
Modiator - A Web App for Modelica Simulation

Hilding Elmqvist1 Martin Otter2
1 Mogram AB, Sweden, hilding.elmqvist@mogram.net

2 DLR, Institute of Vehicle Concepts, Germany, martin.otter@dlr.de

Abstract
The Modelica language (www.modelica.org) has become

a de facto standard for systems modeling and many tools

exist. This paper describes certain modern enhancements

and a static web app implementation called Modiator

(Modelica Instant Simulator). It allows an improved

immediate first-time user experience since the web app is

available in seconds and simulations can be done directly

in the browser. State of the art numerical solvers from the

Sundials suite have been compiled into WebAssembly.

The Modelica model is translated into Javascript code

using techniques such as sorting, tearing, index reduction,

state selection, etc. A subset of Modelica is supported with

some extensions, for example, support for self-modifying

models. This paper also presents the Stream and Model3D

prototype libraries.

Keywords: Modelica, Modia, Modia3D, compilation,

web app, WebAssembly, simulation in the browser, cloud

computing, serverless functions, Monte Carlo simulation

1 Introduction
The Modelica language (Modelica Association 2023)

makes it easy to build large, complex models since

instantiation of reusable component models is possible.

However, current tools1 usually make full expansion of

the equation sets including scalarization of arrays for all

instances and transform the equations to C-Code that is

compiled and linked. This means that translation time can

be minutes. There is also a need for self-modifying

models for example to support adaptable grid for finite

volume models, variable model structures such as multi-

stage rockets or just turning on and off subsystems. This

means that separate translation would be beneficial, i.e.

only translating the parts of the model that has been

changed. This will also speed up experiments involving

variant selection by simulation when certain subsystems

are redeclared to analyze alternative designs.

Web technology allows an improved immediate first-

time user experience since the web app needs no

installation (and also no administrator rights), is available

in seconds and faster separate translation and simulations

1 https://modelica.org/tools/
2 https://github.com/ModiaSim/Modia.jl
3 https://julialang.org/

done directly in the browser means less waiting. This will

also make object-oriented modeling and simulation more

accessible to students, hopefully increasing the popularity

of Modelica.

Mobile phones are becoming more popular than

computers and they have sufficient computing power for

simulation. The drawback of mobile phones is the limited

screen size (except for foldable phones). One possible

solution is to use an infinite canvas and convenient and

fast zooming, scrolling, and panning.

For multi-simulations for variant selection or Monte

Carlo simulations, cloud should be possible to utilize, for

example by serverless lambda functions, and there are

needs to visualize results in different ways than just trend

plots, such as scatter diagrams and histograms.

Many of the innovations and findings in this paper

regarding translating models come from the experiences

from the Modia project2, see, e.g., (Elmqvist et al. 2021).

Modia is a language with many similarities to Modelica.

However, the language is much simpler than the Modelica

language, and implementation of the Modia environment

is based on Julia3 (Bezanson et al. 2017). The effort is now

moved from the Modia language to the Modelica

language for three reasons: (1) It takes too long to get the

first plot when using Modia (installing Julia and many

used packages, as well as compiling generated Julia model

code the first time). (2) There are many existing Modelica

model libraries in wide-spread use and it is too much

effort to develop and maintain a thorough translator from

Modelica to Modia. (3) New technologies with

WebAssembly 4 and fast just-in-time compilation of

Javascript enables immediate and fast simulations.

The paper introduces Modiator (Modelica Instant

Simulator), a static web-app implemented with Javascript

and WebAssembly providing support for a sub-set of the

Modelica language with some extensions of Modelica

based on experience with Modia/Julia and taking

advantage of modern web technology.

The commercial Modelica environment Modelon

Impact5 (Elmqvist et al. 2018) also provides a browser

GUI. However, compilation and simulation of models are

not performed in the browser but via a cloud service that

has to be paid for. The default behavior of Modiator is that

models are compiled and simulated locally in the browser.

4 https://webassembly.org/
5 https://modelon.com/modelon-impact/

DOI Proceedings of the 16th International Modelica&FMI Conference 211
10.3384/ecp218211 September 8-10, 2025, Lucerne, Switzerland

RRR

mailto:hilding.elmqvist@mogram.net
mailto:martin.otter@dlr.de
https://www.modelica.org/
https://modelica.org/tools/
https://github.com/ModiaSim/Modia.jl
https://julialang.org/
https://webassembly.org/
https://modelon.com/modelon-impact/

This requires different techniques, e.g., to generate model

code directly in Javascript, instead of in C or C++ (as done

by other Modelica tools).

Compiling and simulating a Modelica model in a

web browser has been proposed by (Franke 2014) and

demonstrated with a tiny, very partial prototype. (Short

2014) demonstrates a tool chain to translate Modelica

models to Javascript based on the OpenModelica 6

compiler and Emscripten7 and run the Javascript code

locally in the browser. (Kulhánek et al. 2023) provide the

Bodylight.js 2.0 toolchain to build in-browser web

simulators by translating a Modelica model into an FMU8

(Functional Mockup Unit), use Emscripten to transform

the C-source code inside the FMU into WebAssembly

format and embed this code in a web page with a specific

user-friendly GUI for this particular Modelica model.

2 A Modernized Modelica Syntax

There are trends concerning the syntax of new

programming languages (e.g. C#, Go, Julia, Python,

Swift) which have been adopted by Modia. The following

proposals for the Modelica language are inspired by

Modia, based on these new trends:

• Using Greek letters in identifiers is natural for

users making mathematical models.

• Semicolon is becoming optional which makes

models easier to read. Traditionally, semicolons

were used to enable resynchronization after the

first error in order to continue parsing. The speed

of parsing is now much faster, so it is better to

abort after the first error is found.

