an additional default 

argument which is used if the settings file is unavailable. 

This technique results in much cleaner menus. Notably, 

all the many parameters of the World object are removed, 

except for the gravity definition which remains in the 

World object and is propagated via the connections. 

Consequently, global data is no longer present, so the 

inner prefix of World is removed. 

12 Limitations and Future Work 
The status of Modiator can be categorized as a Proof-Of-

Concept for a complete Modelica compiler and simulator 

running in a web browser. So far, the focus has been to 

investigate an entire tool chain for the fundamental 

semantics of Modelica: model classes, component 

declarations with modifiers and redeclare, and 

connections.  

It is sometimes assumed that the Modelica model is 

correct since many checks are not performed in the 

interest of translation speed. Scalability has not been in 

focus yet, i.e. only models with less than 1000 states and 

5000 variables have been tested. The translator can be 

optimized in many ways, for example, by introducing 

caching and the separate translation technique outlined in 

section 8. 

Only models which don’t have nonlinear algebraic 

equation systems or mixed simultaneous equations with 

Real and Boolean unknowns can currently be simulated. 

Only very limited event handling is currently available. 

Other features not supported yet are: 

• Modelica functions and external C-functions 

• inner/outer 

• complete set of matrix expressions 

• algorithms 

• initial equations/algorithms 

• stream connectors (not planned) 

• overconstrained connections (not planned) 

• … 

 There are no plans to support the following parts of the 

Modelica Standard Library because they shall be replaced 

by better approaches: 

(1) Modelica.Media shall be replaced by the Stream 

library sketched in section 10. 

(2) Modelica.Fluid shall not be supported but instead the 

Stream library shall be used, and/or a future version 

of the ThermofluidStream library based on the Stream 

media handling and on LIED equations. 

(3) Modelica.Mechanics.MultiBody shall be replaced by 

Model3D. Potentially, a nearly MultiBody compliant 

library will be provided as thin layer over Model3D 

to allow reasonable conversion of the many libraries 

and models that are based on the MultiBody library. 

Since the current version of Modiator already (a) is 

useable on any device, (b) can be utilized just with the 

Modiator URL within a few seconds without installation, 

and (c) can translate and simulate smaller Modelica 

models locally in the browser nearly instantaneously, 

Modiator is well suited for tutorials and university courses 

on Modelica and for dedicated web apps with a special 

user-oriented Web GUI where the Modiator engine is 

running in the background.  

Session: New Translation Methods and Tools in Track for General Modelica 

DOI Proceedings of the 16th International Modelica&FMI Conference  219 
10.3384/ecp218211 September 8-10, 2025, Lucerne, Switzerland   



13 Conclusions 
Modiator is the next phase of experimentation and 

evolution of object-oriented modelling conducted by the 

authors after the Modia project. New web technologies 

provide the means to enable quick and easy access to 

object-oriented modeling and cloud simulation by 

Modelica Instant Simulation. 

Furthermore, Modiator provides a platform for 

further investigations of new modeling capabilities to 

meet more and more demanding modelling needs. 
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Appendix 

Example for Separate Translation 

This appendix shows an example of separate translation 

of models as sketched in section 8. Consider the second 

order low pass filter34 in Figure 15 

 
Figure 15.  Second order low pass filter. 

A corresponding Modelica model is shown below. 

Listing 6. Modelica model of Figure 15. 

model LowPass2nd 

  Modelica.Electrical.Analog.Basic.Resistor R1(R=1); 

  Modelica.Electrical.Analog.Basic.Resistor R2(R=1); 

  Modelica.Electrical.Analog.Ideal.IdealOpAmp3Pin op; 

  Modelica.Electrical.Analog.Basic.Ground ground; 

  Modelica.Electrical.Analog.Basic.Capacitor C1(C=1); 

  Modelica.Electrical.Analog.Basic.Capacitor C2(C=1); 

  Modelica.Electrical.Analog.Basic.Resistor RA(R=1); 

  Modelica.Electrical.Analog.Basic.Resistor RB(R=1); 

