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Abstract
Stray flux tubes around cylindrical poles are commonly
modelled starting from the results for planar flux tubes
using the circumference of the cylinder as depth. While
this is a tried and tested approach, we here discuss analyt-
ical expressions using the actual axisymmetric geometry
of a fraction of a hollow torus and compare their results to
those of the accepted approach.
Keywords: magnetics, stray flux, reluctance force

1 Introduction
In analytically calculating the permeance Gm (or equiv-
alently the reluctance Rm) of a given stray flux tube, we
start from Hopkinson’s law for a prismatic element:

1
Rm

= Gm =
Φ

Vm
= µ0

A
l

(1)

where Φ is the flux perpendicular to a surface area A and
Vm is the magnetic tension along its length l. This sim-
ple equation explicitely requires a prismatic flux tube, i.e.,
constant cross-section and constant length of flux lines
within this element (cf. Fig. 1a).

If one of these prerequisites is not met, the flux tube
may be subdivided indefinitely and the effective perme-
ance then is computed as an integral over these elements.1

This works well, e.g., for a hollow cylinder (or any frac-
tion thereof) with radial or circumferential flux. A typical

1Note, that this is allowable only for stray flux tubes, i.e., µr = 1 (or
at least constant), since variable cross section means variable operating
point and hence variable permeability within the element.
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Figure 1. Flux tube geometries. (a) generic prismatic flux tube
with A = πR2. (b) Half hollow cylinder with circumferential
flux. In both figures, flux enters and exits the flux tube through
areas marked in gray.
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(c)
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Figure 2. Flux tube geometries. (a) inner half hollow torus.
(b) lower half hollow torus. (c) outer half hollow torus. (d)
inner quarter hollow torus. (e) outer quarter hollow torus. In all
figures, flux enters and exits the flux tube through areas marked
in gray. Red are areas opened by 3/4 cut-aways. The actual flux
tubes extend over a full rotation.

teaching problem might be a half hollow cylinder with cir-
cumferential flux (cf. Fig. 1b), resulting in (Roters 1941,
P. 132, Eq. 8b):

Gm =
µ0l
π

ln
ro

ri
=

µ0l
π

ln
(

1+
2t
g

)
(2)

where ro is the outer radius, ri = g/2 is the inner radius,
t = ro−ri their difference, and l is the length (depth) of the
hollow cylinder. Here, the cross section A = tl is constant,
but the length of the flux lines varies from πri to πro.

The same method that yields this analytical result be-
comes slightly more cumbersome, if both the cross sec-
tion and the length vary within the flux tube. It still is
valid, though, and in this paper we will show the analyti-
cal result for the flux in similar flux tubes wrapped within
or without cylindrical poles, i.e., for half or quarter hollow
torus geometries, where both the cross section per flux line
and the length of each flux line are variable. We will cover
five qualitatively different situations (cf. Fig. 2):

(a) inner half hollow torus

(b) lower (or upper) half hollow torus

(c) outer half hollow torus

(d) inner quarter hollow torus

(e) outer quarter hollow torus
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Figure 3. Geometry used in integration.

All these may be addressed by first focusing on the outer
and inner half hollow torus. The quarter variants have half
the reluctance of the half variants, while the lower (or up-
per) half hollow torus is the sum of an inner and an outer
quarter hollow torus.

Mind that these flux tubes look like half hollow cylin-
ders in their cross section, but they are none, because they
are wrapped around cylindrical poles. It is therefore not
permissible to simply scale the result to arbitrary polar an-
gles. Scaling from half to quarter hollow torus is the only
acceptable fraction, since the flux tube is perfectly mirror
symmetrical with respect to this cutting plane.

2 Analytical Treatment
We use a subdivision as depicted in Figure 3 and start by
calculating the permeance of an infinitesimal flux tube at
radius r and polar angle ϑ :

Gm(r,ϑ) = µ0
2π(R± r sinϑ) dr

r dϑ
(3)

The positive sign refers to the outer half hollow torus ge-
ometry shown in Figure 3, the negative sign refers to the
corresponding inner half hollow torus.

We first derive the total permeance of a slice of polar
width dϑ :

Gm(ϑ) dϑ =

ro∫
ri

2πµ0

(
R
r
± sinϑ

)
dr (4)

= 2πµ0

(
R ln

ro

ri
± (ro − ri)sinϑ

)
(5)

We then calculate the total reluctance of the full flux tube:

Rm =
1

2πµ0t

π∫
0

dϑ

R
t ln ro

ri
± sinϑ

(6)

With η = R
t ln ro

ri
we find two cases for the primitive

(Bronštein et al. 1993, P. 763, Eq. 306):

∫ dϑ

η ± sinϑ
=


2√

η2−1
arctan η tan ϑ

2 ±1√
η2−1

for: η > 1

1√
1−η2

ln η tan ϑ
2 ±1−

√
1−η2

η tan ϑ
2 ±1+

√
1−η2

for: η < 1

(7)
We deviate from Bronštein et al. (1993) by stating the
cases without the use of squares. Comparing η to 1 is
equivalent to comparing η2 to 1 since all radii are positive
and ro > ri, so η is always positive.