• Type and unit inference and checking can be

introduced if a notation is utilized to associate

units to numeric literals. In the example below,

units are appended to parameters and start values

enclosed in single quotes. Most type specifiers

are omitted since all parameters are Real and the

states must be Real.

• The class identifier after end is made optional.

Below is shown a second order model utilizing the

simplified, more readable syntax in Modiator:

Listing 1. Modelica model with the proposed condensed

syntax and Greek identifiers.

model SecondOrder

 τ = 1.0 's' // instead of: parameter Real tau(unit=”s”) = 1.0;

 ζ = 0.5

 input u

 x1(start=0)

 x2(start=0 '1/s') // instead of: Real x2(start=0, unit=”1/s”);

 output y=x1

equation

 der(x1) = x2

 τ*τ*der(x2) + 2*ζ*τ*x2 + x1 = u

end // instead of: end SecondOrder;

6 https://openmodelica.org/
7 https://emscripten.org/

3 Self-Modifying Models
A much-wanted Modelica feature is to be able to change

array dimensions without recompiling when, for example,

higher fidelity of discretization is needed. Other needs are

to be able to redeclare component classes or start and stop

subsystems. These scenarios can be achieved by scripting

repeated simulations where the start value for the next

simulation is set to the end value of the previous

simulation. At certain conditions, parameters can be

changed, redeclarations made and some transformation

algorithm is applied between final state and new state.

Writing such scripts is not object oriented though. To

make it reusable, the transformations should be made in

the model classes.

A similar situation exists when updating HTML

pages. The HTML DOM (Document Object Model) is a

tree of various kinds of nodes which can be modified by

Javascript functions which are called when different kinds

of events occur. The DOM tree can also be traversed and

a node id can be search for. Nodes can then be modified

either by changing attributes or making a new subtree by

providing an innerText definition. Nodes can also be

added or removed by built-in JavaScript function calls.

The ModelManagement.Structure.AST functions of

Dymola9 can manipulate the AST (Abstract Syntax Tree)

from Modelica scripts (not from Modelica models). This

functionality can serve as inspiration for models

manipulating themselves.

For this feature, Modelica needs to have an event

detection mechanism (c.f. addEventListener in HTML).

Modelica already has a when-statement which can be

generalized. The model below shows some of the

functions which can be used to manipulate the ast

(reserved Modiator identifier for the Abstract Syntax

Tree) of a model.

Listing 2. Model that modifies its definition during simulation.

model TestSelfModifications

 parameter Real T=1;

 Real x(start=0);

equation

 T*der(x) + x = 1;

 when x>0.3 then

 ast.setParameter('T', 0.1);

 end when;

 when time>0.5 then

 ast.setStart('x', 2);

 end when;

 when time>0.7 then

 ast.addEquation('0.1*der(y) + y = 1');

 end when;

end TestSelfModifications;

If a significant event occurs, the modified model ast is

translated to Javascript code which is just-in-time

compiled before the simulation continues.

8 https://fmi-standard.org/
9 https://www.3ds.com/products/catia/dymola

Modiator - A Web App for Modelica Simulation

212 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218211

https://openmodelica.org/
https://emscripten.org/
https://fmi-standard.org/
https://www.3ds.com/products/catia/dymola

The semantics of the above function calls are

explained by the plot below.

Figure 1. Plot of model TestSelfModifications

Note, that when the equation was added, also a new

variable was introduced, y. By default, all state variables

are currently plotted, i.e. y was also plotted during its

existence. Adopted from Modia, Modiator does not

require declaration of variables and the start value is 0 by

default.

Array dimensions and the number of states can also

be changed at events which is illustrated by the following

model:

Listing 3. Model that modifies array dimensions and number

of states during simulation.

model VaryingDimensions

 Integer n=2;

 Real x(start=1:n, fixed=true);

equation

 der(x) = -diagonal(1:n)*x;

 when time > 0.1 then

 ast.setParameter('n', 3);

 ast.setStart('x[3]', (x[1]+x[2])/2);

 end when;

 when time > 0.2 then

 ast.setParameter('n', 2);

 ast.setStart('x[1]', (x[1]+x[3])/2);

 ast.setStart('x[2]', (x[2]+x[3])/2);

 end when;

end VaryingDimensions;

Note, the new start values defined with ast.setStart(…) are

calculated before the model is evaluated at the event. This

gives a nice mechanism for transferring the state

information to a new state representation. See the results

below.

Figure 2. Plot of model VaryingDimensions.

10 https://www.w3schools.com/jsref/-

prop_style_transform.asp

In the companion paper on resizable arrays (Otter et al.

2025), this technique is used for adaptive grid modeling

of an insulated rod.

4 Web App for Immediate Results

Web technology allows an immediate first-time user

experience since a web app is available in seconds and

simulations can be done directly in the browser.

Mobile phones are becoming more popular and

powerful than laptop computers and they have sufficient

computing power for simulation. The drawback is the

limited screen size. One possible solution is to use an

infinite canvas (inspired by Apple Photos) and convenient

and fast zooming, scrolling, and panning. The DOM/CSS-

feature style.transform 10 provides the fundamental

rendering functionality to implement infinite canvas in the

browser. Modiator uses two-finger touches on touch

screens to zoom and move around.

The Modiator User Interface is based on a set of

widgets (text editor, plots, 3D animator, model diagrams,

parameter dialog, etc.) which can be freely placed and

sized on the infinite model board, see Figure 3:

Figure 3. Example of Modiators User Interface.

The model diagram rendering is inspired by the 2.5D look

of Playmola (Elmqvist et al. 2015), i.e., that icons have a

3D representation which are placed in a 2D diagram.

Multiple plot widgets can be used to visualize

simulation results in different ways such as line plots,

scatter diagrams, etc.

To enable AI techniques for Modelica authoring,

external text editors such as VS Code with Github Copilot

plug-in, can be used. When the external file is changed,

Modiator will load and simulate the updated model.