  Modelica.Electrical.Analog.Interfaces.Pin inp; 

  Modelica.Electrical.Analog.Interfaces.Pin out; 

equation 

  connect(R1.n, R2.p); 

  connect(R2.n, C2.n); 

  connect(ground.p, C2.p); 

  connect(op.out, RA.n); 

  connect(ground.p, RB.p); 

  connect(R1.n, C1.p); 

  connect(C1.n, op.out); 

  connect(R2.n, op.in_p); 

  connect(RB.n, op.in_n); 

  connect(RA.p, RB.n); 

  connect(R1.p, inp); 

  connect(op.out, out); 

end LowPass2nd; 

If a voltage source is connected between ground and 

connector inp, the translated model with alias elimination 

applied will consist of a sequence of 10 solved equations. 

If the filter is separately translated according to the 

algorithm outlined in section 8, an equivalent Modelica 

model is created (parameter handling simplified): 

 
34 

https://electronics.stackexchange.com/questions/271857/sec

ond-order-low-pass-filter-configuration 

Listing 7. Modelica model of Listing 6 transformed into a mix 

of acausal equations and causal functions. 

model LowPass2nd 

    Modelica.Electrical.Analog.Interfaces.Pin inp; 

    Modelica.Electrical.Analog.Interfaces.Pin out; 

equation 

    LowPass2nd_init = ast.newFunction("C1_v, C2_v", 

     "return { 

        RA: {R: 1, p:{}, n:{}}, 

        RB: {R: 1, p:{}, n:{}}, 

        R1: {R: 1, p:{}, n:{}}, 

        R2: {R: 1, p:{}, n:{}}, 

        C1: {C: 1, v: C1_v, p:{}, n:{}}, 

        C2: {C: 1, v: C2_v, p:{}, n:{}}, 

        op: {in_p: {}, in_n: {}, out: {}}, 

        ground:{p:{}}, 

        out: {}}") 

     

    LowPass2nd_pre = ast.newFunction("M", " 

        M.RB.i = M.C2.v / M.RB.R; 

        M.RA.v = M.RA.R * (-M.RB.i); 

        M.RA.n.v = -((M.RA.v - M.C2.v)); 

        M.C1.p.v = M.C1.v - (-M.RA.n.v); 

        return [M.RA.n.v, M.C1.p.v];"); 

     

    LowPass2nd_post = ast.newFunction("M, R1_p_i", " 

        M.R2.v = M.C1.p.v - M.C2.v; 

        M.R2.i = M.R2.v / M.R2.R; 

        M.C1.p.i = -((-R1_p_i + M.R2.i)); 

        M.C1.der_v = M.C1.p.i / M.C1.C; 

        M.C2.der_v = M.R2.i / M.C2.C; 

        return [M.C1.der_v, M.C2.der_v];"); 

     

        M = LowPass2nd_init(C1_v, C2_v); 

        (out.v, R1_n_v) = LowPass2nd_pre(M); 

     

        R1_R = 1; 

        R1_R * inp.i = R1_v; 

        R1_v = inp.v - R1_n_v; 

     

        (der(C1_v), der(C2_v)) = LowPass2nd_post(M, inp.i); 

end LowPass2nd; 

The equations are then partitioned into  

• function LowPass2nd_pre with 4 assignments, 

• function LowPass2nd_post with 5 assignments, 

• and 2 remaining model equations. 

If many instances of LowPass2nd are created, the 9 

equations of the functions LowPass2nd_pre and 

LowPass2nd_post need to be compiled one time. 

The functions LowPass2nd_... were defined using a 

built-in function ast.newFunction with the same 

semantics as the Javascript constructor Function().  

 

Session: New Translation Methods and Tools in Track for General Modelica 

DOI Proceedings of the 16th International Modelica&FMI Conference  221 
10.3384/ecp218211 September 8-10, 2025, Lucerne, Switzerland   

https://electronics.stackexchange.com/questions/271857/second-order-low-pass-filter-configuration
https://electronics.stackexchange.com/questions/271857/second-order-low-pass-filter-configuration