2.1 Inner Half Hollow Torus (Negative Sign)
We first observe that only the case η > 1 exists for the
inner half hollow torus. To see this, we consider the case
η = 1:

R
t

ln
ro

ri
= 1 (8)

ln
ro/R
ri/R

=
ro

R
− ri

R
(9)

ln
ro

R
− ro

R
= ln

ri

R
− ri

R
(10)

lnx− x is always negative, yet has a single high point at
x = 1. For the inner half hollow torus we know the argu-
ment to be smaller than one, otherwise the flux tube could
not exist without intersecting itself. Thus this function is
strictly monotonic increasing for relevant arguments, and
the only solution of Equation 10 hence is ri = ro. In this
case, the flux tube ceases to exist and Rm → ∞. This
means, the only relevant case is η > 1.

Looking at the upper integration limit first, ϑ = π . Then
tan ϑ

2 →+∞, while everything else in the argument of the
arctan is finite, so the arctan returns π

2 . Looking at the
lower integration limit now, ϑ = 0. Then tan ϑ

2 = 0 and
the argument of the arctan is negative, so we end up with:

Rm =
1

πµ0t
1√

η2 −1

(
π

2
+ arctan

1√
η2 −1

)
(11)

using the point symmetry of the arctan. With Gm0 = πµ0t
and using that the argument of the arctan is always posi-
tive, so we can use α+ = π

2 +arccot
√

η2 −1, we can write
the permeance as:

Gm = Gm0

√
η2 −1
α+

(12)

All major results, like this permeance, are collected in Ta-
ble 1 towards the end of the paper for quick reference.

We can finally verify the expected behaviour of the re-
luctance for η2 → 1 by considering η2 = 1+ ε2:

lim
ε→0

1
Gm0

1
ε

(
π

2
+ arctan

1
ε

)
→ ∞ (13)
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2.2 Outer Half Hollow Torus (Positive Sign)
In turning to the outer half hollow torus now, we first
note that in this case both η > 1 and η < 1 are physi-
cal. Consider first, ro = 2ri = R, i.e., t = ri = R/2 and
η = 2ln2> 1. Consider next ro = 2ri = 2R, i.e., t = ri =R
and η = ln2 < 1. The restriction for the inner half hollow
torus exclusively came from the limited radial space to-
wards the center – outwards there is unlimited space.

Looking at the case η > 1 first, the reasoning is much
the same as before (here, α− = π

2 − arccot
√

η2 −1, al-
lowing for the sign), leaving:

Gm = Gm0

√
η2 −1
α−

(14)

Looking at the case η < 1 now, we find at ϑ = π that
both the tangens in the numerator and the denominator of
the logarithm’s argument diverge, i.e. the argument ap-
proaches unity and the logarithm vanishes. At ϑ = 0, both
tangens vanish, and we are left with:

Rm =− 1
2Gm0

1√
1−η2

ln
1−
√

1−η2

1+
√

1−η2
(15)

We use λ = ln 1+
√

1−η2

1−
√

1−η2
to write the permeance concisely:

Gm = Gm0
2
√

1−η2

λ
(16)

Note that the reciprocal in the logarithm’s argument can-
cels the sign in Equation 15. Both terms may not be eval-
uated at η = 1, yet other than before they do not diverge
but match up continuously. To see this, we start from the
equation for η > 1, and use 1 = η2 − ε2, arriving at:

lim
ε→0

1
Gm0

1
ε

(
π

2
− arccotε

)
=

1
Gm0

(17)

Similarly, using η2 = 1− ε2 for the equation for η > 1
yields:

lim
ε→0

−1
2Gm0

1
ε

ln
1− ε

1+ ε
=

1
Gm0

(18)

as above. So all these cases give physical solutions, and
they match continuously.

2.3 Inner and Outer Quarter Hollow Torus
The equations for the inner and outer quarter hollow torus
immediately follow from the observation, that their re-
luctance will be half that of the corresponding half hol-
low torus, their permeance will be twice that of the corre-
sponding half hollow torus.

2.4 Lower Half Hollow Torus
The lower half hollow torus then follows from these:

Rm =
α−

2Gm0
√

η2 −1
+

α+

2Gm0
√

η2 −1
(19)

Gm = Gm0
2
√

η2 −1
π

2 − arccot
√

η2 −1+ π

2 + arccot
√

η2 −1
(20)

= Gm0

√
η2 −1
π/2

for: η > 1 (21)

We do not need to consider other cases, as the inner quarter
torus only exists for η > 1.