The Modiator web app is a PWA (Progressive Web

App), i.e., it can be installed on your device and by using

service workers it can be used offline without internet

connection.

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 213
10.3384/ecp218211 September 8-10, 2025, Lucerne, Switzerland

https://www.w3schools.com/jsref/prop_style_transform.asp
https://www.w3schools.com/jsref/prop_style_transform.asp

5 Simulation in the Browser
Modiator uses a mixed execution model for simulation.

Modelica models are translated to JavaScript functions

which calculate the derivatives given time, states and

parameters. The integration of the differential equations is

performed by CVODE from the SUNDIALS suite 11

(Hindmarsh et al. 2005, Gardner et al. 2022). CVODE has

been translated from C to WebAssembly 12 utilizing

Emscripten 13 and is called from Javascript when

simulation starts. When derivatives need to be calculated,

a Javascript callback function is called from CVODE.

Special considerations had to be taken especially

regarding allocation and transfer of arrays.

Modiator translates the model equations to a

JavaScript function by using the new Function()
concept14. The Function constructor takes two arguments.

The first one is a string of comma-separated arguments of

the function and the second is the body of the function as

a string, for example:

const func = new Function('a,b', 'return a + b')

console.log(func(1, 2)) // 3

Such functions are usually Just-In-Time-compiled. Array

and matrix equations are not expanded (Otter et al. 2025),

but evaluated by calls to run-time functions and math.js15.

In order not to disturb user interactions, parsing,

translation and simulations are performed in concurrent

web workers.

6 Simulation on the Cloud
For multi-simulations for variant selection or Monte Carlo

simulations, it should be possible to utilize cloud

computations. So far, Netlify functions 16 have been

utilized. They are based on Amazon Web Services

Lambdas.

Essentially the same simulation code as for web

workers can be used. Instead of posting simulation data to

a web worker, fetch requests are made to a simulate API

function with a body of simulation data. The simulation

data contains parameters and the JavaScript function

string for calculating derivatives. To support multi-

simulations with redeclares or self-modifying models, the

Modelica translator module is also available in the

serverless functions.

So far, limited testing has been made. 10000

simulations have been performed on the cloud. The

startup time for each simulation was less than a second.

7 Monte Carlo Simulation

Model-based product design involves determining

product topology, component selection, component

sizing, and parameters (tuners) in such a way that the

11 https://webassembly.org/
12 https://webassembly.org/
13 https://emscripten.org/

product has good performance, low production cost and

low cost of ownership (objectives) while being robust

with regards to variations in its environment and

insensitive to variations in parameters (uncertainties).

Since topology, component selection and component

sizing are important, gradient based optimization tools

can’t be used.

Modiator uses Monte Carlo simulation and randomly

selects tuner values typically from uniform distributions

and selects uncertainties typically from truncated normal

distributions. Redeclarations to model design selections

or discrete environment variations have associated

discrete distributions.

A set of Modelica Objective

blocks is available for inserting into

a model to define what are good

designs. A subset of these blocks is

shown on the right.

Since several possibly

conflicting objectives can be

defined, the Pareto frontier in scatter diagrams can help

with compromise decisions and the parallel axis

coordinates plot can help with assigning different weights

to the objectives.

Equality and inequality constraints are enforced by

including assert statements that cause simulations to fail

if the specified conditions are not met. Functions of the

following kind are provided for defining tuners and

uncertain parameters:

p=uniform(default, minimum, maximum, tuner)

Such expressions can be used in modifiers. The default

value is used for tools that do not provide Monte Carlo

simulation in this way. Minimum and maximum gives the

range and tuner is true for a tuner, otherwise an

uncertainty is defined. The user interface has built-in

menus for defining such function invocations (± button).

Figure 4. Tuner and Uncertainty definitions.

14 https://javascript.info/new-function
15 https://mathjs.org/
16 https://www.netlify.com/platform/core/functions/

Modiator - A Web App for Modelica Simulation

214 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218211

https://webassembly.org/
https://webassembly.org/
https://emscripten.org/
https://javascript.info/new-function
https://mathjs.org/
https://www.netlify.com/platform/core/functions/

7.1 Design Example – Servo

To illustrate the design method used by Modiator, a well-

known control problem will be employed: PID control of

a double integrator. The motor consists of an ideal torque

generator and an inertia and behaves like a double

integrator.

Figure 5. Controlled double integrator.

Two integral square objectives are defined. In addition to

the usual objective of small control error, it is desired to

keep the control effort small to save energy. The gain, k,

and derivative time constant, Td, should be tuned, i.e.

uniform distributions are defined and tuner is set to true

for them:

pid(k=uniform(1, 0.1, 1, true), Td=uniform(2, 0.5, 5, true))

 By running 100 simulations, the following spaghetti plot

is obtained if angleSensor.phi and step.y were plotted

during a previous single simulation:

Figure 6. Spagetti plot for 100 simulations.

 The time to make one thousand simulations is 2.24

seconds on a HP ZBook Ultra G1a laptop with an AMD

RYZEN AI MAX+ PRO 95 3.0 GHZ CPU with 16

cores/32 threads. The corresponding time for MacBook

Pro M4 is 1.56 seconds and for iPad Pro 11” M4 is 2.71

seconds. Amazingly, the same task takes only 4.32

seconds on a Samsung Galaxy Z Fold6 mobile phone.

In addition, Modiator presents a matrix of plots, see

Figure 7. The rows and columns represent the variables:

integratedSquareError.y, integratedSquareControl.y,

pid.k and pid.Td. The diagonal shows the histograms for

the variables (objectives: blue, tuners: green. Plot 1,2

shows the scatter plot for the objectives. The Pareto

frontier is marked in red. Plot 1,3 shows that increasing

gain is good for the first objective and plot 2,3 shows that

decreasing gain is good for the second objective. The plots

of the forth column shows that Td needs to be above 3.

This is consistent with the well-known fact that the

derivative term is needed for stabilization when

controlling a double integrator with a PD controller.

Figure 7. Multi-plot matrix with histogram and scatter plots.

By hovering over the plots, the actual values of

objectives and tuners are presented:

Figure 8. Tool tips showing objectives and tuners.

By zooming in on the Pareto frontier, the corresponding

runs are plotted:

Figure 9. Selected responses.

If uncertainties are defined, for example, as a range of

loads:

inertia1(J=uniform(1, 0.1, 1))

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 215
10.3384/ecp218211 September 8-10, 2025, Lucerne, Switzerland

the plots include error bars and the tooltip shows the

variations:

Figure 10. Scatter plot with error bars for uncertainties.

The error bars are obtained by defining bins for the tuner

values and for each bin, the mean and standard deviation

are presented. For accurate analysis of uncertainty

influences many simulations are needed. The use of

serverless functions on the cloud fits this use case.

8 Separate Translation of Models
The object-oriented modeling approach of Modelica

allows building large models with millions of equations.

However, the semantic specification is based on

flattening, i.e., recursive cloning of variables and

equations of each component instance. Typically,

Modelica tools also expand matrix equations to scalar

equations. Flattening means that a lot of memory is

needed for variables and equations during translation of

the Modelica code. It also means that translation time is

long since the same analysis (flattening, symbolic

processing, etc.) is performed repeatedly for each

instance. Furthermore, the C-code becomes large, and

compilation takes a long time. In addition, the execution

of the C-code gets slower since the code might be larger

than the size of the code cache.

However, parts of the equations of a component are

always executed in the same order and with the same

causality independently of how the component is

connected. Such sequences of equations can be put into

functions: less code gives shorter compilation time; less

machine code gives shorter simulation time.

Finding such sequences can be made once for each

model class. The technique is based on forming the most

general environment to a model class as illustrated in
Figure 11.

17 https://nodejs.org/api/esm.html
18 https://code.visualstudio.com/
19 https://peggyjs.org/
20 https://threejs.org/

Figure 11. Generic environment of a model.

The generic environment is constructed by adding a set of

dummy equations, env, which all depend on all connector

variables (cp: potential variables, cf: flow variables) All

inputs u are assumed to be known. The number of

equations of env is the number of flow variables.

The Block Lower Triangular (BLT) form obtained

during structural analysis of the model plus the generic

environment has the structure shown in Figure 12.

Figure 12. BLT structure of model plus generic environment.

The block in the middle contains the env equations since

they all have the same incidences. It also contains certain

equations, equ, which are related to the variables of the

environment.

An example is given in the Appendix which shows

how the equations are partitioned for a second order low

pass filter.

9 Technology and Development

Environment
The implementation of Modiator relies on ECMAScript

modules17. Type inference and checking is done by Visual

Studio Code 18 with TypeScript engine. Module

dependency diagrams are generated by a Visual Studio

Code plug-in, Dependency Cruiser.

The Modiator parser for Modelica is generated with

the PEG-parser generator Peggy 19 . The handling of

extends and merging of modifiers is done by deep

merging of Javascript objects in a way inspired from

merging in Modia.

Modelica model diagrams and 3D animations are

created with three.js20. Plotting is done with Plotly21.

Alias handling, tearing, index reduction, state-

selection, BLT, symbolic processing of expressions, etc.

have been ported from Modia (Julia code) to Javascript

and some parts significantly improved. This has in some

cases been done with a semi-automatic process using AI

techniques with tool Code Converter22 and the ChatGPT-

4 tools Microsoft Copilot23 and Perplexity24. Overall, the

automatic translation reduced significantly the work to

transform Modia functions to Javascript functions.

21 https://plotly.com/
22 https://codeconverter.com/
23 https://copilot.microsoft.com
24 https://www.perplexity.ai/

Modiator - A Web App for Modelica Simulation

216 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218211

https://nodejs.org/api/esm.html
https://code.visualstudio.com/
https://peggyjs.org/
https://threejs.org/
https://plotly.com/
https://codeconverter.com/
https://copilot.microsoft.com/
https://www.perplexity.ai/

In order to enable building a full Modelica compiler

and simulator running in the browser, C-code must be

handled since Modelica has an interface to C-functions.

Successful experiments have been made to use clang

running under Wasmer25 in the browser to compile C-

functions into WebAssembly.

Modeling and simulation workflows typically

involve scripting, for example with Python. For this

reason, successful experiments have been made to use

PyScript26 and Pyodide27 which enables running Python

in the browser together with Modiator.

10 Stream with Media Propagation

When simulating fluid systems, there is currently the

inherent drawback in Modelica that a medium has to be

defined at every component and that every change of the

Medium requires recompilation of the model. A prototype

Modelica package called Stream does no longer has these

drawbacks.

In this new approach, all media are defined with

external functions and the internal memory of the

functions by ExternalObjects28 (so pointers to memory

allocated inside the functions). An ExternalObject is

constructed at one component and then propagated

through connections. Below, first the principle of the

approach is explained based on media C-functions and

afterwards it is sketched how media Javascript-functions

are supported in current Modiator.

Stream is a small subset of Modelica package

ThermofluidStream29 (Zimmer 2020, Zimmer et al. 2022)

but with (a) different handling of the media inspired by

(Otter et al. 2019) and (b) equations of the thermodynamic

state formulated with Linear Implicit Equilibrium
Dynamics (LIED) as proposed by Zimmer (2024, 2025).

The latter means that all states are fixed in the library and

no nonlinear equations appear in Modelica models due to

Stream (but might be present inside the external

functions). Separate translation, as proposed in section 8,

becomes particularly easy in this case. A simple example

of a system with boundaries, flow resistances and a

volume are shown in the next figure.