3 Check with Finite Element Method
In order to evaluate the applicability of these formulae, we
want to compare them with finite element method (FEM)
calculations (Meeker 2025). This is necessary since on our
way here we made two separate steps: we firstly assumed
a flux pattern and we then secondly did the appropriate
calculations to solve for this assumption. We did so far,
however, not verify that the assumed flux patterns are cor-
rect in the first place. Are the flux lines exactly shaped like
half circles? The prior results are only valid insofar as this
is a reasonable approximation of reality.

To verify the flux pattern, we compare with FEM. The
way the simulation is set up, only three areas are actually
modelled (cf. Fig. 4): First, the flux tube in question,
modelled as air (µr = 1). Second, the area inside ri, mod-
elled as an insulator (µr = 10−6) containing a current link-
age of, in this case, Θ = 1 A. Third, a yoke serving as a
magnetic short (µr = 1012). All outside areas are cut off by
Dirichlet boundary conditions (A = 0). We then evaluate
the integral over Bn in the center of the yoke, thus making
sure that the flux lines at the point of integration have min-
imal curvature and are expected to yield a reliable value of
Φ. The permeance is finally computed from:

Gm =
Φ

Θ
(22)

Since all flux patterns scale, we effectively have to con-
sider only two variables instead of three (R, ri and ro). For
FEM we fix R = 1 mm for all calculations and use ri/R
as independent variable for our plots. We show different
values of ro/R as a family of curves, taking care to keep
ri < ro and ro < R where appropriate. Note that the quar-
ter hollow torus elements (d) and (e) were not separately
studied, as they are exactly half of (a) and (c).

Three exemplary results of such analysis are shown in
Figure 4. Apart from the permeance, these pictures give us
valuable clues with respect to the previously raised ques-
tion: are the flux lines half-circle shaped? Even though
we dictate the outer limit to be a half-circle, this is not ex-
actly the case. In Figure 4a, e.g., it is quite evident that
the distance of the outer-most flux line from the white sur-
rounding area is not constant. Similarly, it is obvious, that
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(a) (b) (c)

Figure 4. FEM results for ro/R = 0.8 and ri/R = 0.01. (a) inner half hollow torus. (b) lower half hollow torus. (c) outer half
hollow torus. The left vertical red lines indicate the rotational axes.

the false colour map (showing the absolute of the flux den-
sity) does not exactly mimic the circular symmetry of the
flux tube. The teal area is horizontally elongated in Figure
4a, while it is vertically elongated in Figure 4c. So we do
well to remain cautious.

Next we study the values for Gm from FEM, from our
formulae and from the formulae presently implemented in
Modelica. The results are shown in Figure 5.

Let us consider the inner and outer half hol-
low torus first. Both these are compared to
Modelica.Magnetic.Fluxtube.Shapes.Leakage.
HalfHollowCylinder, which essentially assumes that
the half hollow torus is a half hollow cylinder wrapped
around a cylinder:

Gm = 2µ0R ln
(

1+
t
ri

)
= Gm0

η

π/2
(23)

The latter is written using the abbreviations introduced
above. Comparing this to our expression for Gm

(η > 1) requires
√

η2 −1 → η in the numerator and
arccot

√
η2 −1 → 0 in the denominator. Both are true for

η → ∞, i.e., the presently used Equation 23 holds up for:

R
t

ln
ro

ri
→ ∞ (24)

In this limit, it similarly approaches our expressions for
either half hollow torus (the sign of the arccot in the de-
nominator is inconsequential, as in the considered limit
the entire arccot is neglected). So our analytical result is
not at odds with the present practice, but is a consistent
extension to arbitrary parameter choices.

We intuitively expect Equation 23 to be fine
for R ≫ ri and R ≫ ro (the former is noted in
Modelica.Magnetic.Fluxtube.Shapes.Leakage.
HalfHollowCylinder as a condition for cylindrical
poles). What we find here is, that the actual condition is
R ≫ (ro − ri) while at the same time ro markedly larger
than ri (if the latter is not the case, the logarithm will be
small). So the former condition cannot be fulfilled by

making both ro and ri large while keeping their difference
small.

In Figure 5a and 5c we find a reasonable fit for ro/R =
0.1, however, for larger ro/R we find considerable devia-
tions even for ri/R = 0.01. So if stating the above condi-
tion using a single simple equation, R ≫ ro might be more
useful than R ≫ ri (since ri < ro, the former includes the
latter anyway).

Considering the lower half hollow torus now, we find
a quite reasonable fit with the equation presently used in
Modelica (Roters 1941, P. 139, Eq. 22a),2 which after
substituting the appropriate symbols actually is identical
to Equation 23.

This actually gives quite reasonable results with the ex-
ception of ro/R close to unity, since the systematic errors
of the inner and outer bit mostly cancel each other out.
Note however, that in this case, our exact result is not
much more complex, yet gives consistently good results
for all parameter combinations.

For all three cases, our analytical result shows excellent
fit over the studied parameter range. There actually are
deviations from exactly circular flux lines, however, these
do not result in notable differences in permeance. In order
to quantify this statement, we in Figure 6 show the relative
deviations at ro/R = 0.1. For high ro/R the shortcomings
of the presently implemented approach are obvious. What
we want to do here is to make sure that our analytical ap-
proach is at least as good as the presently used approach
where there are no obvious problems with the latter.

From this comparison we find that even for ro/R = 0.1
our approach is systematically better than the presently
used formula. In the case of the inner and outer half hol-
low torus, it is better in terms of the relative deviation from
the FEM results by at least one order of magnitude. In the

2There are two cases given in (Roters 1941) which actually are used
to decide which bit of open pole surface does not count towards the use-
ful radius sector, depending on whether the inner or outer useful radius
difference is larger. We do not note these cases here as we explicity only
use the appropriate radius sectors here, by starting from R and drawing
two half circles with radii ri and ro centered there.

Analytical Treatment of Hollow Toroid Flux Tubes 
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Figure 5. Results for the permeance. (a) inner half hollow torus. (b) lower half hollow torus. (c) outer half hollow torus. Each
left to right (bottom to top): ro/R = 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 (the latter two only in (c)). Circles mark individual FEM results, red
lines are analytical formulae presented here, blue lines are formulae presently used in Modelica.
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Figure 6. Relative deviations from FEM results for ro/R = 0.1. (a) inner hollow hollow torus. (b) lower half hollow torus. (c)
outer half hollow torus. Red filled symbols are analytical formulae presented here, blue open symbols are formulae presently used
in Modelica.

case of the lower half hollow torus, the deviations partly
cancel, especially for ri/R = 0.1 the result is almost as
good as the one presented here. Still, we can conclude
that over the studied parameter range the formulae pre-
sented here give consistently better results than the status
quo.

4 Equations for Force
Having analytical expressions for the permeance of flux
tube geometries (a) through (e) (cf. Fig. 2) puts us in a
position to also provide analytical expressions for forces
generated by their deformation, e.g., by a moving arma-
ture. We use (Roters 1941, P. 197, Eq. 2a):

F =
1
2

V 2
m

dGm

dg
(25)

which in Modelica is implemented in Modelica.
Magnetic.FluxTube.BaseClasses.Force. To uti-
lize this, we only need to supply an equation for the latter
derivative, dGmBydx. We will, however, have to address a
number of different cases, as for computing the derivatives
it is quintessential to specify, which quantities are allowed
to change with the air gap, g. We will walk through the
relevant cases to illustrate what is meant by this.

The first relevant case is ro = const. This case is appro-
priate if there is a natural limit to the radial extent of the
flux tube. For an inner hollow torus this might simply be
ro = R. For an outer hollow torus this might be due to
another part of the magnetic circuit, which would attract
flux lines outwards from a given radius. A typical example
might be the red flux tube in Figure 7a. At a point, where
π

2 ro equals the radius difference of the shown yoke parts,
flux lines would short out to the outer part of the yoke
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Figure 7. Application cases for force calculation. (a) plunger
type solenoid. (b) flat face type solenoid. Light gray is the yoke,
dark gray the armature. The left vertical red lines indicate the
rotational axes. Red flux tubes are of type ro = const., blue of
type t = const., yellow of type ri = const.

rather than arcing over this outer half hollow torus. Analo-
gous cases will occur for inner half hollow tori, if there are
equivalent hollow cylinder parts facing each other. A sim-
ilar example for an inner and outer quarter hollow torus
might be seen in the red flux tubes in Figure 7b, where
again the radius difference within the yoke gives an up-
per limit to what outer radius such a toroid flux tube could
have.

The second relevant case is t = const. This is the
case presently implemented in Modelica.Magnetic.
FluxTubes.Shapes.Force.LeakageAroundPoles.
This case is appropriate, if the stray flux tube is limited
by a given axial width t of either one or both of the facing
elements. As an example, consider the blue flux tube
in Figure 7b. While the armature moves, ri = g/2 will
change, t will stay constant and ro = ri + t will change
accordingly.

Flux tubes of this type again may occur in the shape of
inner or outer, half or quarter hollow tori. In discussing
the relevant derivatives below, though, we will not con-
sider the quarter hollow tori separately, as nothing qual-
itatively new happens when doing that. The force will
simply be quadruple what we find in a half hollow torus,
since for the quarter hollow torus twice the magnetic ten-
sion per length is applied (i.e., twice the magnetic field
strength), while twice the distortion is effected on a quar-
ter hollow torus for given stroke, s, as compared to a half
hollow torus. Since for the derivatives, we only need the
change of stroke, ds, it is allowable to identify ri = s for
t = const. and ro = const., and ro = s for ri = const.