Figure 13. Simple Stream model in Modiator. The medium and

its variables are defined in the source and propagated through

the connections. The medium variables are changed in every

component. Media states are defined in the volume. Mass flow

rate states are defined in the source and in the volume.

The core LIED equations of the volume are shown in the

next Listing.

25 https://wasmer.io/
26 https://pyscript.net/
27 https://pyodide.org/

Listing 4. Stream model of a volume with fixed size.

model Volume "Volume of fixed size"

 Interfaces.Inlet inlet; Interfaces.Outlet outlet;

 parameter SI.Volume V_par "Fixed volume";

 ...

 Real xs[2](each fixed=false, each unit="1")

 "Scaled pair (p,T), (p,h), ...";

 Real Xi[size(Xi_start,1)](start=Xi_start, each fixed=true,

 each unit="1") "Independent mass fractions";
protected

 parameter Integer mediumID(fixed=false);

 functions.Media.MediumAndState obj =

 functions.Media.MediumAndState(mediumID);

 Real obj_r "Dummy, for correct sorting of obj";

initial equation

 mediumID = functions.Media.mediumID_from_obj(inlet.obj);

 xs = functions.Media.get_xs(obj,p_start,T_start,...);

equation

 // Update obj with xs, Xi

 obj_r = functions.Media.updateThermodynamicState(obj, xs, Xi);

 outlet.obj = obj; outlet.obj_r = obj_r;

 // Mass balance

 der_M = inlet.m_flow - outlet.m_flow ;

 der_d = der_M/V_par;

 // Energy balance

 d_in = functions.Media.density(inlet.obj, inlet.obj_r);

 h_in = functions.Media.specificEnthalpy(inlet.obj, inlet.obj_r);

 u_out = functions.Media.specificInternalEnergy(

 inlet.obj,inlet.obj_r);

 d_out = functions.Media.density(obj, obj_r);

 h_out = functions.Media.specificEnthalpy(obj, obj_r);

 M = V_par*d_out;

 der_u = (inlet.m_flow*h_in - outlet.m_flow*h_out -

 der_M*u_out)/M;

 der(xs) = functions.Media.get_der_xs(obj, obj_r,der_d, der_u);

 // Mass fraction balance

 Xi_in = functions.Media.massFractions(obj, obj_r);

 der(Xi) = (Xi_in*inlet.m_flow - Xi*(outlet.m_flow - der_M))/M;

 // Mass flow rate and inertial pressure (as in ThermofluidStream)

 ...

end Volume;

The state vector of a single substance compressible fluid

medium is defined by two intensive quantities. In

Modelica.Media, the state pairs (p,T), (p,h), (p,s), (d,T)

are used. The pair selected for a particular medium in

Stream is hidden and is implicitly defined by the medium

name. In Listing 4, vector xs[2] is defined as a scaled pair,

so that the two elements have magnitudes around 1 which

means no nominal values need to be set for xs. For

example, Modelica.Media.Air.SimpleAir uses the scaling

xs[1] = p/105, xs[2] = T/273.15.

For a multi-substance medium, additionally the

independent mass fractions Xi[:] are used as states. The

dimension of Xi is identical to the dimension of its start

value vector, i.e., Real Xi[size(Xi_start,1)].

28 https://specification.modelica.org/maint/3.6/functions.html,

section 12.9.7
29 https://github.com/DLR-SR/ThermofluidStream

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 217
10.3384/ecp218211 September 8-10, 2025, Lucerne, Switzerland

https://wasmer.io/
https://pyscript.net/
https://pyodide.org/
https://specification.modelica.org/maint/3.6/functions.html
https://github.com/DLR-SR/ThermofluidStream

The internal medium states and the internal medium

equations are defined by the declaration of the

ExternalObject:

MediumAndState obj = MediumAndState(mediumID);

The input argument to the constructor is the Integer

parameter mediumID – a unique identification of a

Medium. It is deduced from the inlet input variable obj that

references the medium and the medium variables in the

connector:

 parameter Integer mediumID(fixed=false);

initial equation

 mediumID = functions.Media.mediumID_from_obj(inlet.obj);

Since inlet.obj is formally a time varying variable

propagated through connectors, the mediumID is

determined during initialization via the given initial

equation. This is not strictly Modelica compliant because

alias equations for an ExternalObject are present (such as

outlet.obj = obj). This tiny issue is not detected by

Dymola30 and by Modiator. The implementation of the

ExternalObject constructor is (media.c contains the C-

functions of the media):

 class MediumAndState

 extends ExternalObject;

 function constructor

 input Integer mediumID "ID of medium";

 output MediumAndState obj;

 external "C" obj = MediumAndState_constructor(mediumID)

 annotation(IncludeDirectory=

 "modelica://Stream/Resources/C-Sources",

 Include="#include \"media.c\"");

 end constructor;

Since der(xs) and der(Xi) appear in the volume model, xs

and Xi are treated as known. With statement

obj_r = functions.Media.updateThermodynamicState(obj, xs, Xi);

the states xs and Xi are copied into obj. The function

returns the Real dummy variable obj_r (short for

obj_ready). Whenever, an access function is called with

obj, obj_r must be provided as well to guarantee that obj is

used after it was updated. The derivative of xs – der(xs) –

is computed with the external function call

der(xs) = get_der_xs(obj, obj_r, der_d, der_u);

which has obj, obj_r, der_d (derivative of density) and der_u

(derivative of specific internal energy) as arguments.

Modiator can currently not utilize C-functions.

Therefore, Javascript functions that are equivalent to the

functions in media.c are provided in file media-

functions.js. This file is included whenever Modiator is

started. During parsing of a Modelica model, all function

names that start with “functions.” are interpreted to be

30 https://www.3ds.com/products/catia/dymola

31 https://github.com/ModiaSim/Modia3D.jl

Javascript functions and the look-up is not done in the

Modelica model but internally in Modiator.