The latter is the third relevant case, and this case will
mostly occur for inner or outer quarter hollow tori.3 The

3It is possible to invent scenarios, where this might occur for half
hollow tori. These scenarios, however, appear to be rather artificial.
For this reason, we do not present them here. If needed, the required
formulae may easily be produced starting from what is presented here.

technical situation might be a cylindrical plunger in a
cylindrical hole, so an outer quarter hollow toroid flux tube
is restricted in ro and t, while at the same time ri (being
the fixed radius difference between plunger and hole) is
constant. This situation is visualized by the yellow flux
tube in Figure 7a. The same type of flux tube may occur
on the inside, e.g., if the face of the plunger is lowerd into
a hole in the yoke.

Note, that since in axisymmetric geometries motion
is expected along the rotational axis, lower half hollow
toroid flux tubes will generally not generate force (while
maintaining this general geometry). Looking at the case
of two coaxial hollow cylinders moving relative to each
other, e.g., the relevant flux tube would be expected to be
significantly distorted away from the half hollow torus ge-
ometry considered here. We will therefore not give equa-
tions for these.

We will now proceed to look at the required deriva-
tives. All the relevant results are collected in Table 1 for
quick reference (formulae for quarter tori are only shown
for ri = const. to keep the table concise; the equations for
ro = const. and t = const. may easily be derived from those
shown, as pointed out above).

4.1 Inner Half Hollow Torus (ro = const.)
Starting from Equation 12, the required derivative is of the
structure:

dGm

dg
=

(
Gm

Gm0

dGm0

dri
+Gm0

dGm/Gm0

d
√

η2 −1

d
√

η2 −1
dη

dη

dri

)
dri

dg
(26)

wherein we need the following derivatives:

dGm0

dri
=−Gm0

t
(27)

dGm/Gm0

d
√

η2 −1
=

(
π

2 + arccot
√

η2 −1
)
+

√
η2−1
η2(

π

2 + arccot
√

η2 −1
)2 (28)

d
√

η2 −1
dη

=
η√

η2 −1
(29)

dη

dri
=

1
t

(
η − R

ri

)
(30)

dri

dg
=

1
2

(31)

This might look somewhat intimidating, however, there
are a lot of recurring terms that are needed to calculate the
permeance, anyway, so this can actually be coded quite
efficiently. In doing that, it becomes necessary to ascertain
ro > ri. Once this is no longer valid, this flux tube ceases
to exist, resulting in Gm = 0 and dGm

dg = 0. The same is true
for the outer half hollow torus. This check is unnecessary
if t = const. is used, as this way ro−ri = t for t > 0 always
results in an existing flux tube.
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4.2 Inner Half Hollow Torus (t = const.)
The general procedure is much the same as above:

dGm

dg
= Gm0

dGm/Gm0

d
√

η2 −1

d
√

η2 −1
dη

dη

dri

dri

dg
(32)

The first term in Equation 26 may be omitted, as Gm0 =
πµ0t is constant in this case. η we can therefore rewrite
as:

η =
R
t

ln
(

1+
t
ri

)
(33)

As far as the derivatives themselves are concerned, only
Equation 30 needs to be adjusted accordingly:

dη

dri
=− R

ri(ri + t)
(34)

4.3 Outer Half Hollow Torus (ro = const.)
In this case, we need to keep in mind to separate the cases
η > 1, η = 1 and η < 1 (this was not necessary for the
inner half hollow torus). Starting with η > 1 and using
Equation 14 this time, the equations look much the same
as before for the inner half hollow torus and we can keep
using Equation 26. We only need to adjust Equation 28 to:

dGm/Gm0

d
√

η2 −1
=

(
π

2 − arccot
√

η2 −1
)
−

√
η2−1
η2(

π

2 − arccot
√

η2 −1
)2 (35)

Since the permeance is defined using cases, we will have
to check for continuity between these. In order to facilitate
this, we will give the full relevant equation:

dGm

dg
=

(
Gm

Gm0

dGm0

dri
+Gm0

dGm/Gm0

d
√

η2 −1

d
√

η2 −1
dη

dη

dri

)
dri

dg
(36)

=
Gm0

2tα−

((
η√

η2 −1
− 1

η2α−

)(
η − R

ri

)
−
√

η2 −1

)
(37)

For η < 1 the following derivatives need to be added to
our pool:

dGm/Gm0

d
√

1−η2
=−2

2
√

1−η2

η2 − ln 1+
√

1−η2

1−
√

1−η2

ln2 1+
√

1−η2

1−
√

1−η2

(38)

d
√

1−η2

dη
=− η√

1−η2
(39)