11 Model3D with 3D Geometries
The prototype Modelica package Model3D enables

incorporation of 3D geometries into Modelica models.

Currently, this capability is applied only to 3D mechanical

systems but is intended to extend to other domains in the

future. The design of Model3D is inspired by Modia3D31

(Neumayr and Otter 2018, Neumayr 2025) and

Modelica.Mechanics.MultiBody32 (Otter et al. 2003). It

utilizes the new approach “Dialectic Mechanics”

introduced in (Zimmer and Oldemeyer 2023) and further

developed in (Zimmer 2024, 2025). In particular, the

states of a multibody system are fixed in the library and

are the generalized joint coordinates of the spanning tree.

Kinematic loops can be optionally modelled with elastic

cut-joints. By introducing “kinetic velocities” which are

filtered position derivatives, very stiff elastic joints can be

reasonably simulated. The analytic handling of many

kinematic loop types supported by the MultiBody library,

will be ported to Model3D.

Primitive geometries, such as

box, sphere etc. as well as meshes

(.stl, .obj/mtl, .dae, .glb format) can

be used in a model both for

visualization and to compute

properties such as mass and inertia,

similarly as it is done in Modia3D. A

screenshot from Modiators

parameter menu of the basic parts of

Model3D are shown at the right side.

BaseClasses are replaceable models

that can be utilized in Body and

Visual (VisualShapes) as well as in

Solid (SolidShapes, SolidMaterials).

An example of a double pendulum

with object diagram and animation is

shown in Figure 14.

Model3D stores layout and

settings parameters no longer in the

World and other models, but in an

external hierarchical JSON file.

Standard Modelica tools read this

file and extract content via Modelica package

ExternData33 (Beutlich and Winkler 2021).

Modiator accesses the settings JSON file directly

from Javascript. In order that both approaches work

seamlessly together, a few access routines of ExternData

are replicated in Model3D as functions.getJSONxxx. If

the Modiator parser recognizes function names starting

with “functions”, it utilizes its Javascript implementation.

32

https://doc.modelica.org/Modelica%204.0.0/Resources/help

Dymola/Modelica_Mechanics_MultiBody.html
33 https://github.com/modelica-3rdparty/ExternData

Modiator - A Web App for Modelica Simulation

218 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218211

https://www.3ds.com/products/catia/dymola
https://github.com/ModiaSim/Modia3D.jl
https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/Modelica_Mechanics_MultiBody.html
https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/Modelica_Mechanics_MultiBody.html
https://github.com/modelica-3rdparty/ExternData

Figure 14. Model of a double pendulum in the diagram and

animation widget of Modiator: body1 is a “Solid” (here: Box)

where mass properties are computed from the geometry and

from the selected material, body2 is a “Body” defined by mass,

inertia and center of mass together with a “Visual” object

(default: Cylinder) and optional marking of the center of mass

with a sphere; glass is a “Visual” object (here: FileMesh).

As an example, part of the layout parameterization of a

Revolute joint is shown in the next Listing.

Listing 5. Layout parametrization of Revolute joint.

constant String resource = Modelica.Utilities.Files.loadResource(

 "modelica://Model3D/Resources/settings.json");

constant Real length = functions.getJSONReal(resource,

 "shape_in_m.jointLength",0.1);

constant Real diameter = functions.getJSONReal(resource,

 "shape_in_m.jointWidth",0.05);

constant Integer color[3] = functions.getJSONIntegerArray1D(

 resource,"color.Revolute",3,{255,0,0});

 …

// settings.json file

 {"shape_in_m" : {

 "jointLength": 0.1,

 "jointWidth" : 0.05,

 "forceLength": 0.1,

 "forceWidth" : 0.05,

 "bodyDiameter": 0.11},

 "color": {

 "Revolute" : [255,0,0],

 …}

The functions.getJSONxxx act as a thin layer over the

ExternData API. They have an additional default

argument which is used if the settings file is unavailable.

This technique results in much cleaner menus. Notably,

all the many parameters of the World object are removed,

except for the gravity definition which remains in the

World object and is propagated via the connections.

Consequently, global data is no longer present, so the

inner prefix of World is removed.

12 Limitations and Future Work
The status of Modiator can be categorized as a Proof-Of-

Concept for a complete Modelica compiler and simulator

running in a web browser. So far, the focus has been to

investigate an entire tool chain for the fundamental

semantics of Modelica: model classes, component

declarations with modifiers and redeclare, and

connections.

It is sometimes assumed that the Modelica model is

correct since many checks are not performed in the

interest of translation speed. Scalability has not been in

focus yet, i.e. only models with less than 1000 states and

5000 variables have been tested. The translator can be

optimized in many ways, for example, by introducing

caching and the separate translation technique outlined in

section 8.

Only models which don’t have nonlinear algebraic

equation systems or mixed simultaneous equations with

Real and Boolean unknowns can currently be simulated.

Only very limited event handling is currently available.

Other features not supported yet are:

• Modelica functions and external C-functions

• inner/outer

• complete set of matrix expressions

• algorithms

• initial equations/algorithms

• stream connectors (not planned)

• overconstrained connections (not planned)

• …

 There are no plans to support the following parts of the

Modelica Standard Library because they shall be replaced

by better approaches:

(1) Modelica.Media shall be replaced by the Stream

library sketched in section 10.

(2) Modelica.Fluid shall not be supported but instead the

Stream library shall be used, and/or a future version

of the ThermofluidStream library based on the Stream

media handling and on LIED equations.

(3) Modelica.Mechanics.MultiBody shall be replaced by

Model3D. Potentially, a nearly MultiBody compliant

library will be provided as thin layer over Model3D

to allow reasonable conversion of the many libraries

and models that are based on the MultiBody library.