Again, we give the full relevant equation:

dGm

dg
=

(
Gm

Gm0

dGm0

dri
+Gm0

dGm/Gm0

d
√

1−η2

d
√

1−η2

dη

dη

dri

)
dri

dg
(40)

=
Gm02
2tλ

((
2

ηλ
− η√

1−η2

)(
η − R

ri

)
−
√

1−η2

)
(41)

We now turn to consider the limit η → 1, η > 1, by Taylor
expansion using η2 = 1+ ε2 ⇒

√
η2 −1 = ε or η = 1+

ε2

2 . First, we consider:

α =
π

2
− arccotε ≈ ε − ε3

3
= ε

(
1− ε2

3

)
(42)

Since the factor in front of the brackets is the same for
η > 1 and η < 1, we only consider the term in the brackets
and find for ε → 0:

−1
3

(
1+2

R
ri

)
(43)

We now turn to consider the limit η → 1, η < 1, again by
Taylor expansion using η2 = 1− ε2 ⇒

√
1−η2 = ε or

η = 1− ε2

2 . First we consider:

λ = ln
1+ ε

1− ε
= ln(1+ ε)− ln(1− ε) (44)

≈ 2ε +2
ε3

3
= 2ε

(
1+

ε2

3

)
(45)

We now again only consider the term in the brackets of
Equation 41 and finally arrive at the same expression:

−1
3

(
1+2

R
ri

)
(46)

The limits therefore coincide at η = 1 and we can note in
this case:

dGm

dg
=−Gm0

2t
1
3

(
1+2

R
ri

)
(47)

This flux tube (like all others) only exists, if ro > ri. Since
in this case, we keep ro constant while changing g = 2ri,
it becomes important to handle the case ro ≤ ri separately,
resulting in Gm = 0 and dGm

dg = 0.

4.4 Outer Half Hollow Torus (t = const.)
For the general structure of the solution we again use
Equation 32. Starting with η > 1 and using Equation 14
we actually did compute all relevant derivatives before.
Since we need to consider the limit η = 1 in a minute, we
note the full expression of this term:

dGm

dg
=−Gm0R

riro

η

2
√

η2 −1

(
π

2 − arccot
√

η2 −1
)
−

√
η2−1
η2(

π

2 − arccot
√

η2 −1
)2

(48)
For η < 1 we start from 16, do not need any additional
derivatives either, and we again note the full expression:

dGm

dg
=−Gm0R

riro

2
η
− η√

1−η2
ln 1+

√
1−η2

1−
√

1−η2

ln2 1+
√

1−η2

1−
√

1−η2

(49)
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In both cases, the first term is identical. In order to check
for continuity, we check the remaining terms. First, η2 =

1+ ε2 ⇒
√

η2 −1 = ε or η = 1+ ε2

2 as above:

lim
ε→0

(
1+ ε2

2

)
2ε

π

2 − arccotε − ε

1+ε2(
π

2 − arccotε
)2 =

1
3

(50)

Now for η2 = 1−ε2 ⇒
√

1−η2 = ε or η = 1− ε2

2 , again
using the limit for λ stated earlier we find:

lim
ε→0

2
1− ε2

2

− 1− ε2
2

ε
ln 1+ε

1−ε

ln2 1+ε

1−ε

=
1
3

(51)

As expected, the curve is continuous and for η = 1 we can
note:

dGm

dg
=−Gm0R

3riro
(52)

4.5 Inner Quarter Hollow Torus (ri = const.)
Since the gap, g, is not meaningful for quarter hollow tori,
we instead use the stroke, s, as discussed above (cf. Fig.
7a). A constant offset will not change the result, and we
may simply use ro = s and t = s−ri. We need to consider:

dGm

ds
=

Gm

Gm0

dGm0

ds
+Gm0

dGm/Gm0

d
√

η2 −1

d
√

η2 −1
dη

dη

ds
(53)

with:
η =

R
s− ri

ln
s
ri

(54)

Most of the derivatives we have noted before. We only
need:

dGm0

ds
=

Gm0

t
(55)

dη

ds
=

1
t

(
R
ro

−η

)
(56)

We thus arrive at:

dGm

ds
=

2Gm0

tα+

(√
η2 −1+

(
η√

η2 −1
+

1
ηα+

)(
R
ro

−η

))
(57)

Note that this term is positive, other than the terms con-
sidered before. This is due to the fact that by moving the
plunger into the hole, the permeance in this case increases,
so this flux tube (by itself) actually acts to push the plunger
out of the yoke (it of course is more than compensated
by the radial flux contribution pulling the plunger into the
yoke - the latter term is well-described already, though,
and therefore not included here).

This term only exists for ro < R. Since we use ro = s
while changing s, it becomes important to handle the case
s > R separately (the permeance remains that of ro = R,
the force, however vanishes, since the permeance does not
change anymore). Furthermore, this term only exists for
s > ri (resulting in Gm = 0 and dGm

ds = 0).

4.6 Outer Quarter Hollow Torus (ri = const.)
In this case we again need to consider cases depending on
η . We start with η > 1, can keep using Equation 53 and
do not need any new derivatives. The desired result is:

dGm

ds
=

Gm

Gm0

dGm0

ds
+Gm0

dGm/Gm0

d
√

η2 −1

d
√

η2 −1
dη

dη

ds
(58)

=
2Gm0

tα−

(√
η2 −1+

(
η√

η2 −1
− 1

ηα−

)(
R
ro

−η

))
(59)

For η < 1, no new derivatives are needed for arriving at:

dGm

ds
=

Gm

Gm0

dGm0

ds
+Gm0

dGm/Gm0

d
√

1−η2

d
√

1−η2

dη

dη

ds
(60)

=
2Gm0

t
2
λ

(√
1−η2 +

(
2

ηλ
− η√

1−η2

)(
R
ro

−η

))
(61)

As before we need to consider the case η = 1 by testing
limits for both cases and coincidingly find:

dGm

ds
=

2Gm0

t

(
1+

2
3

(
R
ro

−1
))

(62)

5 Numerical Implementation
All of these formulae have been implemented in Modelica
(Schmidt 2025). This process is mostly straightforward,
only a few remarks might be in place.

Firstly, some flux tubes allow only for certain parameter
combinations, and while the variable geometry changes,
they may essentially cease to exist. This might be fixed
by setting Gm = 0 and dGm

dx = 0 in those cases, however,
since in the base class Force a reluctance is produced by
calculating the inverse of Gm, the latter needs to be set
to an arbitrary small number rather than zero (we chose
Gm = 10−15 H). It is in the nature of absolute values, that
none will be small as compared to every other value, thus
there is an inherent (if practically small) risk in doing that.

Secondly, while mathematically the three given cases
η ⪋ 1 cover all eventualities, numerically one needs to
keep some distance from η = 1. Otherwise, Modelica
is needlessly forced to evaluate terms that analytically
safely converge, yet numerically might introduce signif-
icant errors. Experimentally it is found that by reserving
η ∈ [0.999999,1.000001] to the solution strictly correct
for η = 1 only, such problems can be avoided. Since all
three solutions merge continuosly, no harm is done by this.

Thirdly, what does the added accuracy and versatility
cost in terms of computational time? We put this to the
test using our OuterHalfHollowTorusConstantt and
the presently implemented LeakageAroundPoles.

We will start by looking at the accuracy of the force
calculation. While our class is exact within the assump-
tion of circular flux lines, the presently implemented class

Analytical Treatment of Hollow Toroid Flux Tubes 

 

250 Proceedings of the 16th International Modelica&FMI Conference DOI 
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218243 



Figure 8. OMEdit test model used to compare the “new” model
to the established “old” model of an outer half hollow torus.

assumes bending a straight quarter hollow cylinder into
a quarter hollow torus. This restricts the meaningful pa-
rameter choices. An additional, practical problem with
LeakageAroundPoles is, which circumference to use?
The class calls for the mean circumference to use as width,
w, however, even if one accepts the arithmetic mean to be
applicable, this mean changes as ro = ri + t increases with
increasing gap, g = 2ri. Most likely, users will either put
2πR, i.e., an obviously constant, yet systematically low
value, or 2π(R+ t/2), which might be expected to fit best
for low values of the gap. Actually, the former gives quan-
titatively better results in our case, and we therefore went
with w = 2πR. Other parameters were t = R = 10 mm.

We set up a model (cf. Fig. 8) using a prescribed po-
sitional ramp (20 mm stroke, 2 mm offset over 1 s) and
a minimal magnetic loop including 1 A of magnetic ten-
sion to produce force vs. stroke curves. Figure 9 shows
the relative deviation of these two curves. Note that the
torus model went through all three cases η ⪋ 1 within this
ramp, without any trace of it in the result (as it should be).
LeakageAroundPoles systematically neglects that

the width of the flux tube is a function of the gap. Includ-
ing that would reflect into the derivative needed to calcu-
late force and thereby change the class itself. This existing
class deviates noticably from the more exact result. How-
ever, the significant relative deviation for large gaps is to
be taken with a grain of salt, as absolute values of force in
this region of stroke are very small.

Finally looking at the computational times listed in the
transformational debugger (in OMEdit), we find the fol-
lowing break down of major contributions:

• 25.6 % for the position
• 13.3 % for the old force calculation
• 61.1 % for the new force calculation

At first glance, we find that our more elaborate model
needs more than quadruple the computational time of the
existing, simpler model. To put that into perspective:
12.2 % of the computational time is used up in calculat-
ing ln ro

ri
alone. This illustrates that the absolute increase

in computational time is not quite as significant as it may
appear from looking at the relative increase. In absolute
terms one may put it like this: the new force calculation is
comparable in computational time to two position presets.