Since the current version of Modiator already (a) is

useable on any device, (b) can be utilized just with the

Modiator URL within a few seconds without installation,

and (c) can translate and simulate smaller Modelica

models locally in the browser nearly instantaneously,

Modiator is well suited for tutorials and university courses

on Modelica and for dedicated web apps with a special

user-oriented Web GUI where the Modiator engine is

running in the background.

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 219
10.3384/ecp218211 September 8-10, 2025, Lucerne, Switzerland

13 Conclusions
Modiator is the next phase of experimentation and

evolution of object-oriented modelling conducted by the

authors after the Modia project. New web technologies

provide the means to enable quick and easy access to

object-oriented modeling and cloud simulation by

Modelica Instant Simulation.

Furthermore, Modiator provides a platform for

further investigations of new modeling capabilities to

meet more and more demanding modelling needs.

Acknowledgements

The authors want to thank Johan Furuhjelm (Lund

Institute of Technology) for the implementation of the

infinite canvas user interface, Andreas Pfeiffer (DLR-FK)

for valuable help regarding WebAssembly and Sundials

and Dirk Zimmer (DLR-RM) for useful discussions

regarding LIED and dialectic mechanics.

References

Bezanson, Jeff, Alan Edelman, Stefan Karpinski and Viral B.

Shah (2017). “Julia: A fresh approach to numerical

computing”. In: SIAM review 59.1, pp. 65–98.

DOI: 10.1137/141000671

Beutlich, Thomas and Dietmar Winkler (2021): „Efficient

Parameterization of Modelica Models”. In: Proceedings of

the 14th International Modelica Conference.

DOI: 10.3384/ecp21181141

Elmqvist, Hilding, Alexander D. Baldwin and Simon Dahlberg

(2015): “3D Schematics of Modelica Models and

Gamification”. In: Proceedings of 11th International

Modelica Conference, pp. 527–536.

DOI: 10.3384/ecp15118527
Elmqvist, Hilding, Martin Malmheden and Johan Andreasson

(2018). “A Web Architecture for Modeling and Simulation”,

In: Proceedings of the 2nd Japanese Modelica Conference,

Tokyo, Japan, May 17-18, 2018

Elmqvist, Hilding, Martin Otter, Andrea Neumayr and Gerhard

Hippmann (2021). “Modia - Equation Based Modeling and

Domain Specific Algorithms”. In: Proceedings of

14th International Modelica Conference, pp. 73–86.

DOI: 10.3384/ecp2118173.

Franke, Rüdiger (2014): “Client-side Modelica powered by

Python or Javascript”. In: Proceedings of 10th International

Modelica Conference, pp. 1105-1112.

DOI: 10.3384/ecp140961105

Gardner, David J. et al. (2022): “Enabling new flexibility in the

SUNDIALS suite of nonlinear and differential/algebraic

equation solvers”. In: ACM Transactions on Mathematical

Software (TOMS). 48.3, pp. 1-24, DOI: 10.1145/3539801

Hindmarsh, Alan C. et. al. (2005): “SUNDIALS: Suite of

nonlinear and differential/algebraic equation solvers”. In:

ACM Transactions on Mathematical Software (TOMS), 31.3,

pp. 363–396. DOI: 10.1145/1089014.1089020

Kulhánek Tomáš, Arnošt Mládek, Filip Ježek and Jirí Kofránek

(2023): “Bodylight.js 2.0 - Web components for FMU

simulation, visualisation and animation in standard web

browser”. In: Proceedings of 15th International Modelica

Conference, pp. 443-451. DOI: 10.3384/ecp204443

Modelica Association (2023). Modelica – A Unified Object-

Oriented Language for Systems Modeling, Language

Specification, Version 3.6. URL:

https://specification.modelica.org/maint/3.6/MLS.html.

Neumayr, Andrea and Martin Otter (2018): “Component-Based

3D Modeling of Dynamic Systems”. In: Proceedings of the

1st American Modelica Conference.

DOI: 10.3384/ECP18154175

Neumayr, Andrea (2025): Modeling and Simulation of Physical

Systems with Variable Structure. Doctoral Dissertation,

Technical University of Munich.

Otter, Martin, Hilding Elmqvist and Sven Erik Mattsson (2003):

“The New Modelica MultiBody Library”. In: Proceedings of

the 3rd International Modelica Conference. URL:

http://www.Modelica.org/Conference2003/papers.shtml

Otter, Martin, Hilding Elmqvist, Dirk Zimmer and Christopher

Laughman (2019), “Thermodynamic Property and Fluid

Modeling with Modern Programming Language Constructs”.

In: Proceedings of the 13th International Modelica

Conference, pp. 589–598. DOI: 10.3384/ecp19157589.

Otter, Martin and Hilding Elmqvist (2025), “Resizable Arrays in

Object-Oriented Modeling”, In: Proceedings of the 16th

International Modelica and FMI Conference.

Short, Tom (2014): OpenModelica models in Javascript. URL:

https://github.com/tshort/openmodelica-javascript

Zimmer, Dirk (2020): “Robust object-oriented formulation of

directed thermofluid stream networks”. In: Mathematical and

Computer Modelling of Dynamical Systems”, Taylor &

Francis. DOI: 10.1080/13873954.2020.1757726

Zimmer, Dirk, Michael Meißner and Niels Weber (2022): The

DLR ThermoFluid Stream Library. Electronics, Vol. 11, nr.

22, DOI: 2079-9292/11/22/3790

Zimmer, Dirk and Carsten Oldemeyer (2023): “Introducing

Dialectic Mechanics”. In: Proceedings of the 15th

International Modelica Conference 2023, pp. 167–176. DOI:

10.3384/ecp204167.

Zimmer, Dirk (2024): “Object-Oriented Implementation of a

Simulator for Linear Implicit Equilibrium Dynamics”. In:

ASIM 2024 Tagungsband. DOI: 10.11128/arep.47.a4735.
Zimmer, Dirk (2025): “The Value of Enforcing a Strict

Modeling Methodology within Modelica”. In: Proceedings of

the 16th International Modelica & FMI Conference.