Whether this is acceptable may obviously be decided
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Figure 9. Relative deviation of force calculated from “old” com-
pared to “new” model.

on a case-to-case basis. In most geometries considered
in this paper, there is no “presently used model” anyway,
so mostly such flux tubes would have previously been
neglected or falsly been modelled using the one existing
class, even though that would not really have been appli-
cable (e.g., if ro was constant rather than t).

6 Conclusion
In this paper we have derived exact expressions for the
permeance of half or quarter hollow toroid flux tubes (cf.
Tab. 1). These expressions are an extension of the much
simpler expression extensively used previously, lifting the
limitation to a certain range of allowable parameters. Our
derivation started from the assumption that the flux lines
follow a general circular pattern. We verified our result
by studying the actual flux patterns using FEM analysis.
Quantitatively we find our expressions for the permeance
to be in agreement with the FEM results within the ex-
pected limitations of the numerical method. We further-
more derived expressions necessary for calculating force,
taking into account three relevant use cases (constant outer
radius, constant radius difference, and constant inner ra-
dius of the torus, respectively). Corresponding Modelica
models have been made available electronically.

Acknowledgements
The author would like to thank Silvia Hacia and Jörg
Frochte for fruitful discussions, as well as Christof Kauf-
mann for technical support.

References
Bronštein, Il’ja N. et al. (1993). Taschenbuch der Mathematik.

1st ed. Verlag Harri Deutsch. ISBN: 3-8171-2001-X.
Meeker, David C. (2025). Finite Element Method Magnetics,

Version 4.2 (21April2019 Build). URL: https:/ /www.femm.
info/ (visited on 2025-04-23).

Roters, Herbert C. (1941). Electromagnetic Devices. 1st ed. John
Wiley & Sons. ISBN: 978-0471739203.

Schmidt, Herbert (2025). URL: https : / / github . com /
HerbertSchmidt75/Toroid/ (visited on 2025-07-28).

Session: Power System Simulation in Track for Energy 

DOI Proceedings of the 16th International Modelica&FMI Conference  251 
10.3384/ecp218243 September 8-10, 2025, Lucerne, Switzerland   

https://www.femm.info/
https://www.femm.info/
https://github.com/HerbertSchmidt75/Toroid/
https://github.com/HerbertSchmidt75/Toroid/


Table 1. Essential formulae in simulating hollow toroid flux tubes.

Symbols

g = 2ri

t = ro − ri

Gm0 = πµ0t

η =
R
t

ln
ro

ri

α± =
π

2
± arccot

√
η2 −1

λ = ln
1+
√

1−η2

1−
√

1−η2

Inner half hollow torus for η > 1

Gm = Gm0

√
η2 −1
α+

for ro = const.:
dGm

dg
=− Gm0

2tα+

(√
η2 −1−

(
η√

η2 −1
+

1
ηα+

)(
η − R

ri

))

for t = const.:
dGm

dg
=−

Gm0

2roα+

(
η√

η2 −1
+

1
ηα+

)
R
ri

Inner quarter hollow torus

for ri = const.:

for η > 1

dGm

ds
=

2Gm0

tα+

(√
η2 −1+

(
η√

η2 −1
+

1
ηα+

)(
R
ro

−η

))

Lower half hollow torus for η > 1

Gm = Gm0

√
η2 −1
π/2

Outer half hollow torus

Gm =


Gm0

√
η2−1
α−

for: η > 1

Gm0

√
η2−1
α−

for: η = 1

Gm0
2
√

1−η2

λ
for: η < 1

for ro = const.:
dGm

dg
=


−Gm0

2t
1

α−

(√
η2 −1−

(
η√

η2−1
− 1

ηα−

)(
η − R

ri

))
for: η > 1

−Gm0
2t

1
3

(
1+2 R

ri

)
for: η = 1

−Gm0
2t

2
λ

(√
1−η2 −

(
2

ηλ
− η√

1−η2

)(
η − R

ri

))
for: η < 1

for t = const.:
dGm

dg
=


−Gm0R

riro
1

2α−

(
η√

η2−1
− 1

ηα−

)
for: η > 1

−Gm0R
riro

1
3 for: η = 1

−Gm0R
riro

1
λ

(
2

ηλ
− η√

1−η2

)
for: η < 1

Outer quarter hollow torus

for ri = const.:
dGm

ds
=



2Gm0
t

1
α−

(√
η2 −1+

(
η√

η2−1
− 1

ηα−

)(
R
ro
−η

))
for: η > 1

2Gm0
t

(
1+ 2

3

(
R
ro
−1
))

for: η = 1

2Gm0
t

2
λ

(√
1−η2 +

(
2

ηλ
− η√

1−η2

)(
R
ro
−η

))
for: η < 1
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