Modiator - A Web App for Modelica Simulation

220 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218211

https://doi.org/10.1137/141000671
https://doi.org/10.3384/ecp21181141
https://doi.org/10.3384/ecp15118527
https://ep.liu.se/en/conference-issue.aspx?series=&issue=148
https://ep.liu.se/en/conference-issue.aspx?series=&issue=148
https://doi.org/10.3384/ecp2118173
https://doi.org/10.3384/ecp140961105
https://doi.org/10.1145/3539801
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.3384/ecp204443
https://specification.modelica.org/maint/3.6/MLS.html
https://doi.org/10.3384/ECP18154175
http://www.modelica.org/Conference2003/papers.shtml
https://doi.org/10.3384/ecp19157589
https://github.com/tshort/openmodelica-javascript
https://doi.org/10.1080/13873954.2020.1757726
https://www.mdpi.com/2079-9292/11/22/3790
https://doi.org/10.3384/ecp204167
https://doi.org/10.11128/arep.47.a4735

Appendix

Example for Separate Translation

This appendix shows an example of separate translation

of models as sketched in section 8. Consider the second

order low pass filter34 in Figure 15

Figure 15. Second order low pass filter.

A corresponding Modelica model is shown below.

Listing 6. Modelica model of Figure 15.

model LowPass2nd

 Modelica.Electrical.Analog.Basic.Resistor R1(R=1);

 Modelica.Electrical.Analog.Basic.Resistor R2(R=1);

 Modelica.Electrical.Analog.Ideal.IdealOpAmp3Pin op;

 Modelica.Electrical.Analog.Basic.Ground ground;

 Modelica.Electrical.Analog.Basic.Capacitor C1(C=1);

 Modelica.Electrical.Analog.Basic.Capacitor C2(C=1);

 Modelica.Electrical.Analog.Basic.Resistor RA(R=1);

 Modelica.Electrical.Analog.Basic.Resistor RB(R=1);

 Modelica.Electrical.Analog.Interfaces.Pin inp;

 Modelica.Electrical.Analog.Interfaces.Pin out;

equation

 connect(R1.n, R2.p);

 connect(R2.n, C2.n);

 connect(ground.p, C2.p);

 connect(op.out, RA.n);

 connect(ground.p, RB.p);

 connect(R1.n, C1.p);

 connect(C1.n, op.out);

 connect(R2.n, op.in_p);

 connect(RB.n, op.in_n);

 connect(RA.p, RB.n);

 connect(R1.p, inp);

 connect(op.out, out);

end LowPass2nd;

If a voltage source is connected between ground and

connector inp, the translated model with alias elimination

applied will consist of a sequence of 10 solved equations.

If the filter is separately translated according to the

algorithm outlined in section 8, an equivalent Modelica

model is created (parameter handling simplified):

34

https://electronics.stackexchange.com/questions/271857/sec

ond-order-low-pass-filter-configuration

Listing 7. Modelica model of Listing 6 transformed into a mix

of acausal equations and causal functions.

model LowPass2nd

 Modelica.Electrical.Analog.Interfaces.Pin inp;

 Modelica.Electrical.Analog.Interfaces.Pin out;

equation

 LowPass2nd_init = ast.newFunction("C1_v, C2_v",

 "return {

 RA: {R: 1, p:{}, n:{}},

 RB: {R: 1, p:{}, n:{}},

 R1: {R: 1, p:{}, n:{}},

 R2: {R: 1, p:{}, n:{}},

 C1: {C: 1, v: C1_v, p:{}, n:{}},

 C2: {C: 1, v: C2_v, p:{}, n:{}},

 op: {in_p: {}, in_n: {}, out: {}},

 ground:{p:{}},

 out: {}}")

 LowPass2nd_pre = ast.newFunction("M", "

 M.RB.i = M.C2.v / M.RB.R;

 M.RA.v = M.RA.R * (-M.RB.i);

 M.RA.n.v = -((M.RA.v - M.C2.v));

 M.C1.p.v = M.C1.v - (-M.RA.n.v);

 return [M.RA.n.v, M.C1.p.v];");

 LowPass2nd_post = ast.newFunction("M, R1_p_i", "

 M.R2.v = M.C1.p.v - M.C2.v;

 M.R2.i = M.R2.v / M.R2.R;

 M.C1.p.i = -((-R1_p_i + M.R2.i));

 M.C1.der_v = M.C1.p.i / M.C1.C;

 M.C2.der_v = M.R2.i / M.C2.C;

 return [M.C1.der_v, M.C2.der_v];");

 M = LowPass2nd_init(C1_v, C2_v);

 (out.v, R1_n_v) = LowPass2nd_pre(M);

 R1_R = 1;

 R1_R * inp.i = R1_v;

 R1_v = inp.v - R1_n_v;

 (der(C1_v), der(C2_v)) = LowPass2nd_post(M, inp.i);

end LowPass2nd;

The equations are then partitioned into

• function LowPass2nd_pre with 4 assignments,

• function LowPass2nd_post with 5 assignments,

• and 2 remaining model equations.

If many instances of LowPass2nd are created, the 9

equations of the functions LowPass2nd_pre and

LowPass2nd_post need to be compiled one time.

The functions LowPass2nd_... were defined using a

built-in function ast.newFunction with the same

semantics as the Javascript constructor Function().

Session: New Translation Methods and Tools in Track for General Modelica

DOI Proceedings of the 16th International Modelica&FMI Conference 221
10.3384/ecp218211 September 8-10, 2025, Lucerne, Switzerland

https://electronics.stackexchange.com/questions/271857/second-order-low-pass-filter-configuration
https://electronics.stackexchange.com/questions/271857/second-order-low-pass-filter-configuration

